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Decision tree is a simple classification algorithm and has been widely used in knowledge discovery and
pattern recognition fields, which can be used to deal with the multi-classification tasks. In this paper, we
present a multi-view OVA model based on decision tree (MVDT) for multi-classification tasks to simplify
the structure of the decision tree and improve the generalization ability. A multi-class classification task
is divided into ¢ multiple parallel sub-tasks, and MVDT builds ¢ decision trees as base binary classifiers
for each sub-task. Each decision tree gives membership vector for each leaf node to estimate the proba-
bilities of the instances in the leaf node belonging to negative classes, as well as presents a precise clas-
sification for positive class. Thus, one can obtain more information about instances belonging to negative
classes through membership vectors, which helps to achieve higher accuracy and better robustness for
classification. As a general framework, MVDT algorithm can use any existing decision tree model as base
classifier. To evaluate the performance of our algorithm, we choose C4.5, CART, TEIM, SCDT and NBTree
as base classifiers in MVDT. The experiments on 22 data sets show that the proposed MVDT has excellent

performance for multi-class classification problems and has excellent robustness to output noise.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Data mining is used to find out important and meaningful
knowledge in large scale data. Multi-class classification involves
training of instances for different classes so as to further enable
the identification of classes for various unknown instances, and
widely exists in data mining and machine learning area. There are
many classification algorithms, such as decision tree [1,2], neural
networks [3,4], support vector machines [5] and Bayesian networks
[6,7], etc. Among them, decision tree is a simple method and has
been widely used in knowledge discovery and pattern recogni-
tion fields such as medical diagnosis [8,9] and credit risk assess-
ments[10].

Decision tree is an inductive learning algorithm based on in-
stances, which focuses on the classification rules in the form of
decision trees from a set of non-order, non-regular instances. By
using tree structure to make decision, decision tree is a natu-
ral mechanism for human beings to deal with the decision mak-
ing problems. It has a high predictive performance for a relatively
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small computational effort and can produce a comprehensible clas-
sification/regression model. Decision tree has been proved to be
one of the most powerful and popular approaches to discover use-
ful patterns in data science.

In decision tree induction algorithms, ID3 [1] and its extension
C4.5 [11] are very popular and successful. The split criterion of
ID3 is founded on information entropy. ID3 has some deficiencies,
including the tendency of selecting attributes with more values,
poor anti-noise ability, and the inability to deal with miss values
[12]. C4.5 is an extension version of ID3 to deal with continu-
ous attributes and missing values. C4.5 uses information gain ratio
instead of information gain as split criterion to obtain a finer parti-
tion, and uses a pessimistic error prunning method to reduce over-
fitting. Another popular decision tree algorithm is CART developed
by Breiman et al. [13], which uses Gini index as its split criterion
and creates binary trees from data with continuous and discrete
attributes. In CART, cost complexity pruning method is adopted to
reduce overfitting.

To further improve the performance of classical decision trees,
many researchers then proposed a lot of improvements. Some al-
gorithms have been proposed to improve the split criterion [14-
25]. Chandra et al. [16] proposed a new node splitting measure
named distinct class based splitting measure(DCSM) to provide
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higher classification accuracy. Mantas and Abellan [19] showed
that Credal Decision Tree (CDT) with Imprecise Information-Gain
(IIG) and Complete Credal Decision Tree(CCDT) with Complete Im-
precise Information-Gain(CIIG) can obtain better performance and
stability than those based on the information entropy. Asadi and
Ghatee [23] proposed a new decision tree (named as AGDT in
this paper) where experts’ perception is used to select branching
variables at the primary levels in construction of decision tree to
obtain more reasonable results. Wu et al. [24] proposed a Size Con-
strained Decision Tree (SCDT), in which the categorical attributes
are divided into two groups before node splitting and the num-
ber of leaf nodes is constrained through a threshold. Wang et al.
[25] proposed Tsallis Entropy Information Metric (TEIM) algorithm
using a new split criterion based on two-term Tsallis conditional
entropy, which has better stability and adaptability to data sets.
In TEIM, the minimum leaf size is set to 5 to avoid overfitting.
Some researchers also proposed improved decision tree algorithms
to deal with ordinal classification, time series, gene expression data
and continuous valued attributes etc. [26-34]. Qian et al. [27] pro-
posed a fusing monotonic decision tree for ordinal classification,
Yi et al. [31] proposed an AMDT algorithm for multi-valued and
multi-labeled data, and Ludwig et al. [30] presented a fuzzy deci-
sion tree algorithm on gene expression data.

Multi-class classification problems can also be solved by de-
composing the original problems into several binary classification
tasks that can be solved efficiently using binary classifiers. Rifkin
and Klautau [35] argued that One-versus-all (OVA) is one of the
most efficient decomposition strategies for multi-class classifica-
tion problems. In OVA, given c classes, ¢ binary classifiers are built,
each one considers one of the classes as the “positive” class while
the remainders are combined into a “negative” class. For each
binary classifier, if an instance is classified as negative, then all
classes except the positive one get a vote. Wang et al. [36] pro-
posed a multi-class multi-nomial naive Bayes tree (MMNBTree) for
text classification. In MMNBTree, for each binary classifier, if the
membership probability of an instance belonging to positive is p,
then the membership probabilities of the instance belonging to all
negative classes are assigned to 1 — p. The minimum leaf size is set
to |D|*40% to avoid overfitting in MMNBTree, where |D| is the size
of dataset.

Both OVA and MMNBTree assign equal membership probabili-
ties of an instance belonging to negative classes, while the mem-
bership probabilities might be various in a binary classifier. If each
binary classifier can provide not only the information about the
positive class but also some useful information about the neg-
ative classes, then the accuracy of the multi-class classification
algorithm might be promoted. In order to solve multi-class classifi-
cation problems better, we propose a multi-view OVA model based
on decision tree (MVDT), which adopts multiple decision trees as
base classifiers. An instance can be classified as “positive” by a de-
cision tree, or it can be classified as “negative” by the decision
tree with various membership probabilities belonging to negative
classes. For an instance, we combine the membership probabilities
of the instance belonging to some class given by all the decision
trees, and then classify the instance as the class with highest com-
bined probability.

In MVDT, a multi-class classification task can be divided into
multiple parallel sub-tasks, and a decision tree will be built for
solving a sub-task. For the whole classification task, each decision
tree presents a precise classification for positive class and gives
various probability estimates for negative classes. It is showed that
the proposed MVDT has excellent performance and good robust-
ness to noise data for multi-class classification problems and can
effectively avoid overfitting.

This paper is organized as follows. Section 2 briefly describes
basic concepts of decision trees and multi-class classification prob-

lems. Section 3 introduces the proposed multi-view OVA model
based on decision tree (MVDT). Section 4 presents and ana-
lyzes the compared experimental results with other multi-class
classifications, such as C4.5, CART, TEIM, SCDT, MMNBTree etc.
Section 5 gives an analysis and conclusion.

2. Previous knowledge
2.1. Multi-class classification problems

Multi-class classification problems exist widely in real life, such
as fingerprints and medicine. Rifkin and Klautau[35] argued that
One-versus-all (OVA) is one of the most efficient decomposition
strategies for multi-class classification problems.

In OVA, a dataset D with c classes is divided into c binary clas-
sifiers. Each classifier considers one of the classes as the “positive”
class while the remainders are combined into a “negative” class.
Given a test instance, classifier that gives a positive indicates the
output class. If the positive output is unique, then the final classifi-
cation results of the test instance are marked as the corresponding
class. In many cases, the positive output is not unique, the com-
mon approach uses the confidence of the classifier to decide the
final output, predicting the class from the classifier with the largest
confidence. OVA uses a score vector R = (rq,13,...,1¢) [37] (where
r; € [0, 1] is probability estimate of the instance belonging to class
i) to evaluate the outputs.

2.2. Decision trees

Decision tree models have been successfully used for multi-
class classification problems. It is based on the tree structure to
make decisions and is a natural mechanism for human beings to
deal with the decision making problems.

A decision tree can be viewed as a classifier expressed as a
recursive partition of the instance space, which is usually con-
structed top-down recursively from a training data set. In other
words, each internal node splits the instance space into two or
more sub-spaces according to the values of input attributes, so
each path in the decision tree from root node to leaf node cor-
responds to a conjunction rule of attribute tests. The decision tree
can be regarded as a disjunction of conjunctions of constraints on
the attribute values of instances [38].

Once a decision tree has been constructed by the training set,
it can be used to classify an unknown instance set based on the
values of the attributes. When a decision tree is used to classify
an instance, it begins to test the values of the attributes gradually
from the root node, and then goes along the appropriate branch
down until it reaches a leaf node. The class label represented by
the leaf node is then assigned to the test instance. Every decision
problem put forward in the decision-making process is a “test” for
a certain attribute.

A decision tree itself can handle multi-class classification prob-
lems, in which all classes can be distinguished by the establish-
ment of a fully grown tree. In order to divide the training set as
pure as possible, a decision tree needs to select the best splitting
attribute(s) for all classes. Then, the size of the decision tree might
be very large. Therefore, in decision tree algorithms, the complex-
ity of decision tree model is an important factor which needs to
be considered. There might be enormous amount of leaf nodes in
a fully grown tree, and only a few training instances in each leaf
node. If the algorithm searches too long or concentrates too much
on a few hard-to-learn instances, the problem of over-fitting can
occur. And the performance of the decision tree might be also re-
duced when dealing with a noise data set.
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Fig. 1. MVDT-ID3 decision tree.
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Fig. 2. ID3 decision tree.

Table 1

An artificial data set.
Instances @, a as ay d
X 1 2 2 1
X2 1 2 2 2
X 2 02 2 1
X4 2 3 2 3 W
Xs 1 3 2 1
X6 1 2 3 1 w3
X7 2 3 1 3 Wy
Xg 1 2 2 3 o
Xo 1 1 3 3
X10 2 1 2 3 (o))
X1 1 1 2 2
X12 1 3 3 1
X13 2 1 2 3 w7

Table 2
Results of ID3 and MVDT-ID3 on testing data in Table 1.

Instances ~ Real labels  labels by ID3  labels by MVDT
X12 (2] w3 w1
X13 (2] (o)) w;

3. A multi-view OVA model based on decision tree (MVDT)

We adopt multi-view OVA to the proposed MVDT model to im-
prove the performance of decision tree. The main idea is to divide
a multi-class classification task into ¢ multiple parallel sub-tasks
and build c decision trees for these sub-tasks. The number of de-
cision trees is determined by the number of classes in the training
set. Each decision tree is corresponding to a binary classification
task for one class, which gives membership vector for each leaf
node to estimate the probabilities of the instances in the leaf node
belonging to negative classes, as well as presents a precise clas-
sification for positive class. Thus, we can obtain more information
about negative instances through membership vectors, which helps
to achieve higher accuracy for classification. For a minority class,
one could obtain a more accurate prediction through the decision
tree corresponding to the class. Hence, MVDT shows a significant
performance on the imbalance data sets. When there is noise in
training set, only a few of decision trees might be sensitive to noise

Table 3
Summary of the used data sets.

Dataset #EX. #Atts.  #CL IR
iris 150 4 3 1
texture 5500 40 1 1
mfeat-fac 2000 216 10 1
mfeat-fou 2000 76 10 1
mfeat-kar 2000 64 10 1
mfeat-mor 2000 6 10 1
mfeat-pix 2000 240 10 1
mfeat-zer 2000 47 10 1
wavform 5000 40 3 1.02
optdigits 5620 64 10 1.03
tae 151 5 3 1.06
letter 20,000 16 26 111
wine 178 13 3 1.48
cmc 1473 9 3 1.59
molecula 3190 60 3 2.16
satimage 6435 36 6 245
balance-scale 625 4 3 5.88
glass 214 9 7 8.44
car 1728 6 4 18.62
ecoli 336 7 8 715
yeast 1484 8 10 92.6
nursery 12,960 8 5 2160

data and the accuracy of these decision trees might be reduced.
But most of the decision trees would be slightly affected by noise
data. The combination result of these trees could still maintain a
higher prediction accuracy. Hence, our algorithm is also robust to
data set with output noise.

The proposed multi-view OVA model based on decision tree
will first establish ¢ decision trees as base classifiers for each class.

3.1. The construction of the base classifier

For a c-class problem, c¢ decision trees will be established in
MVDT algorithm, where the ith decision tree presents a precise
classification of the ith class. That is, each instance in a leaf node
of the ith decision tree will be classified as positive or as negative
to the ith class.

For convenience, we first give some definitions and notations.

Given a training data set {(Xq,¥1). (X2.¥2)..... Xn.¥n)}., where
Xj € R™ denotes the jth instance. Let Y = {yy,y,,. ..,yn)}T be label
vector for X, where y; € {w, w,, ..., wc} is the class label of the jth
instance.

Each decision tree is a binary classifier for the class under dis-
cussion. In order to build binary classifier, we need to define the
binary label vector for each class, see Definition 1.

Definition 1. For an instance set X and its label vector Y =
{y1.¥2.....yn}7. the binary label vector Y/ ={y}.y},.....¥},}"

1
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Table 4

Performance analysis of algorithms with C4.5 as base classifier.
Dataset Accuracy F1-measures Precision AUC

C4.5 OVA-C45 MVDT-C45 C4.5 OVA-C4.5 MVDT-C45 (4.5 OVA-C4.5 MVDT-C4.5 (45 OVA-C4.5 MVDT-C4.5

iris 0.9620 (2) 0.9567 (3) 0.9633 (1) 0.9589 (2) 0.9537 (3) 0.9605 (1) 0.9622 (2) 0.9583 (3) 0.9637 (1) 09722 (3) 0.9799 (2) 0.9845 (1)
texture 0.9215 (2) 0.9049 (3) 0.9377 (1) 0.9210 (2) 0.9069 (3) 0.9369 (1) 0.9218 (2) 0.9211 (3) 0.9380 (1) 0.9646 (3) 0.9895 (2) 0.9957 (1)
mfeat-fac 0.8768 (1) 0.7970 (3) 0.8537 (2) 0.8745 (1) 0.8048 (3) 0.8514 (2) 0.8790 (1) 0.8493 (3) 0.8569 (2) 0.9763 (1) 0.9313 (3) 0.9608 (2)
mfeat-fou 0.7499 (2) 0.6463 (3) 0.7753 (1) 0.7468 (2) 0.6448 (3) 0.7677 (1) 0.7518 (2) 0.6967 (3) 0.7710 (1) 0.8802 (3) 0.9120 (2) 0.9618 (1)
mfeat-kar 0.8139 (2) 0.7695 (3) 0.8791 (1) 0.8093 (2) 0.7788 (3) 0.8756 (1) 0.8142 (3) 0.8329 (2) 0.8783 (1) 0.9006 (3) 0.9569 (2) 0.9844 (1)
mfeat-mor  0.6380 (2) 0.5855 (3) 0.6731 (1) 0.6328 (2) 0.5738 (3) 0.6661 (1) 0.6381 (2) 0.6019 (3) 0.6715 (1) 0.8676 (2) 0.8324 (3) 0.9522 (1)
mfeat-pix 0.8540 (2) 0.8413 (3) 0.8937 (1) 0.8510 (2) 0.8468 (3) 0.8909 (1) 0.8550 (3) 0.8812 (2) 0.8943 (1) 0.9222 (3) 0.9721 (2) 0.9856 (1)
mfeat-zer 0.6561 (2) 0.6103 (3) 0.7154 (1) 0.6559 (2) 0.6068 (3) 0.7081 (1) 0.6657 (2) 0.6472 (3) 0.7097 (1) 0.8533 (3) 0.9060 (2) 0.9591 (1)
wavform 0.7502 (2) 0.7326 (3) 0.7617 (1)  0.7500 (2) 0.7300 (3) 0.7584 (1) 0.7507 (3) 0.7599 (2) 0.7667 (1) 0.8200 (3) 0.8869 (2) 0.9108 (1)
optdigits 0.8467 (2) 0.8264 (3) 0.9021 (1) 0.8458 (2) 0.8337 (3) 0.9001 (1) 0.8468 (3) 0.8719 (2) 0.9018 (1) 0.9129 (3) 0.9717 (2) 0.9891 (1)
tae 0.5940 (3) 0.6197 (1) 0.6135(2) 0.5780 (3) 0.5975 (1) 0.5924 (2) 0.6074 (3) 0.6299 (1) 0.6238 (2) 0.7024 (3) 0.7465 (2) 0.7866 (1)
letter 0.8521 (2) 0.8055 (3) 0.8752 (1) 0.8512(2) 0.8235(3) 0.8744 (1) 0.8522 (3) 0.8647 (2) 0.8796 (1) 0.9191 (3) 0.9590 (2) 0.9902 (1)
wine 0.8692 (3) 0.8917 (2) 0.9267 (1) 0.8637 (3) 0.8815(2) 0.9202 (1) 0.8717 (3) 0.9032 (2) 0.9256 (1) 0.9008 (3) 0.9743 (2) 0.9784 (1)
cme 04654 (3) 04718 (2) 0.4913 (1) 04430 (2) 04167 (3) 04651 (1) 04453 (2) 04389 (3) 0.4693 (1) 0.6045 (3) 0.6315 (2) 0.6728 (1)
molecula 0.8957 (2) 0.8898 (3) 0.9137 (1) 0.8839 (2) 0.8790 (3) 0.9023 (1) 0.8833 (3) 0.8902 (2) 0.9111 (1) 0.9135(3) 0.9654 (2) 0.9735 (1)
satimage 0.8494 (2) 0.8210 (3) 0.8757 (1) 0.8246 (2) 0.8015 (3) 0.8440 (1) 0.8257 (2) 0.8256 (3) 0.8660 (1) 0.9176 (3) 0.9501 (2) 0.9763 (1)
balance-scale 0.7663 (2) 0.7311 (3) 0.8031 (1) 05687 (2) 0.5630 (3) 05797 (1) 0.5845 (2) 0.5957 (1) 0.5803 (3) 0.8317 (3) 0.8701 (2) 0.8857 (1)
glass 0.5553 (3) 0.6003 (2) 0.6583 (1) 0.4406 (3) 0.4737 (2) 0.5037 (1) 0.4619 (3) 0.5053 (2) 0.5078 (1) 0.6911 (3) 0.7976 (2) 0.8640 (1)
car 0.9785 (2) 0.9755 (3) 0.9789 (1) 0.9447 (1) 0.9423 (2) 0.9406 (3) 0.9521 (3) 0.9747 (1) 0.9605 (2) 0.9653 (3) 0.9911 (1) 0.9907 (2)
ecoli 0.8270 (2) 0.8158 (3) 0.8515(1) 0.6578 (2) 0.6481(3) 0.6908 (1) 0.6896 (2) 0.6871 (3) 0.7370 (1) 0.8716 (3) 0.8855 (2) 0.9470 (1)
yeast 0.4562 (2) 0.4494 (3) 0.5493 (1) 03207 (2) 0.2980 (3) 0.3868 (1) 0.3369 (3) 0.3612 (2) 0.4198 (1) 0.6589 (3) 0.7196 (2) 0.8272 (1)
nursery 0.9971 (2) 0.9871 (3) 0.9977 (1) 0.9516 (2) 0.8778 (3) 0.9587 (1) 0.9509 (2) 0.8760 (3) 0.9595 (1) 0.9632 (3) 0.9759 (2) 0.9948 (1)
Avg.Rank 2.136 2.773 1.091 2.045 2.773 1.182 2.455 2.318 1.227 2.864 20.45 1.091
Friedman v v - v v - v v - v v -
o = 0.05

relative to ith class is defined as follows:

Yz{j _ 1, y{ = a), where 1< j<nand1<i<c 1) Algorithm 1 .Generatlon of base classifiers.

0. yj#w Input: Training set {(X1,y1), X2.¥2),.... Xn.yn)}:

Let X = {Xq,Xy...., Xy} be instance set in the training data set;
Y = {y1.¥2,...,yn}T be label vector for X;
¢ be the number of classes;

Output: Decision trees Ty, I, ..., T¢

1: fori=1toc do

If the decision tree T could offer some useful information of 2 Compute the binary class label for ith class ¥/=
negative classes for instances in a leaf node v when a leaf node v ¥}y Yip: -+ Vi) according to Definition 1;
in T is identified as negative, we might obtain more accurate pre- T; = CreatTree(X.Y/) ;
diction result. Hence, we define the membership vector of a leaf : end for

. 4
node v in a decision tree T as Definition 2. : procedure CreatTree(X, Y{)
Create a node N for instance set X;

Definition 2. Let X be a training set and Y be the label vector for if satisfying the stop condition of the selected decision

X, the membership vector of a leaf node v in a decision tree T is tree algorithm then

defined as MS,(,T) = (sg),sg), ey s,(,p), where || Any existing decision tree algorithm might be selected,
such as ID3, C4.5, CART, TEIM, etc.

§0 _ [By (k)|

We can select any existing decision tree algorithm to build a
decision tree T; as a binary classifier for ith class from instance set
X and its binary label vector Y is defined by Definition 1. Thus, for
a c-class problem, we can build c decision trees Ty, T, ---, T¢ as
base classifiers.

N QU hWw

%

= k=1,2,---,c (2) 9: return N as a leaf node with the membership vector
|By| MSy by using Y according to Definition 2;
where B, is the instance set of node v, and By,(k) is the instance 10: else
set belonging to the kth class of node v. The superscripts can be 11: splitting the node N to t child nodes Ni,Ny,...,Nt
omitted when without causing Confusing. based on the selected decision tree algorithm,
) o ] 12: where Y/ is used as the decision attribute;
Clearly, in a decision tree T, the membership vector MS, of a 13: for j=1tot do
leaf node v represents the membership probability of the instances 14: Let X[N;] be instance subset corresponding to Nj,
in v belonging to classes {wq, @, ..., wc}. 15: and Y/[N;] be the subset of ¥/ corresponding
The construction process of base classifiers are depicted as to X[N;J;
Algorithm 1. 16: attach the node returned by CreatTree(X[N;],
Y/[N;]) to node N;
3.2. The multi-View OVA model based on decision tree (MVDT) 17: end for
18: end if
In Algorithm MVDT, we first build ¢ decision trees as base clas- 19: return N as the root node of (X,Y/).
sifiers. Each decision tree T; is a binary classifier for class w;. If a 20: end procedure

leaf node v of T; outcomes positive, then we can definitely classify
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Table 5

Performance of algorithms with CART as base classifier.
Dataset Accuracy F1-measures Precision AUC

CART OVA-CART MVDT-CART CART OVA-CART MVDT-CART CART OVA-CART MVDT-CART CART OVA-CART MVDT-CART

iris 0.9340 (1) 0.9333 (2) 0.9320 (3) 09274 (1) 0.9247 (3) 09252 (2) 0.9379 (1) 0.9345(3) 0.9364 (2) 0.9685 (1) 0.9596 (3) 0.9653 (2)
texture 0.9389 (2) 0.9181 (3) 0.9409 (1) 0.9385(2) 09196 (3) 0.9399 (1) 0.9389 (2) 0.9181 (3) 0.9409 (1) 0.9726 (3) 0.9922 (2) 0.9956 (1)
mfeat-fac 0.8894 (2) 0.8609 (3) 0.8914 (1)  0.8865 (2) 0.8668 (3) 0.8880 (1) 0.8896 (3) 0.8968 (1) 0.8904 (2)  0.9405 (3) 0.9763 (2) 0.9820 (1)
mfeat-fou 0.7591 (2) 0.6951 (3) 0.7882 (1) 0.7560 (2) 0.6936 (3) 0.7838 (1) 0.7617 (2) 0.7388 (3) 0.7885 (1) 0.8868 (3) 0.9316 (2) 0.9674 (1)
mfeat-kar 0.8399 (2) 0.8090 (3) 0.8787 (1) 0.8372 (2) 0.8143 (3) 0.8758 (1) 0.8413 (3) 0.8556 (2) 0.8791 (1)  0.9191 (3) 0.9656 (2) 0.9840 (1)
mfeat-mor 0.6498 (2) 0.6000 (3) 0.6785 (1) 0.6455 (2) 0.5876 (3) 0.6714 (1)  0.6500 (2) 0.6117 (3) 0.6747 (1)  0.8397 (3) 0.8709 (2) 0.9492 (1)
mfeat-pix 0.8740 (2) 0.8478 (3) 0.8927 (1)  0.8715 (2) 0.8550 (3) 0.8897 (1)  0.8750 (3) 0.8906 (2) 0.8929 (1) 0.9357 (3) 0.9762 (2) 0.9871 (1)
mfeat-zer 0.6858 (2) 0.6430 (3) 0.7198 (1)  0.6835 (2) 0.6376 (3) 0.7139 (1) 0.6904 (2) 0.6729 (3) 0.7168 (1)  0.8721(3) 0.9171 (2) 0.9603 (1)
wavform 0.7559 (2) 0.7426 (3) 0.7641 (1)  0.7557 (2) 0.7403 (3) 0.7613 (1)  0.7566 (3) 0.7647 (2) 0.7686 (1) 0.8244 (3) 0.8876 (2) 0.9057 (1)
optdigits 0.9045 (2) 0.8718 (3) 0.9196 (1)  0.9039 (2) 0.8785(3) 0.9187 (1)  0.9049 (3) 0.9062 (2) 0.9196 (1)  0.9464 (3) 0.9810 (2) 0.9922 (1)
tae 0.6472 (2) 0.6439 (3) 0.6530 (1) 0.6291 (2) 0.6240 (3) 0.6335 (1) 0.6570 (3) 0.6655 (1) 0.6611 (2)  0.7395 (3) 0.7627 (2) 0.7838 (1)
letter 0.8765 (2) 0.8357 (3) 0.8887 (1) 0.8757 (2) 0.8516 (3) 0.8883 (1) 0.8768 (3) 0.8878 (2) 0.8943 (1)  0.9321 (3) 0.9710 (2) 0.9896 (1)
wine 0.9115 (1) 0.8933 (3) 0.9053 (2) 0.9092 (1) 0.8861 (3) 0.8968 (2) 0.9140 (1) 0.9103 (3) 0.9115(2)  0.9407 (3) 0.9816 (1) 0.9774 (2)
cmce 0.4838 (2) 0.4828 (3) 0.5056 (1)  0.4590 (1) 0.4284 (3) 0.4753 (2) 0.4614 (2) 0.4504 (3) 0.4805 (1) 0.6150 (3) 0.6400 (2) 0.6834 (1)
molecula 0.8964 (3) 0.8979 (2) 0.9269 (1) 0.8838 (3) 0.8884 (2) 0.9182 (1) 0.8818 (3) 0.8955(2) 0.9215(1) 0.9157 (3) 0.9678 (2) 0.9779 (1)
satimage 0.8562 (2) 0.8316 (3) 0.8749 (1)  0.8325(2) 0.8140 (3) 0.8440 (1) 0.8328 (3) 0.8352(2) 0.8673 (1)  0.9211 (3) 0.9532 (2) 0.9766 (1)
balance-scale 0.7750 (2) 0.7424 (3) 0.8027 (1)  0.5734 (2) 0.5721 (3) 0.5810 (1)  0.5888 (2) 0.6030 (1) 0.5830 (3) 0.8380 (3) 0.8680 (2) 0.8818 (1)
glass 0.6756 (1) 0.6458 (3) 0.6574 (2)  0.5903 (1) 0.5435 (2) 0.5049 (3) 0.6227 (1) 0.5897 (2) 0.5255(3) 0.8825 (1) 0.8333 (2) 0.7740 (3)
car 0.9849 (1) 0.9728 (3) 0.9769 (2) 0.9632 (1) 09138 (3) 0.9186 (2) 0.9683 (1) 0.9481 (2) 0.9350 (3) 0.9777 (3) 0.9840 (1) 0.9808 (2)
ecoli 0.8190 (2) 0.8116 (3) 0.8508 (1)  0.6224 (3) 0.6255(2) 0.6899 (1) 0.6462 (3) 0.6610 (2) 0.7314 (1)  0.8604 (3) 0.8833 (2) 0.9427 (1)
yeast 0.5145 (2) 0.5014 (3) 0.5581 (1) 0.3985 (2) 03739 (3) 0.4165 (1) 04137 (3) 0.4381(2) 04511 (1) 0.7043 (3) 0.7610 (2) 0.8457 (1)
nursery 0.9985 (1) 0.9684 (3) 0.9984 (2) 0.9885 (1) 0.9396 (3) 0.9765 (2) 0.9886 (1) 0.9380 (3) 0.9765 (2)  0.9928 (2) 0.9840 (3) 0.9937 (1)
Avg.Rank 1.818 2.909 1.273 1.818 2.864 1318 2.273 2.227 1.500 2.773 2.000 1.227
Friedman v v - v v - v v - v v -
o = 0.05

the instances in v as class w;. If a leaf node v of T; outcomes nega-
tive, then we show the membership of the instances in v belonging
to the other c — 1 classes.

We can obtain the final membership of an instance x by follow-
ing steps:

(1) Given an instance x, we can obtain the membership vector
MS®D (x) = (551') (x),sg) x),....sD (x)) for the instance x re-
spective to T; by testing the attribute values of x gradually
from the root node of T; to a leaf node v. MS()(x) equals to
the membership vector of a leaf node v in Tj, i.e., MS® (x) =
MS,(,T"). Hence, s,(ci) x) = siﬁ) (1 <k<c) can be regarded as the
probability of x belonging to kth class (k=1,2,...,c) deter-
mined by the classifier T; ;

(2) We can obtain the probability of x belonging to the kth class
wy, by combining the probability of x belonging to kth class
k=1,2,..., c) determined by each classifier Ty, 15, ..., Te.
Let P(x) = (p1(X), p2(X), ..., pc(x)) be the final membership
vector of x, where

pk(x)z%z:sf)(x) (k=1,2,...,0) (3)
i=1

(3) Give x the class label w;, where
t = argmax{py(x), 1 < k < c} (4)

Algorithm 2 shows the frame of proposed Multi-view OVA
model based on decision tree.

We can choose any existing decision tree algorithm (such as
ID3, C4.5, CART etc.) as the base classifier in MVDT, and the result-
ing models are simply named by MVDT-ID3, MVDT-C4.5, MVDT-
CART respectively.

3.3. Examples

Next we will explain the working mechanism of the MVDT by
introducing an illustrative example. We generate an artificial data
set with 13 instances, 3 classes({w{, w,, w3}) and 4 attributes{a,
a,, as, Ga}, as shown in Table 1. Instances x; to xy; are treated

Algorithm 2 MVDT algorithm.

Input:  Training set {(X1,y1). X2.¥2)..... Xn.yn)}, the class
number ¢, and an instance x € R™;
Output: the class label of x.
1: Generating c decision trees {T;, T, ..
by Algorithm 1.
2: fori=1toc do ‘
3:  Obtain the MS®D (x) =
<s§i) (%), sg") x),..., SED (x)) for the instance x respective

., Tc} as base classifiers

membership vector

to T;;

4: end for

5: Calculate  the  final membership  vector  P(x) =
(P1(X%), p2(X), ..., pc(x)) of x;

6: Return ¢ as the class label of x, where t=

argmax{p;(x), 1 <k <c}.

as the training set of constructing a decision tree, x, and x;3 are
taken as the test set of evaluating the performance of a decision
tree. We choose ID3 as base classifier.

By Algorithm 1, MVDT-ID3 will establish three decision trees
{Ty, T, T3} as base classifiers and output membership vectors (see
Definition 2) of the leaf nodes respective to the related tree. The
decision trees {T;, T,, T3} and the membership vectors of leaves
obtained by MVDT-ID3 are shown in Fig. 1.

Fig. 2 shows the decision tree which applying ID3 algorithm di-
rectly to the training data in Table 1.

In what follows, we consider the class label of each instance in
the test set. The decisions induced by ID3 and those induced by
the proposed method MVDT-ID3 in this paper are listed in Table 2.

Through computing, we have that:

(1) For xq3, T; outputs MS™M(x5) =(1,0,0), T, outputs
MS@ (x15) = (0.75,0,0.25), and T; outputs MS®) (x1y) =
(0,0,1) by Algorithm 1. The final membership vector of
X12 obtained by MVDT-ID3 is P(xq;) = (0.58,0,0.42), where
pP1(X12) = (1+0.75+0)/3=0.58, py(x12) =(0+0+0)/3=
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Table 6
Performance analysis of algorithms with TEIM as base classifier.
Dataset Accuracy F1-measures Precision AUC
TEIM OVA-TEIM MVDT-TEIM TEIM OVA-TEIM MVDT-TEIM TEIM OVA-TEIM MVDT-TEIM TEIM OVA-TEIM MVDT-TEIM
iris 0.9533 (1) 0.9433 (3) 0.9487 (2) 09475 (1) 0.9348 (3) 09432 (2) 0.9538 (2) 0.9418 (3) 0.9483 (1) 0.9848 (3) 0.9802 (2) 0.9816 (1)
texture 0.9467 (1) 0.9273 (3) 0.9401 (2) 0.9461 (1) 0.9288 (3) 0.9394 (2) 0.9467 (1) 0.9381 (3) 0.9410 (2) 0.9994 (1) 0.9919 (3) 0.9958 (2)
mfeat-fac 0.8946 (2) 0.8677 (3) 0.9150 (1)  0.8930 (2) 0.8733 (3) 0.9128 (1)  0.8960 (3) 0.9021 (2) 0.9158 (1)  0.9443 (3) 0.9786 (2) 0.9877 (1)
mfeat-fou 0.7412 (2) 06704 (3) 0.7735 (1) 0.7366 (2) 0.6713 (3) 0.7668 (1) 0.7413 (2) 0.7235(3) 0.7722 (1) 0.8815(3) 0.9210 (2) 0.9614 (1)
mfeat-kar 0.8372 (2) 0.8024 (3) 0.8854 (1) 0.8337 (2) 0.8078 (3) 0.8820 (1) 0.8383 (3) 0.8521 (2) 0.8864 (1) 0.9277 (3) 0.9642 (2) 0.9854 (1)
mfeat-mor  0.6556 (2) 0.5897 (3) 0.6835 (1) 0.6490 (2) 0.5792 (3) 0.6753 (1) 0.6543 (2) 0.6167 (3) 0.6802 (1) 0.8737 (2) 0.8730 (3) 0.9509 (1)
mfeat-pix 0.8917 (2) 0.8681 (3) 0.9194 (1) 0.8897 (2) 0.8741 (3) 09175 (1) 0.8926 (3) 0.9044 (2) 0.9204 (1) 09462 (3) 0.9811 (2) 0.9902 (1)
mfeat-zer 0.6918 (2) 0.6609 (3) 0.7313 (1)  0.6853 (2) 0.6569 (3) 0.7242 (1) 0.6883 (3) 0.6924 (2) 0.7266 (1) 0.8881 (3) 0.9225 (2) 0.9650 (1)
wavform 0.7622 (2) 0.7314 (3) 0.7743 (1) 0.7618 (2) 0.7301 (3) 0.7738 (1)  0.7625 (2) 0.7599 (3) 0.7770 (1)  0.8546 (3) 0.8809 (2) 0.9210 (1)
optdigits 0.9114 (2) 0.8987 (3) 0.9391 (1) 09110 (2) 0.9041 (3) 0.9385 (1) 09121 (3) 0.9245(2) 0.9393 (1) 0.9539 (3) 0.9865 (2) 0.9947 (1)
tae 0.6055 (2) 0.5828 (3) 0.6315 (1) 0.5817 (2) 0.5643 (3) 0.6130 (1) 0.6092 (3) 0.6227 (2) 0.6414 (1) 0.7640 (2) 0.7363 (3) 0.7872 (1)
letter 0.8795 (2) 0.8495 (3) 0.8951 (1) 0.8789 (2) 0.8657 (3) 0.8950 (1) 0.8802 (3) 0.9014 (1) 0.9006 (2) 0.9425 (3) 0.9728 (2) 0.9915 (1)
wine 0.9544 (1) 0.9179 (3) 0.9441 (2) 0.9520 (1) 0.9131 (3) 0.9427 (2) 0.9587 (1) 0.9308 (3) 0.9479 (2) 0.9989 (1) 0.9854 (3) 0.9936 (2)
cme 0.4787 (3) 0.4856 (2) 0.5085 (1) 04510 (2) 0.4224 (3) 0.4776 (1) 0.4556 (3) 0.4631 (2) 0.4851 (1) 0.6438 (3) 0.6467 (2) 0.6889 (1)
molecula 0.9176 (2) 0.9088 (3) 0.9255 (1) 0.9080 (2) 0.8991 (3) 09162 (1) 0.9069 (2) 0.9021 (3) 0.9188 (1)  0.9363 (3) 0.9668 (2) 0.9759 (1)
satimage 0.8590 (2) 0.8309 (3) 0.8729 (1) 0.8345 (2) 0.8131 (3) 0.8398 (1) 0.8354 (3) 0.8359 (2) 0.8691 (1) 0.9282 (3) 0.9535 (2) 0.9758 (1)
balance-scale 0.7851 (2) 0.7392 (3) 0.8210 (1)  0.6231 (1) 0.6037 (2) 0.5853 (3) 0.6366 (1) 0.6305 (2) 05750 (3) 0.8762 (3) 0.8779 (2) 0.9114 (1)
glass 0.7024 (1) 0.6448 (2) 0.6439 (3) 0.6125 (1) 0.5442 (2) 04973 (3) 0.6341 (1) 0.5986 (2) 0.5202 (3) 0.8735 (1) 0.8282 (2) 0.8131 (3)
car 0.9710 (1) 0.9335 (3) 0.9555(2) 0.9179 (1) 0.7799 (3) 0.8635(2) 0.9339 (1) 0.8690 (3) 0.8951 (2) 0.9828 (1) 0.9444 (3) 0.9654 (2)
ecoli 0.8209 (2) 0.8051 (3) 0.8322 (1) 06113 (3) 0.6318 (2) 0.6474 (1) 0.6429 (3) 0.6730 (2) 0.6864 (1) 0.9287 (2) 0.8765 (3) 0.9455 (1)
yeast 0.5196 (2) 0.4943 (3) 05742 (1) 0.4328 (2) 0.3828 (3) 0.4448 (1) 0.4582 (3) 0.4585 (2) 04787 (1) 0.7384 (3) 0.7521 (2) 0.8554 (1)
nursery 0.9958 (2) 0.9844 (3) 0.9959 (1) 0.8811 (2) 0.8020 (3) 0.9566 (1) 0.8782 (2) 0.8033 (3) 0.9578 (1) 0.9930 (2) 0.9574 (3) 0.9977 (1)
Avg.Rank 1.818 2.909 1273 1773 2.864 1.364 2273 2364 1.364 2455 2318 1227
Friedman v v v v - v v - v v -
o =005
Table 7
Performance analysis of algorithms with SCDT as base classifier.
Dataset Accuracy F1-measures Precision AUC
SCDT OVA-SCDT MVDT-SCDT SCDT OVA-SCDT MVDT-SCDT SCDT OVA-SCDT MVDT-SCDT SCDT OVA-SCDT MVDT-SCDT
iris 0.9475 (1) 0.9383 (3) 0.9408 (2) 0.9423 (1) 0.9327 (3) 0.9352 (2) 0.9464 (1) 0.9380 (3) 0.9401 (2) 0.9782 (1) 0.9735 (3) 0.9780 (2)
texture 0.9311 (2) 0.9067 (3) 0.9321 (1) 0.9306 (2) 0.9087 (3) 0.9310 (1) 0.9313 (2) 09218 (3) 0.9319 (1) 0.9694 (3) 0.9903 (2) 0.9949 (1)
mfeat-fac 0.8723 (1) 0.7924 (3) 0.8482 (2) 0.8703 (1) 0.8017 (3) 0.8453 (2) 0.8740 (1) 0.8472 (3) 0.8494 (2) 09757 (1) 0.9298 (3) 0.9619 (2)
mfeat-fou 0.7250 (2) 0.6671 (3) 0.7704 (1)  0.7221 (2) 0.6652 (3) 0.7656 (1)  0.7274 (2) 0.7130 (3) 0.7705 (1)  0.8735 (3) 0.9195 (2) 0.9628 (1)
mfeat-kar 0.8056 (2) 0.7739 (3) 0.8657 (1)  0.8026 (2) 0.7809 (3) 0.8626 (1) 0.8088 (1) 0.8306 (3) 0.8664 (2) 0.9006 (3) 0.9573 (2) 0.9821 (1)
mfeat-mor  0.6400 (2) 0.5739 (3) 0.6686 (1) 0.6356 (2) 0.5622 (3) 0.6604 (1) 0.6401 (2) 0.5898 (3) 0.6650 (1) 0.8334 (3) 0.8638 (2) 0.9511 (1)
mfeat-pix 0.8736 (2) 0.8478 (3) 0.8929 (1) 0.8718 (2) 0.8539 (3) 0.8905 (1) 0.8775(3) 0.8863 (2) 0.8941 (1) 0.9296 (3) 0.9738 (2) 0.9858 (1)
mfeat-zer 0.6750 (2) 0.6396 (3) 0.7096 (1)  0.6724 (2) 0.6360 (3) 0.7032 (1) 0.6801 (2) 0.6719 (3) 0.7056 (1) 0.8624 (3) 0.9173 (2) 0.9611 (1)
wavform 0.7514 (2) 0.7358 (3) 0.7642 (1) 0.7512 (2) 0.7336 (3) 0.7610 (1)  0.7521 (3) 0.7607 (2) 0.7695 (1)  0.8236 (3) 0.8845 (2) 0.9065 (1)
optdigits 0.8847 (2) 0.8651 (3) 09194 (1) 0.8842 (2) 0.8717 (3) 0.9183 (1) 0.8854 (3) 0.9008 (2) 0.9193 (1) 09373 (3) 0.9803 (2) 0.9918 (1)
tae 0.5751 (3) 0.6091 (2) 0.6267 (1) 0.5474 (3) 0.5826 (2) 0.5982 (1) 0.5785 (3) 0.6268 (1) 0.6266 (2) 0.7083 (3) 0.7305 (2) 0.7732 (1)
letter 0.8634 (2) 0.8248 (3) 0.8879 (1) 0.8625 (2) 0.8411 (3) 0.8877 (1) 0.8636 (3) 0.8784 (2) 0.8936 (1) 0.9257 (3) 0.9677 (2) 0.9897 (1)
wine 0.9070 (1) 0.9058 (2) 0.8996 (3) 0.8955 (2) 0.8971 (1) 0.8916 (3) 0.9061 (3) 0.9107 (1) 0.9067 (2) 0.9373 (3) 0.9668 (1) 0.9578 (2)
cmc 0.4784 (3) 0.4795 (2) 0.4942 (1) 0.4556 (2) 0.4272 (3) 0.4654 (1) 0.4597 (2) 0.4462 (3) 0.4706 (1) 0.6089 (3) 0.6365 (2) 0.6749 (1)
molecula 0.9171 (2) 0.9087 (3) 0.9291 (1)  0.9076 (2) 0.8990 (3) 0.9203 (1) 0.9074 (2) 0.9051 (3) 0.9244 (1) 0.9311 (3) 0.9694 (2) 0.9784 (1)
satimage 0.8468 (2) 0.8242 (3) 0.8707 (1) 0.8214 (2) 0.8062 (3) 0.8375(1) 0.8220 (3) 0.8268 (2) 0.8603 (1) 09155 (3) 0.9497 (2) 0.9745 (1)
balance-scale 0.7842 (2) 0.7450 (3) 0.8010 (1)  0.5824 (2) 0.5753 (3) 0.5829 (1) 0.5961 (2) 0.6063 (1) 0.5871 (3)  0.8452 (3) 0.8733 (2) 0.8933 (1)
glass 0.6226 (2) 0.6102 (3) 0.6444 (1) 0.5466 (1) 0.5222 (2) 0.5054 (3) 0.5684 (1) 0.5601 (2) 0.5167 (3) 0.7434 (3) 0.7917 (2) 0.8729 (1)
car 0.9685 (3) 0.9725 (1) 09720 (2) 09177 (2) 0.9173 (3) 0.9215(1) 09507 (2) 0.9550 (1) 0.9471 (3) 09746 (3) 0.9861 (1) 0.9811 (2)
ecoli 0.8252 (2) 0.8140 (3) 0.8513 (1) 0.6627 (2) 0.6471 (3) 0.7140 (1)  0.7021 (2) 0.6781 (3) 0.7553 (1) 0.9344 (2) 0.8784 (3) 0.9444 (1)
yeast 0.4919 (2) 0.4733 (3) 0.5441 (1) 03999 (2) 0.3636 (3) 0.4206 (1) 0.4201 (3) 0.4343 (2) 04763 (1) 0.6960 (3) 0.7330 (2) 0.8463 (1)
nursery 0.9982 (1) 0.9731 (3) 0.9981 (2) 0.9868 (1) 0.9042 (3) 0.9703 (2) 0.9861 (1) 0.9042 (3) 0.9703 (2) 09912 (2) 09761 (3) 0.9942 (1)
Avg.Rank 1955 2.773 1273 1.864 2.818 1318 2136 2.318 1.545 2.727 2.091 1182
Friedman v v - v v - v v - v v -
o =0.05
0 and p3((x12) = (0+0.25+1)/3 = 0.42. Hence, x, is clas- 4. Experimental analysis
sified as class w;.
(2) For xy3, T; outputs MSM(xy3) = (0,0.67,0.33), T, out- In this section, we provide experimental analysis of the pro-
puts MS@(x43) = (0,1,0), and T3 outputs MS® (x;3) =  posed MVDT algorithm. The performance enhancement is exhib-

(0.2,0.8,0) by Algorithm 1. The final membership vector ited in Section 4.3. The robustness of MVDT algorithm to output
of x;3 obtained by MVDT-ID3 is P(xy3) = (0.07,0.82,0.11). noise is demonstrated in Section 4.4.
Hence, x5 is classified as class w;.

4.1. Data sets

It is clear that the corresponding class labels of test instances
induced by MVDT-ID3 are equivalent to their real class labels. We employed 22 data sets from UCI repository of machine
However, the class labels for x;; and x;3 induced by ID3 are ws learning data sets including some widely used imbalance data sets
and w,, respectively, which does not coincide with the fact.

(such as satimage, glass, car, etc.) to test the performance of the
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Fig. 3. Accuracy changes of C4.5, OVA-C4.5 and MVDT-C4.5 on noise ratio.
proposed MVDT algorithm. Essential information about the 22 data
sets are shown in Table 3, where the number of examples (#Ex.),  f1— 2PR (5)
the number of attributes (#Atts.), the number of classes (#Cl.) and (P+R)

the imbalance ratio (IR) are listed for each data set. The data sets
are exhibited in non-decreasing order according to imbalance ratio,
which is computed as the proportion of the number of majority
class examples to the number of minority class examples [39]. All
these data sets can be downloaded from http://archive.ics.uci.edu/
ml.

4.2. Evaluation metric

In order to compare the performance of different classifiers,
we employ Accuracy, Precision, F1-measure, Area Under the ROC
Curve(AUC) to evaluate the effectiveness of the trees. Accuracy is
the most commonly used evaluation metric, which is calculated by
the percentage of successful predictions. Another popular evalua-
tion metric is F-measure. F-measure is a class of measures which
has been considered as the harmonic mean of the precision and
recall of a classifier. In this paper, we consider the F1-measure,
where equal importance is given to both precision and recall. F1-
measure is defined as Eq.(5), where P is precision and R is recall.

Area Under the ROC Curve (AUC) measures the probability of
ranking a random positive class example over a random negative
class example. For a multi-class data set, we average AUC over all
pairs of classes [40], which is defined as:

2 .. ..
=771);AUC(191) (I<ij=<o

AUC
c(c

(6)
where c is the number of classes and AUC(j, j) is the AUC of class i
and j.

4.3. The MVDT model performance analysis

In this section, we will compare the classification Accuracy, Pre-
cision, F1-measure, AUC of MVDT with the other methods to show
the effectiveness of MVDT. As a general framework, MVDT algo-
rithm can use any existing decision tree model as base classifier.
We choose 5 classical decision tree models, such as C4.5, CART,
TEIM, SCDT and NBTree to evaluate the performance of our MVDT
algorithm on different base classifiers.
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Fig. 4. Accuracy changes of CART, OVA-CART and MVDT-CART on noise ratio.

All of the algorithms are implemented in Matlab. In order to
verify the validity of MVDT model, we perform five group of con-
trast experiments. Each group compares the performance of one
base classifier, OVA based on the base classifier and MVDT model
based on the base classifier. To ensure the stability of the experi-
mental results, 10-fold cross-validation technique is performed on
22 data sets. We repeat the experiments 10 times on each data
set.

Dema3ar [41] suggests that the best way to consider the perfor-
mance of multiple classifiers across multiple data sets is through
a comparative analysis of averaged performance ranks. We follow
this recommendation and rank the performance of each classifier,
where rank 1 denotes the best method. Since we seek to deter-
mine whether or not the MVDT model are statistically significantly
better than the other methods, the Friedman test is then used to
compare the ranks at 95% confidence interval as recommended by
Demsar [41]. The relative ranking for each classifier is indicated in
parenthesis with the average rank applied for all ties. Using the
Friedman test for comparing the ranking across all the 22 data sets
and 3 classifiers, a vin the bottom row indicates that MVDT statis-
tically significantly improved over that classifier.

The first group uses C4.5 as the base classifier, Table 4 reports
the performance comparisons on Accuracy, F1-measure, Precision
and AUC of MVDT model against other algorithms on various data
sets, respectively. It can be easily seen that our MVDT-C4.5 statis-
tically significantly improved over the C4.5 and OVA-C4.5 on these
evaluation metrics.

The second group uses CART as the base classifier, the experi-
mental results of each evaluation metric are shown in Table 5. It
can be easily seen that our MVDT-CART statistically significantly
improved over the CART and OVA-CART on all evaluation metrics.

The third group uses TEIM as the base classifier, the experimen-
tal results are shown in Table 6. It can be seen that MVDT-TEIM
statistically significantly improved over TEIM and OVA-TEIM on all
evaluation metrics.

The fourth group uses SCDT as the base classifier, the experi-
mental results are shown in Table 7. In SCDT, the number of leaf
nodes is constrained to 80%*TotalMaxleaves, where TotalMaxleaves
is the number of leaf nodes produced by C4.5. It can be seen
that MVDT-SCDT statistically significantly improved over SCDT and
OVA-SCDT on all evaluation metrics.

The fifth group uses NBTree as the base classifier, and the ex-
perimental results are shown in Table 8. In NBTree [42], the data is
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Fig. 5. Accuracy changes of TEIM, OVA-TEIM and MVDT-TEIM on noise ratio.

pre-discretized using an entropy-based algorithm [43] and the leaf
size is set to 30. What’s more, since MMNBTree [36] is a success-
ful improvement of NBTree using OVA strategy, we compare our
MVDT-NBTree with MMNBTree instead of NBTree in Table 8. It is
shown that our MVDT-NBTree outperforms over the OVA-NBTree
and MMNBTree on Accuracy, Precision and AUC but slightly lower
than all algorithms except OVA-NBTree on F1-measure.

Based on the experimental results, it is easy to draw the conclu-
sion that for multi-class classification tasks the classification per-
formance of the new proposed MVDT algorithms based on C4.5,
CATR, TEIM, SCDT and NBTree respectively(i.e., MVDT-C4.5, MVDT-
CART, MVDT-TEIM MVDT-SCDT and MVDT-NBTree) are significantly
higher than that of the base algorithms and OVA methods. Further-
more, since we build c decision trees for c classes including minor-
ity classes in MVDT model and the decision tree corresponding to
a minority class could provide a relatively accurate prediction for
the class, our MVDT shows a significant performance on imbalance
data sets, as is shown in Tables 4-8.

4.4. The effects of output noise data

In MVDT, a c-class classification task is divided to ¢ sub-tasks,
each decision tree is corresponding to a sub-task respective to the
class discussed. When there is noise in training set, only a few of
decision trees might be sensitive to noise data and the accuracy
of these decision trees might be reduced. Most of decision trees
would be slightly affected by noise data, however, the combination
result of these trees could still maintain a higher prediction accu-
racy. Hence, our algorithm is robust to data set with output noise.
In order to test the robustness of the proposed algorithm, the fol-
lowing experiments are done.

For each data set in the experiment, 10% instances at random is
split off as a test set. Two rounds are made on the remaining train-
ing set. The first round is on the training set. The second round is
on a noisy version of the training set. The noisy version is gotten
by changing 5% of the class labels randomly into an alternate class
label chosen uniformly from the other labels. This is repeated 10
times 10-fold cross-validation using C4.5, CART, TEIM, SCDT, MVDT-
C4.5, MVDT-CART, MVDT-TEIM and MVDT-SCDT. Experiment results
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Fig. 6. Accuracy changes of SCDT, OVA-SCDT and MVDT-SCDT on noise ratio.

on accuracy rates in the 5% noise are exhibited in Table 9. After
adding 5% noise data, the average accuracy of all algorithms will be
reduced. Our MVDT algorithm is the most robust to output noise.

Furthermore, we gradually increase output noise rate to the
training set at 10%, 15%, 20%, 25%, 30% respectively. These are also
repeated 10 times 10-fold cross-validation. Figs. 3-6 exhibit the ef-
fect of output noise on the accuracy of classification. It can be seen
that the classification accuracy of all algorithms has decreased with
the increase of noise rate, while our algorithm MVDT still shows
excellent robustness to output noise.

4.5. The effects of experts’ perception

Experts’ perception might provide effective guidance in decision
process by defining important splitting attributes in decision trees.
In [23] a new decision tree(AGDT) is proposed to select branching
variables at the primary levels according to the experts’ percep-
tion, and is used to compare different feasible solutions for rout-
ing, scheduling and assignment of drivers to carriers and roads for
Hazmat transportation. We also try to introduce experts’ percep-
tion into the MVDT model to build base decision trees. We use
“Wife's age” as the first splitting attribute in the construction of

decision trees in “cmc” data set, “Mg” in “glass” data set, “Course”
in “tae” data set and “gvh” in “yeast” data set. The experimental
results show that if the effective expert experience could be in-
troduced in MVDT model, the classification performance might be
improved, as shown in Table 10.

5. Conclusion

Multi-class classification problems exist widely in knowledge
discovery and pattern recognition. And decision tree is a useful
tool to deal with multi-class classification problems. The robust-
ness to noise data and generalization are the major issues of deci-
sion trees.

In order to improve the robustness to noise and the gen-
eralization of classical decision tree, we propose a multi-view
OVA model based on decision trees (MVDT) in this paper. MVDT
introduces “Divide and Conquer” into solving multi-class classifi-
cation problems, in which we first divide a multi-class classifica-
tion task into ¢ multiple parallel sub-tasks and build ¢ decision
trees for these sub-tasks. We define a membership vector for leaf
nodes in a decision tree to represent the membership probabil-
ities of the instance belonging to some class determined by the
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Table 8

Performance analysis of algorithms with NBTree as base classifier.
Dataset Accuracy F1-measures Precision AUC

OVA- MVDT- OVA- MVDT- OVA- MVDT- OVA- MVDT-
NBTree MMNBTree NBTree NBTree MMNBTree NBTree NBTree MMNBTree NBTree NBTree MMNBTree NBTree

iris 0.9367 (1) 0.9293 (3) 0.9307 (2) 0.9239 (1) 09158 (3) 0.9179 (2) 0.9303 (1) 0.9220 (3) 0.9229 (2) 0.9726 (3) 0.9854 (1) 0.9844 (2)
texture 0.9027 (3) 0.9229 (2) 0.9402 (1) 0.9028 (3) 0.9220 (2) 0.9385 (1) 0.9132 (3) 0.9245 (2) 0.9390 (1) 0.9835 (3) 0.9896 (2) 0.9948 (1)
mfeat-fac  0.8780 (3) 0.8985 (2) 0.9365 (1) 0.8828 (3) 0.8991 (2) 0.9352 (1) 0.9095(3) 0.9100 (2) 0.9379 (1) 0.9837 (3) 0.9898 (2) 0.9936 (1)
mfeat-fou  0.6865 (3) 0.7765 (2) 0.7835 (1) 0.6636 (3) 0.7715(2) 0.7753 (1) 0.7126 (3) 0.7759 (2) 0.7773 (1) 0.9348 (3) 0.9495 (2) 0.9634 (1)
mfeat-kar  0.8640 (3) 0.9085 (2) 0.9155 (1) 0.8679 (3) 0.9057 (2) 0.9128 (1) 0.8980 (3) 0.9084 (2) 0.9143 (1) 0.9835(3) 0.9916 (2) 0.9935 (1)
mfeat-mor 0.6955 (3) 0.7035(2) 0.7055 (1) 0.6524 (3) 0.6817 (1) 0.6815(2) 0.6870 (3) 0.7033 (2) 0.7141 (1) 0.9157 (3) 0.9493 (2) 0.9551 (1)
mfeat-pix 0.8596 (3) 0.8838 (2) 0.9258 (1) 0.8650 (3) 0.8830(2) 0.9239 (1) 0.8949 (2) 0.8916 (3) 0.9256 (1) 0.9805 (3) 0.9865 (2) 0.9916 (1)
mfeat-zer 0.6743 (3) 0.7291 (2) 0.7381 (1) 0.6411 (3) 0.7154 (2) 0.7301 (1) 0.6551 (3) 0.7208 (2) 0.7340 (1) 0.9331 (3) 0.9487 (2) 0.9623 (1)
wavform  0.8457 (2) 0.8456 (3) 0.8490 (1) 0.8443 (3) 0.8456 (2) 0.8491 (1) 0.8493 (2) 0.8489 (3) 0.8519 (1) 0.9360 (3) 0.9691 (1) 0.9671 (2)
optdigits 0.8937 (3) 0.9312 (1) 0.9294 (2) 0.8958 (3) 0.9310 (1) 0.9289 (2) 0.9121(3) 0.9326 (1) 0.9307 (2) 0.9816 (3) 0.9902 (2) 0.9915 (1)
tae 0.5304 (3) 0.5430 (2) 0.5436 (1) 0.5043 (3) 0.5204 (2) 0.5225(1) 0.5461 (3) 0.5516 (2) 0.5552 (1) 0.6737 (3) 0.7072 (2) 0.7099 (1)
letter 0.7128 (3) 0.8020 (1) 0.7997 (2) 0.7356 (3) 0.8019 (1) 0.7995 (2) 0.7950 (3) 0.8089 (1) 0.8083 (2) 0.9441 (3) 0.9730 (2) 0.9829 (1)
wine 0.9776 (2) 0.9747 (3) 09798 (1) 0.9774 (2) 09752 (3) 0.9791 (1) 0.9797 (2) 0.9778 (3) 0.9807 (1) 0.9947 (3) 0.9974 (2) 0.9987 (1)
cmc 0.5201 (2) 0.5192 (3) 0.5291 (1) 0.4660 (3) 0.5024 (1) 0.4964 (2) 0.5223 (1) 0.5082 (3) 0.5195(2) 0.6808 (3) 0.7173 (1) 0.7169 (2)
molecula 09267 (3) 0.9454 (1) 0.9424 (2) 0.9178 (3) 0.9399 (1) 0.9368 (2) 0.9206 (3) 0.9416 (2) 0.9430 (1) 0.9734 (3) 0.9892 (2) 0.9893 (1)
satimage  0.8135(3) 0.8469 (1) 0.8263 (2) 0.7926 (2) 0.8272 (1) 0.7756 (3) 0.8045 (3) 0.8331 (1) 0.8122 (2) 0.9465 (3) 0.9598 (2) 0.9639 (1)
balance- 0.9204 (1) 0.9147 (2) 09142 (3) 0.8408 (1) 0.6339 (2) 0.6334 (3) 0.8240 (1) 0.6094 (2) 0.6088 (3) 0.9818 (1) 0.9555 (2) 0.9465 (3)
scale
glass 0.6681 (3) 0.7315 (1) 0.7230 (2) 0.5419 (3) 0.6552 (1) 0.6200 (2) 0.5626 (3) 0.6692 (1) 0.6304 (2) 0.8317 (3) 0.8655 (2) 0.8681 (1)
car 0.8406 (3) 0.9055 (1) 0.8418 (2) 0.6557 (2) 0.7928 (1) 0.6049 (3) 0.8317 (2) 0.8359 (1) 0.7846 (3) 0.9403 (3) 0.9801 (2) 0.9825 (1)
ecoli 0.8296 (3) 0.8403 (2) 0.8415(1) 0.6921 (3) 0.7174 (1) 0.7058 (2) 0.7426 (3) 0.7528 (2) 0.7551 (1) 0.9210 (3) 0.9712 (2) 0.9758 (1)
yeast 0.5576 (2) 0.5891 (1) 0.5409 (3) 0.4638 (2) 0.5181 (1) 0.4431(3) 0.5381 (1) 0.5314(2) 0.5110 (3) 0.7539 (3) 0.8211 (2) 0.8224 (1)
nursery 0.9441 (3) 0.9705 (1) 0.9628 (2) 0.9265 (1) 0.8900 (2) 0.8156 (3) 0.9509 (1) 0.9415(2) 0.9263 (3) 0.9914 (2) 0.9902 (3) 0.9958 (1)
Avg.Rank  2.636 1.818 1.545 2.545 1.636 1.818 2.364 2.000 1.636 2.864 1.909 1.227
Friedman v - v - v - v v -
o = 0.05

Table 9

Accuracies of algorithms on all data sets introducing 5% output noise.
Dataset C4.5 as base classifier CART as base classifier TEIM as base classifier SCDT as base classifier

C4.5 OVA-C4.5 MVDT-C4.5 CART OVA-CART MVDT-CART TEIM OVA-TEIM MVDT-TEIM SCDT OVA-SCDT MVDT-SCDT

iris 0.9200 (2) 0.9053 (3) 0.9233 (1) 0.8873 (2) 0.8820 (3) 0.8913 (1) 0.9173 (2) 0.9293 (3) 0.9307 (1) 0.9417 (2) 0.9250 (3) 0.9383 (1)
texture 0.8701 (2) 0.8385 (3) 0.9399 (1) 0.8820 (2) 0.8506 (3) 0.9315 (1) 0.8830(2) 0.8533 (3) 0.9419 (1) 0.8601 (2) 0.8314 (3) 0.9235 (1)
mfeat-fac 0.8180 (2) 0.7366 (3) 0.8238 (1) 0.8455 (2) 0.8095 (3) 0.8926 (1) 0.8427 (2) 0.8006 (3) 0.9104 (1) 0.8196 (2) 0.7411 (3) 0.8210 (1)
mfeat-fou 0.6936 (2) 0.6044 (3) 0.7717 (1) 0.7181 (2) 0.6477 (3) 0.7755 (1) 0.7166 (2) 0.6513 (3) 0.7889 (1) 0.6764 (2) 0.6186 (3) 0.7632 (1)
mfeat-kar 0.7670 (2) 0.7174 (3) 0.8814 (1) 0.7908 (2) 0.7493 (3) 0.8729 (1) 0.7918 (2) 0.7447 (3) 0.8888 (1) 0.7369 (2) 0.7119 (3) 0.8560 (1)
mfeat-mor 0.6070 (2) 0.5456 (3) 0.6703 (1) 0.6169 (2) 0.5636 (3) 0.6749 (1) 0.7043 (2) 0.6228 (3) 0.7123 (1) 0.6070 (2) 0.5489 (3) 0.6721 (1)
mfeat-pix 0.8044 (2) 0.7767 (3) 0.8826 (1) 0.8188 (2) 0.7791 (3) 0.8764 (1) 0.8367 (2) 0.7933 (3) 0.9082 (1) 0.8254 (2) 0.7848 (3) 0.8830 (1)
mfeat-zer 0.6160 (2) 0.5733 (3) 0.7072 (1) 0.6490 (2) 0.5957 (3) 0.7122 (1) 0.6569 (2) 0.6204 (3) 0.7291 (1) 0.6490 (2) 0.5911 (3) 0.7041 (1)
wavform 0.7205 (2) 0.7063 (3) 0.7672 (1) 0.7331 (2) 0.7067 (3) 0.7690 (1) 0.7384 (2) 0.7114 (3) 0.7885 (1) 0.7282 (2) 0.7015 (3) 0.7632 (1)
optdigits 0.7979 (2) 0.7697 (3) 0.9073 (1) 0.8505 (2) 0.8071 (3) 0.9149 (1) 0.8561 (2) 0.8285(3) 0.9377 (1) 0.8333 (2) 0.7967 (3) 0.9136 (1)
tae 0.5950 (3) 0.6040 (2) 0.6085 (1) 0.6262 (3) 0.6277 (2) 0.6422 (1) 0.5778 (2) 0.5746 (3) 0.6225 (1) 0.5629 (3) 0.6058 (2) 0.6086 (1)
letter 0.8017 (2) 0.7465 (3) 0.8802 (1) 0.8249 (2) 0.7722 (3) 0.8834 (1) 0.8409 (2) 0.7926 (3) 0.8949 (1) 0.7940 (2) 0.7639 (3) 0.8706 (1)
wine 0.6699 (3) 0.6775 (2) 0.7152 (1) 0.8810 (1) 0.8592 (3) 0.8664 (2) 0.9027 (2) 0.8761 (3) 0.9196 (1) 0.8850 (2) 0.8819 (3) 0.8917 (1)
cmc 0.4631 (3) 0.4655 (2) 0.4878 (1) 0.4776 (2) 0.4745 (3) 0.4981 (1) 0.4787 (3) 0.4856 (2) 0.5085 (1) 0.4802 (2) 0.4708 (3) 0.4942 (1)
molecula 0.8538 (2) 0.8404 (3) 0.8908 (1) 0.8520 (2) 0.8467 (3) 0.9017 (1) 0.8755(2) 0.8523 (3) 0.9036 (1) 0.8773 (2) 0.8457 (3) 0.9026 (1)
satimage 0.8002 (2) 0.7744 (3) 0.8783 (1) 0.8122 (2) 0.7835 (3) 0.8731 (1) 0.8199 (2) 0.7854 (3) 0.8787 (1) 0.8189 (2) 0.7734 (3) 0.8752 (1)
balance-scale 0.7362 (2) 0.6938 (3) 0.7861 (1) 0.7443 (2) 0.6963 (3) 0.7810 (1) 0.7521 (2) 0.7153 (3) 0.8152 (1) 0.7482 (2) 0.7030 (3) 0.7868 (1)
glass 0.5380 (3) 0.5706 (2) 0.6666 (1) 0.6674 (1) 0.6323 (3) 0.6613 (2) 0.6946 (1) 0.6094 (3) 0.6464 (2) 0.5903 (2) 0.6051 (3) 0.6561 (1)
car 0.9090 (3) 0.9365 (2) 0.9458 (1) 0.9124 (3) 0.9279 (2) 0.9391 (1) 0.9524 (1) 0.9192 (3) 0.9491 (2) 0.9150 (3) 0.9275 (2) 0.9314 (1)
ecoli 0.7308 (2) 0.6916 (3) 0.7743 (1) 0.7628 (1) 0.7572 (2) 0.7422 (3) 0.8268 (2) 0.8057 (3) 0.8334 (1) 0.8236 (2) 0.8071 (3) 0.8392 (1)
yeast 0.4311 (3) 0.4328 (2) 0.5350 (1) 0.4877 (2) 0.4848 (3) 0.5641 (1) 0.5008 (2) 0.4833 (3) 0.5823 (1) 0.4859 (2) 0.4628 (3) 0.5585 (1)
nursery 0.9521 (2) 0.9325 (3) 0.9901 (1) 0.9220 (2) 0.8846 (3) 0.9756 (1) 0.9521 (2) 0.9325 (3) 0.9901 (1) 0.8530 (3) 0.8617 (2) 0.8764 (1)
Avg.Rank 2.273 2.727 1.000 1.955 2.864 1.182 1.955 2.955 1.091 2136 2.864 1.000
Friedman o = 0.05 v v - v v - v v - v v -
o = 0.05

Table 10

Performance analysis of algorithms with AGDT as base classifier.
Dataset Accuracy F1-measures Precision AUC

AGDT OVA-AGDT MVDT-AGDT AGDT OVA-AGDT MVDT-AGDT AGDT OVA-AGDT MVDT-AGDT AGDT OVA-AGDT MVDT-AGDT

cmc 0.4740 (2) 0.4706 (3) 0.4938 (1) 0.4497 (2) 0.4166 (3) 0.4662 (1) 0.4523 (2) 0.4394 (3) 0.4709 (1) 0.5948 (3) 0.6143 (2) 0.6552 (1)
glass 0.6283 (2) 0.6266 (3) 0.6757 (1) 0.4826 (3) 0.5106 (2) 0.5206 (1) 0.5042 (3) 0.5520 (1) 0.5302 (2) 0.7238 (3) 0.8082 (2) 0.8984 (1)
tae 0.6155 (2) 0.6073 (3) 0.6340 (1) 0.5930 (2) 0.5837 (3) 0.6115 (1) 0.6166 (3) 0.6200 (2) 0.6356 (1) 0.7098 (3) 0.7375 (2) 0.7844 (1)
yeast 0.4714 (2) 0.4671 (3) 0.5618 (1)  0.3525 (2) 0.3231 (3) 0.4043 (1) 0.3730 (3) 0.3922 (2) 0.4396 (1) 0.6560 (3) 0.7056 (2) 0.8170 (1)
Avg.Rank 2.000 3.000 1.000 2.250 2.750 1.000 2.75 2.000 1.250 3.000 2.000 1.000
Friedman o = 0.05 v/ v - v v - v v ' -
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decision tree. We combine the membership probabilities of the in-
stance given by all the decision trees, and then classify the instance
as the class with highest combined probability. Due to rich infor-
mation obtained from membership vectors, MVDT could achieve
higher accuracy for classification. As one could obtain a more ac-
curate prediction through decision trees corresponding to minority
classes, MVDT also shows a significant performance on imbalance
data sets. When there is noise in training set, most of decision
trees would be slightly affected by noise data, and the combina-
tion result of these trees could still maintain a higher prediction
accuracy. Hence, our algorithm is robust to data set with output
noise. To evaluate the performance of our algorithm, we choose
C4.5, CART, TEIM, SCDT and NBTree as base classifiers in MVDT.
The experiments on 22 data sets show that the proposed MVDT
has excellent performance for multi-class classification problems
and has excellent robustness to output noise. As a general frame-
work, MVDT algorithm can use any existing decision tree model as
base classifier.

In future works, we will further develop theoretical research
and experimental analysis on multi-label data sets. We intend to
use multi-view methods to multi-label problems, where member-
ship vector defined in this paper might be effective to represent
the correlations among the labels. The challenge we face is how
to learn a well constructed classification model by exploiting label
correlations to predict a set of possible labels for unseen examples
more accurately.
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