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In cluster analysis, one of the most challenging and difficult problems is the determination of the

number of clusters in a data set, which is a basic input parameter for most clustering algorithms. To

solve this problem, many algorithms have been proposed for either numerical or categorical data sets.

However, these algorithms are not very effective for a mixed data set containing both numerical

attributes and categorical attributes. To overcome this deficiency, a generalized mechanism is

presented in this paper by integrating Rényi entropy and complement entropy together. The

mechanism is able to uniformly characterize within-cluster entropy and between-cluster entropy

and to identify the worst cluster in a mixed data set. In order to evaluate the clustering results for

mixed data, an effective cluster validity index is also defined in this paper. Furthermore, by introducing

a new dissimilarity measure into the k-prototypes algorithm, we develop an algorithm to determine the

number of clusters in a mixed data set. The performance of the algorithm has been studied on several

synthetic and real world data sets. The comparisons with other clustering algorithms show that the

proposed algorithm is more effective in detecting the optimal number of clusters and generates better

clustering results.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is an important tool in data mining, which has
many applications in areas such as bioinformatics, web data
analysis, information retrieval, customer relationship manage-
ment, text mining, and scientific data exploration. It aims to
partition a finite, unlabeled data set into several natural subsets
so that data objects within the same clusters are close to each
other and the data objects from different clusters are dissimilar
from each other according to the predefined similarity measure-
ment [1]. To accomplish this objective, many clustering algo-
rithms have been proposed in the literature. For example, a
detailed review of clustering algorithms and their applications
can be found in [2–4]; clustering algorithms for high dimensional
data are investigated in [5,6]; time series data clustering is
reviewed in [7]; the clustering problem in the data stream
domain is studied in [8,9]; and an overview of the approaches
to clustering mixed data is given in [10].
ll rights reserved.
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At the very high end of the overall taxonomy, two main
categories of clustering, known as partitional clustering and
hierarchical clustering, are envisioned in the literature. The
taxonomy of different clustering algorithms including state-of-
the-art methods is depicted in Fig. 1. Most of these algorithms
need a user-specified number of clusters or implicit cluster-
number control parameters in advance. For some applications,
the number of clusters can be estimated in terms of the user’s
expertise or domain knowledge. However, in many situations, the
number of clusters for a given data set is unknown in advance. It
is well known that over-estimation or under-estimation of the
number of clusters will considerably affect the quality of cluster-
ing results. Therefore, identifying the number of clusters in a data
set (a quantity often labeled k) is a fundamental issue in cluster-
ing analysis. To estimate the value of k, many studies have been
reported in the literature [25]. Based on the differences in data
types, these methods can be generally classified as clustering
algorithms for numerical data, categorical data and mixed data.

In the numerical domain, Sun et al. [26] gave an algorithm
based on the fuzzy k-means to automatically determine the
number of clusters. It consists of a series of fuzzy k-means
clustering procedures with the number of clusters varying from
2 to a predetermined kmax. By calculating the validity indices of
the clustering results with different values of k ð2rkrkmaxÞ, the
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Fig. 1. The taxonomy of different clustering algorithms [11–24].
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exact number of clusters in a given data set is obtained. Kothari
et al. [27] presented a scale-based method for determining the
number of clusters, in which the neighborhood serves as the scale
parameter allowing for identification of the number of clusters
based on persistence across a range of the scale parameter. Li
et al. [28] presented an agglomerative fuzzy k-means clustering
algorithm by introducing a penalty term to the objective function.
Combined with cluster validation techniques, the algorithm can
determine the number of clusters by analyzing the penalty factor.
This method can find initial cluster centers and the number of
clusters simultaneously. However, like the methods in [26,27],
these approaches need implicit assumptions on the shape of the
clusters characterized by distances to the centers of the clusters.
Leung et al. [29] proposed an interesting hierarchical clustering
algorithm based on human visual system research, in which each
data point is regarded as a light point in an image, and a cluster is
represented as a blob. As the real cluster should be perceivable
over a wide range of scales, the lifetime of a cluster is used to test
the ‘‘goodness’’ of a cluster and determine the number of clusters
in a specific pattern of clustering. This approach focuses on the
perception of human eyes and the data structure, which provides
a new perspective for determining the number of clusters.
Bandyopadhyay et al. [30–32] adopted the concept of variable
length chromosome in genetic algorithm to tackle the issue of the
unknown number of clusters in clustering algorithms. Other than
evaluating the static clusters generated by a specific clustering
algorithm, the validity functions in these approaches are used as
clustering objective functions for computing the fitness, which
guides the evolution to automatically search for a proper number
of clusters from a given data set. Recently, information theory has
been applied to determine the number of clusters. Sugar et al. [33]
developed a simple yet powerful nonparametric method for
choosing the number of clusters, whose strategy is to generate a
distortion curve for the input data by running a standard cluster-
ing algorithm such as k-means for all values of k between 1 and n

(the number of objects). The distortion curve, when transformed
to an appropriate negative power, will exhibit a sharp jump at the
‘‘true’’ number of clusters, with the largest jump representing the
best choice. Aghagoazadeh et al.[34] proposed a method for
finding the number of clusters, which starts from a large number
of clusters and reduces one cluster at each iteration and then
allocates its data points to the remaining clusters. Finally, by
measuring information potential, the exact number of clusters in
a desired data set is determined.

For categorical data, Bai et al. [35] proposed an initialization
method to simultaneously find initial cluster centers and the
number of clusters. In this method, the candidates for the number
of clusters can be obtained by comparing the possibility of the
every initial cluster centers selected according to the density
measure and the distance measure. Recently, a hierarchical
entropy-based algorithm ACE (Agglomerative Categorical cluster-
ing with Entropy criterion) has been proposed in [36] for
identifying the best ks, whose main idea is to find the best ks
by observing the entropy difference between the neighboring
clustering results, respectively. However, the complexity of this
algorithm is proportional to the square of the number of objects.
Transactional data is a kind of special categorical data, which can
be transformed to the traditional row-by-column table with
Boolean values. The ACE method becomes very time-consuming
when applied to the transactional data, because the transactional
data has two features: large volume and high dimensionality. In
order to meet these potential challenges, based on the transac-
tional-cluster-modes dissimilarity, Yan et al. [37] presented an
agglomerative hierarchical transactional-clustering algorithm,
which generates the merging dissimilarity indexes in hierarchical
cluster merging processes. These indexes are used to find the
candidate optimal number ks of clusters of transactional data.

In a real data set, it is more common to see both numerical
attributes and categorical attributes at the same time. In other
words, data are in a mixed mode. Over half of the data sets in the
UCI Machine Learning Database Repository [64] are mixed data
sets. For example, the Adult data set in the UCI Machine Learning
Database Repository contains six numerical variables and eight
categorical variables. There are several algorithms to cluster
mixed data in the literature [12,13,19,20]. However, all these
algorithms need to specify the number of clusters directly or
indirectly in advance. Therefore, it still remains a challenging
issue to determine the number of clusters in a mixed data set.

This paper aims to develop an effective method for determin-
ing the number of clusters in a given mixed data set. The method
consists of a series of the modified k-prototypes procedures with
the number of clusters varying from kmax to kmin, which results in
a suite of successive clustering results. Concretely speaking, at
each loop, basic steps of the method include: (1) Partitioning the
input data set into the desired clusters utilizing the modified k-
prototypes algorithm with a new defined dissimilarity measure,
(2) evaluating the clustering results based on a proposed cluster
validity index, (3) finding the worst cluster among these clusters
using a generalized mechanism based on information entropy and
then allocating the objects in this cluster into the remaining
clusters using the dissimilarity measure, which reduces the
overall number of clusters by one. At the beginning, the kmax

cluster centers are randomly chosen. When the number of
clusters decreases from ðkmax�1Þ to kmin, the cluster centers of
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the current loop are obtained from the clustering results of the
last loop. Finally, the plot of the cluster validity index versus
the number of clusters for the given data is drawn. According to
the plot, visual inspections can provide the optimal number of
clusters for the given mixed data set. Experimental results on
several synthetic and real data sets demonstrate the effectiveness
of the method for determining the optimal number of clusters and
obtaining better clustering results.

The remainder of the paper is organized as follows. In Section
2, a generalized mechanism is given. Section 3 presents an
effective cluster validity index. Section 4 describes a modified
k-prototypes algorithm and an algorithm for determining the
number of clusters in a mixed data set. The effectiveness of the
proposed algorithm is demonstrated in Section 5. Finally, con-
cluding remarks are given in Section 6.
2. A generalized mechanism for mixed data

In the real world, many data sets are mixed-data sets, which
consist of both numerical attributes and categorical attributes. In
order to deal with mixed data in a uniform manner, a general
strategy is to convert either categorical attributes into numerical
attributes or numerical attributes into categorical attributes.
However, this strategy has some drawbacks. On one hand, it is
very difficult to assign correct numerical values to categorical
values. For example, if color attribute takes values in the set {red,
blue, green}, then one can convert the set into a numerical set
such as {1, 2, 3}. Given this coding process, it will be inappropriate
to compute distances between any coded values. On the other
hand, to convert numerical into categorical, a discretizing algo-
rithm has to be used to partition the value domain of a real-
valued variable into several intervals and assign a symbol to all
the values in the same interval. This process usually results in
information loss since the membership degree of a value to
discretized values is not taken into account [38]. Furthermore,
the effectiveness of a clustering algorithm depends significantly
on an underlying discretizing method. Therefore, it is desirable to
develop a uniform computational method for directly clustering
mixed data. In this section, based on information entropy, a
generalized mechanism is presented for mixed data, which can
be applied to characterize within-cluster entropy and between-
cluster entropy and to identify the worst cluster of mixed data.

In general, mixed data are assumed to be stored in a table,
where each row (tuple) represents facts about an object. Objects
in the real world are usually characterized by both numerical
attributes and categorical attributes at the same time. More
formally, a mixed data table is described by a quadruple
MDT ¼ ðU,A,V ,f Þ, where:
(1)
 U is a nonempty set of objects, called a universe;

(2)
 A is a nonempty set of attributes with A¼ Ar

[ Ac , where Ar is
a numerical attribute set and Ac is a categorical attribute set;S
(3)
 V is the union of attribute domains, i.e., V ¼ aAAVa, where Va

is the value domain of attribute a;

(4)
 f : U � A-V is an information function such that, for any aAA

and xAU, f ðx,aÞAVa.
For convenience, a mixed data table MDT ¼ ðU,A,V ,f Þ is also
denoted as NDT ¼ ðU,Ar ,V ,f Þ and CDT ¼ ðU,Ac ,V ,f Þ, where
A¼ Ar

[ Ac . NDT and CDT are called a numerical data table and a
categorical data table, respectively.

Entropy is often used to measure the out-of-order degree of a
system. The bigger the entropy value is, the higher the out-of-
order degree of a system. The entropy of a system as defined by
Shannon gives a measure of uncertainty about its actual structure
[39]. It is a useful mechanism for characterizing the information
content and has been used in a variety of applications including
clustering [40], outlier detection [41], and uncertainty measure
[42]. As follows, the entropy is extended to obtain a generalized
mechanism for handling numerical data and categorical data
uniformly. Owing to the difference in data types, information
entropies for numerical data and categorical data will be intro-
duced in the following, respectively.

For numerical data, Hungarian mathematician Alfred Rényi
proposed a new information measure in the 1960s, named Rényi
entropy [43]. It is the most general definition of information
measures that preserve the additivity for independent events and
can be directly estimated from data in a nonparametric fashion.
The Rényi entropy for a stochastic variable x with probability
density function f(x) is defined as:

HRðxÞ ¼
1

1�a
log

Z
f aðxÞ dx, a40, aa1: ð1Þ

Specially, for a¼ 2, we obtain

HRðxÞ ¼�log

Z
f 2
ðxÞ dx, ð2Þ

which is called Rényi quadratic entropy.
In order to use Eq. (2) in the calculations, we need a way to

estimate the probability density function. One of the most
productive nonparametric methods is the Parzen window density
estimation [44], which is a well-known kernel-based density
estimation method. Given a set of independent identical distribu-
tion samples fx1,x2, . . . ,xNg with d numerical attributes drawn
from the true density f(x), the Parzen window estimator for this
distribution is defined as:

f̂ ðxÞ ¼
1

N

XN

i ¼ 1

Ws2 ðx,xiÞ: ð3Þ

Here, Ws2 is the Parzen window and s2 controls the width of the
kernel. The Parzen window must integrate to one, and is typically
chosen to be a probability distribution function such as the
Gaussian kernel, i.e.,

Ws2 ðx,xiÞ ¼
1

ð2pÞd=2sd
exp �

ðx�xiÞ
T
ðx�xiÞ

2s2

 !
: ð4Þ

As a result, from the plug-in-a-density-estimator principle, we
obtain an estimate for the Rényi entropy by replacing f(x) with
f̂ ðxÞ. Since the logarithm is a monotonic function, we only need to
focus on the quantity Vðf Þ ¼

R
f̂

2
ðxÞ dx, which is given by

Vðf Þ ¼

Z
1

N

XN

i ¼ 1

Ws2 ðx,xiÞ
1

N

XN

j ¼ 1

Ws2 ðx,xjÞ dx

¼
1

N2

XN

i ¼ 1

XN

j ¼ 1

Z
Ws2 ðx,xiÞWs2 ðx,xjÞ dx: ð5Þ

By the convolution theorem for Gaussians [45], we haveZ
Ws2 ðx,xiÞWs2 ðx,xjÞ dx¼W2s2 ðxi,xjÞ: ð6Þ

That is, the convolution of two Gaussians is a new Gaussian
function having twice the covariance. Thus,

Vðf Þ ¼
1

N2

XN

i ¼ 1

XN

j ¼ 1

W2s2 ðxi,xjÞ: ð7Þ

To make sure the Rényi entropy is positive, the Gaussian
function W2s2 can be multiplied by a sufficiently small positive
number b so that W 0

2s2 ¼ b�W2s2 . In the following, the Within-
cluster Entropy (abbreviated as WE_N), Between-cluster Entropy
(abbreviated as BE_N) and Sum of Between-cluster Entropies in
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Absence of a cluster (abbreviated as SBAE_N) for Numerical data
are defined based on the above analysis, respectively.

The within-cluster entropy for numerical data is given as
follows [43].

Definition 1. Let NDT ¼ ðU,Ar ,V ,f Þ be a numerical data table,
which can be separated into k clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg.
For any Ck0ACk, the WE_NðCk0 Þ is defined as:

WE_NðCk0 Þ ¼ �log
1

N2
k0

X
xACk0

X
yACk0

W 0
2s2 ðx,yÞ, ð8Þ

where Nk0 ¼ 9Ck0 9 is the number of objects in the cluster Ck0 .

In order to evaluate the difference between clusters, the
between-cluster entropy for numerical data, which was first
introduced by Gockay et al. [46], is defined as follows.

Definition 2. Let NDT ¼ ðU,Ar ,V ,f Þ be a numerical data table,
which can be separated into k clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg.
For any Ci,CjACk

ðia jÞ, the BE_NðCi,CjÞ is defined as:

BE_NðCi,CjÞ ¼�log
1

NiNj

X
xACi

X
yACj

W 0
2s2 ðx,yÞ, ð9Þ

where Ni ¼ 9Ci9 and Nj ¼ 9Cj9 represent the number of objects in
the clusters Ci and Cj, respectively.

Intuitively, if two clusters are well separated, the BE_N will
have a relatively large value. This provides us with a tool for
cluster evaluation. Furthermore, in order to characterize the effect
of a cluster on the clustering results, the sum of between-cluster
entropies in absence of a cluster for a numerical data set [34] is
described as follows.

Definition 3. Let NDT ¼ ðU,Ar ,V ,f Þ be a numerical data table,
which can be separated into kðk42Þ clusters, i.e.,
Ck
¼ fC1,C2, . . . ,Ckg. For any Ck0ACk, the SBAE_NðCk0 Þ is defined as:

SBAE_NðCk0 Þ ¼
X

Ci ACk ,iak0

X
Cj ACk ,jak0 ,ja i

BE_NðCi,CjÞ: ð10Þ

Obviously, the larger the SBAE_NðCk0 Þ is, the less the effect of
the cluster Ck0 on the clustering results. That is to say, if the
SBAE_NðCk0 Þ is the largest, the clustering results excluding the
cluster Ck0 will be the best.

In a categorical domain, Liang et al. [47] used the complement
entropy to measure information content and uncertainty for
a categorical data table. Unlike the logarithmic behavior of
Shannon’s entropy, the complement entropy can measure both
uncertainty and fuzziness. Recently, it has been used in a variety
of applications for categorical data including feature selection
[48], rule evaluation [49], and uncertainty measure [47,50,51].

Definition 4. Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical data table and
PDAc . A binary relation IND(P), called indiscernibility relation, is
defined as

INDðPÞ ¼ fðx,yÞAU � U98aAP,f ðx,aÞ ¼ f ðy,aÞg: ð11Þ

Two objects are indiscernible in the context of a set of
attributes if they have the same values for those attributes. IND(P)
is an equivalence relation on U and INDðPÞ ¼

T
aAPINDðfagÞ.

The relation IND(P) induces a partition of U, denoted by
U=INDðPÞ ¼ f½x�P9xAUg, where ½x�P denotes the equivalence class
determined by x with respect to P, i.e., ½x�P ¼ fyAU9ðx,yÞA INDðPÞg.

The complement entropy for categorical data is defined as
follows [47].
Definition 5. Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical data table,
PDAc and U=INDðPÞ ¼ fX1,X2, . . . ,Xmg. The complement entropy
with respect to P is defined as

EðPÞ ¼
Xm

i ¼ 1

9Xi9
9U9

9Xc
i 9

9U9
¼
Xm

i ¼ 1

9Xi9
9U9

1�
9Xi9
9U9

 !
, ð12Þ

where Xi
c denotes the complement set of Xi, i.e., Xc

i ¼U�Xi,
9Xi9=9U9 represents the probability of Xi within the universe U

and 9Xc
i 9=9U9 is the probability of the complement set of Xi within

the universe U.
Based on the complement entropy, the Within-cluster Entropy

(abbreviated as WE_C), Between-cluster Entropy (abbreviated as
BE_C) and Sum of Between-cluster Entropies in Absence of a
cluster (abbreviated as SBAE_C) for Categorical data are defined as
follows.

Definition 6. Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical data table,
which can be separated into k clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg.
For any Ck0ACk, the WE_CðCk0 Þ is defined as

WE_CðCk0 Þ ¼
X

aAAc

X
X ACk0 =INDðfagÞ

9X9
9Ck0 9

1�
9X9
9Ck0 9

 !
: ð13Þ

Definition 7 (Huang [13]). Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical
data table. For any x,yAU, the dissimilarity measure DAc ðx,yÞ is
defined as

DAc ðx,yÞ ¼
X

aAAc

daðx,yÞ, ð14Þ

where

daðx,yÞ ¼
0, f ðx,aÞ ¼ f ðy,aÞ,

1, f ðx,aÞa f ðy,aÞ:

(

Intuitively, the dissimilarity between two categorical objects is
directly proportional to the number of attributes in which they
mismatch. Furthermore, we find there is a quantitative relation
between WE_CðCk0 Þ and DAc ðx,yÞ, i.e.,

WE_CðCk0 Þ ¼
1

9Ck0 9
2

X
xACk0

X
yACk0

DAc ðx,yÞ, ð15Þ

which is proved as follows.
For convenience, suppose that Ya ¼ Ck0=INDðfagÞ, where aAAc .

Then,

WE_CðCk0 Þ ¼
X

aAAc

X
X AYa

9X9
9Ck0 9

1�
9X9
9Ck0 9

 !

¼
X

aAAc

1�
X

X AYa

9X92

9Ck0 9
2

 !

¼
1

9Ck0 9
2

X
aAAc

9Ck0 9
2
�
X

X AYa

9X92

 !

¼
1

9Ck0 9
2

X
aAAc

X
xACk0

X
yACk0

daðx,yÞ

¼
1

9Ck0 9
2

X
xACk0

X
yACk0

X
aAAc

daðx,yÞ

¼
1

9Ck0 9
2

X
xACk0

X
yACk0

DAc ðx,yÞ:

The above derivation means that the within-cluster entropy
can be expressed with the average dissimilarity between objects
within a cluster for categorical data. Therefore, based on the



Table 1
An artificial data set.

Objects a1 a2 a3 a4 Clusters

x1 a f 0.50 0.60

x2 b f 0.45 0.48 C1

x3 c e 0.55 0.49

x4 b e 0.30 0.35

x5 b f 0.27 0.47 C2

x6 c e 0.35 0.48

x7 a f 0.52 0.32

x8 a d 0.43 0.20 C3

x9 c d 0.55 0.24

J. Liang et al. / Pattern Recognition 45 (2012) 2251–2265 2255
average dissimilarity between pairs of samples in two different
clusters, the between-cluster entropy for categorical data is
defined as follows.

Definition 8. Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical data table,
which can be separated into k clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg.
For any Ci,CjACk

ðia jÞ, the BE_CðCi,CjÞ is defined as:

BE_CðCi,CjÞ ¼
1

NiNj

X
xACi

X
yACj

DAc ðx,yÞ, ð16Þ

where Ni ¼ 9Ci9 and Nj ¼ 9Cj9.

Given this definition, we obtain the following entropy.

Definition 9. Let CDT ¼ ðU,Ac ,V ,f Þ be a categorical data table,
which can be separated into kðk42Þ clusters, i.e.,
Ck
¼ fC1,C2, . . . ,Ckg. For any Ck0ACk, the SBAE_CðCk0 Þ is defined as:

SBAE_CðCk0 Þ ¼
X

Ci ACk ,iak0

X
Cj ACk ,jak0 ,ja i

BE_CðCi,CjÞ: ð17Þ

By integrating the SBAE_N and SBAE_C together, the Sum of
Between-cluster Entropies in Absence of a cluster (abbreviated as
SBAE_M) for Mixed data can be calculated as follows.

Definition 10. Let MDT ¼ ðU,A,V ,f Þ be a mixed data table, which
can be separated into kðk42Þ clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg. For
any Ck0ACk, the SBAE_MðCk0 Þ is defined as:

SBAE_MðCk0 Þ ¼
9Ar9
9A9

SBAE_NðCk0 ÞPk
i ¼ 1 SBAE_NðCiÞ

þ
9Ac9
9A9

SBAE_CðCk0 ÞPk
i ¼ 1 SBAE_CðCiÞ

:

ð18Þ

It is well known that the effect of different clusters on the
clustering results is not equal. Since the best clustering is
achieved when clusters have the maximum dissimilarity, hence,
the larger the between-cluster entropy is, the better the cluster-
ing is. The cluster, without which the remaining clusters become
the most separate clusters, is called the worst cluster. That is to
say, this cluster has the smallest effect on the between-cluster
entropy among all the clusters. Based on the SBAE_M, the defini-
tion of the worst cluster is as follows.

Definition 11. Let MDT ¼ ðU,A,V ,f Þ be a mixed data table, which
can be separated into kðk42Þ clusters, i.e., Ck

¼ fC1,C2, . . . ,Ckg. The
worst cluster CwACk is defined as:

Cw ¼ arg max
Ck0 ACk

SBAE_MðCk0 Þ: ð19Þ

In the following, the process of identifying the worst cluster
among the clustering results is illustrated in Example 1.

Example 1. Consider the artificial data set given in Table 1, where
U ¼ fx1,x2, . . . ,x9g and A¼ Ac

[ Ar
¼ fa1,a2,a3,a4g, with Ac

¼ fa1,a2g

and Ar
¼ fa3,a4g. Let U be partitioned into three clusters

C3
¼ fC1,C2,C3g, where C1 ¼ fx1,x2,x3g, C2 ¼ fx4,x5,x6g and

C3 ¼ fx7,x8,x9g.

Suppose that the kernel size s is set to 0.05 in the Gaussian

kernel. According to Definition 3, the sum of between-cluster

entropies in absence of a cluster for numerical attributes are given

by

SBAE_NðC1Þ ¼ 4:3017,

SBAE_NðC2Þ ¼ 3:5520
and

SBAE_NðC3Þ ¼ 1:8141:

Similarly, according to Definition 9, the sum of between-cluster

entropies in absence of a cluster for categorical attributes are

given by

SBAE_CðC1Þ ¼
16

9
,

SBAE_CðC2Þ ¼
13

9

and

SBAE_CðC3Þ ¼
11

9
:

Finally, the sum of between-cluster entropies in absence of a

cluster for mixed attributes are

SBAE_MðC1Þ ¼
2

4
�

4:3017

4:3017þ3:5520þ1:8141

þ
2

4
�

16=9

16=9þ13=9þ11=9

¼ 0:4225,

SBAE_MðC2Þ ¼
2

4
�

3:5520

4:3017þ3:5520þ1:8141

þ
2

4
�

13=9

16=9þ13=9þ11=9

¼ 0:3462

and

SBAE_MðC3Þ ¼
2

4
�

1:8141

4:3017þ3:5520þ1:8141

þ
2

4
�

11=9

16=9þ13=9þ11=9

¼ 0:2313:

Obviously, SBAE_MðC1Þ4SBAE_MðC2Þ4SBAE_MðC3Þ. Thus,

according to Definition 11, the cluster C1 is the worst cluster.

3. Cluster validity index

To evaluate the clustering results, a number of cluster validity
indices have been given in the literature [26,52–54]. However,
these cluster validity indices are only applicable for either
numerical data or categorical data. As follows, we propose an
effective cluster validity index based on the category utility
function introduced by Gluck and Corter [55]. The category utility
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function is a measure of ‘‘category goodness’’, which has been
applied in some clustering algorithms [56,57] and can be
described as follows.

Suppose that a categorical data table CDT ¼ ðU,Ac ,V ,f Þ has a
partition Ck

¼ fC1,C2, . . . ,Ckg with k clusters, which are found by a
clustering algorithm. Then the category utility function of the
clustering results Ck for categorical data is calculated by [55]

CUCðCk
Þ ¼

1

k

X
aAAc

Qa, ð20Þ

where

Qa ¼
X

XAU=INDðfagÞ

Xk

i ¼ 1

9Ci9
9U9

9X \ Ci9
2

9Ci9
2
�
9X92

9U92

 !
:

One can see that the category utility function is defined in
terms of the bivariate distributions of a clustering result and each
of the features, which looks different from more traditional
clustering criteria adhering to similarities and dissimilarities
between instances. Mirkin [58] shows that the category utility
function is equivalent to the square error criterion in traditional
clustering, when a standard encoding scheme of categories is
applied. As follows, a corresponding category utility function for
numerical data is given [58].

Suppose that a numerical data table NDT ¼ ðU,Ar ,V ,f Þ with
Ar
¼ fa1,a2, . . . ,a9Ar9g can be separated into k clusters, i.e.,

Ck
¼ fC1,C2, . . . ,Ckg, by a clustering algorithm. Then the category

utility function of the clustering results Ck for numerical data is
defined by

CUNðCk
Þ ¼

1

k

X9Ar9

l ¼ 1

d2
l �
Xk

j ¼ 1

pjd
2
jl

0
@

1
A, ð21Þ

where d2
l ¼

P
xAUðf ðx,alÞ�mlÞ

2=9U9 and d2
jl ¼

P
xACj
ðf ðx,alÞ�mjlÞ

2=

9Cj9 are the variance and within-class variance of the attribute al,
respectively; ml and mjl denote the grand mean and within-class
mean of the attribute al, respectively; and pj ¼ 9Cj9=9U9.

Based on Eqs. (20) and (21), a validity index for the clustering
results, i.e., Ck

¼ fC1,C2, . . . ,Ckg, obtained by a clustering algorithm
on the mixed data table MDT ¼ ðU,A,V ,f Þ, is defined as:

CUMðCk
Þ ¼

9Ar9
9A9

CUNðCk
Þþ

9Ac9
9A9

CUCðCk
Þ: ð22Þ

It is clear that the higher the value of CUM above, the better
the clustering results. The cluster number which maximizes CUM

is considered to be the optimal number of clusters in a mixed
data set.
4. An algorithm for determining the number of clusters in a
mixed data set

In this section, we first review the k-prototypes algorithm, and
then redefine the dissimilarity measure used in the k-prototypes
algorithm. Based on the generalized mechanism using informa-
tion entropy, the proposed cluster validity index and the modified
k-prototypes algorithm, an algorithm for determining the number
of clusters in a mixed data set is proposed.

4.1. A modified k-prototypes algorithm

In 1998, Huang [13] proposed the k-prototypes algorithm,
which is a simple integration of the k-means [14] and k-modes
[16] algorithms. The k-prototypes algorithm is widely used
because frequently encountered objects in real world database
are mixed-type objects, and it is efficient in processing large data
sets. In the k-prototypes algorithm, the dissimilarity measure
takes into account both numerical attributes and categorical
attributes. The dissimilarity measure on numerical attributes is
defined by the squared Euclidean distance. For the categorical
part, the computation of dissimilarity is performed by simple
matching, which is the same as that of the k-modes. The dissim-
ilarity between two mixed-type objects x,yAU, can be measured
by [13]

Dðx,yÞ ¼DAr ðx,yÞþgDAc ðx,yÞ, ð23Þ

where DAr ðx,yÞ and DAc ðx,yÞ represent the dissimilarities of the
numerical and categorical parts, respectively. DAr ðx,yÞ is calculated
according to

DAr ðx,yÞ ¼
X

aAAr

ðf ðx,aÞ�f ðy,aÞÞ2: ð24Þ

DAc ðx,yÞ is calculated according to Eq. (14). The weight g is used to
control the relative contribution of numerical and categorical
attributes when computing the dissimilarities between objects.

However, how to choose an appropriate g is a very difficult
problem in practice. To overcome this difficulty, we modify the
Dðx,yÞ. A new dissimilarity between two mixed-type objects
x,yAU is given as follows:

Dðx,yÞ ¼
9Ar9
9A9

DAr ðx,yÞþ
9Ac9
9A9

DAc ðx,yÞ: ð25Þ

As a matter of fact, the dissimilarity used in k-prototypes
algorithm is calculated between an object and a prototype. And
the ranges of dissimilarity measures for numerical attributes and
categorical attributes are different. In order to reflect the relative
contributions of numerical and categorical attributes, we modify
Dðx,yÞ in the following way.

Suppose that the clustering results of a mixed data table
MDT ¼ ðU,A,V ,f Þ are Ck

¼ fC1,C2, . . . ,Ckg, whose cluster prototypes
are Zk

¼ fz1,z2, . . . ,zkg, where k is the number of clusters. The
dissimilarity between xAU and the prototype zAZk, is measured
by

Dðx,zÞ ¼
9Ar9
9A9

DAr ðx,zÞPk
i ¼ 1 DAr ðx,ziÞ

þ
9Ac9
9A9

DAc ðx,zÞPk
i ¼ 1 DAc ðx,ziÞ

, ð26Þ

where DAr ðx,zÞ and DAc ðx,zÞ are calculated according to Eqs. (24)
and (14), respectively.

Based on this dissimilarity, a modified k-prototypes algorithm
is proposed, which is as follows.
Step 1:
 Choose k distinct objects from the mixed data table
MDT ¼ ðU,A,V ,f Þ as the initial prototypes.
Step 2:
 Allocate each object in MDT ¼ ðU,A,V ,f Þ to a cluster
whose prototype is the nearest to it according to Eq.
(26). Update the prototypes after each allocation.
Step 3:
 After all objects have been allocated to clusters, recalcu-
late the similarity of objects against the current proto-
types. If an object is found such that its nearest prototype
belongs to another cluster rather than its current one,
reallocate the object to that cluster and update the
corresponding prototypes.
Step 4:
 Repeat Step 3 till no object changes from one cluster to
another or a given stopping criterion is fulfilled.
To better understand the modified k-prototypes algorithm,
iterations of this algorithm are illustrated in Example 2.

Example 2 (Continued from Example 1). Suppose that the initial
prototypes are fx1,x4,x7g. According to Eq. (26), the dissimilarity
between each object of U ¼ fx1,x2, . . . ,x9g and the prototypes is
shown in Table 2. Furthermore, executing the Step 2 of the
modified k-prototypes algorithm, we obtain three clusters, i.e.,



Table 2
The dissimilarity between each object of U and the prototypes.

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0 0.2494 0.2441 0.5456 0.3811 0.3807 0.2214 0.4546 0.4050

x4 0.8227 0.4330 0.4771 0 0.1946 0.1659 0.7786 0.3605 0.4138

x7 0.1773 0.3176 0.2788 0.4544 0.4244 0.4534 0 0.1850 0.1812

Table 3
The algorithm for determining the number of clusters in a mixed data set.

1 Input: A mixed data table MDT ¼ ðU,A,V ,f Þ, kmin, kmax

2 and the kernel size s.

3 Arbitrarily choose kmax objects z1 ,z2 , . . . ,zkmax
from the mixed data

4 table MDT as the initial cluster centers Zkmax ¼ fz1 ,z2 , . . . ,zkmax
g.

5 For i¼ kmax to kmin

6 Apply the modified k-prototypes with the initial centers Zi

7 on the mixed data table MDT and return the clustering

8 results Ci
¼ fC1 ,C2 , . . . ,Cig;

9 According to Eq. (22), compute the cluster validity index CUMðCi
Þ

10 for the clustering results Ci;

11 According to Eq. (19), identify the worst cluster Cw, Cw ACi;

12 For any xACw , assign x to an appropriate cluster based on the

13 minimum of dissimilarity measure using Eq. (26);

14 Update the centers of clusters, which are used as the expected

15 centers of clusters for the next loop;

16 End;

17 Compare the validity indices and choose k such that

18 k¼ arg maxi ¼ kmax ,...,kmin
CUMðCi

Þ;

19 Output: The optimal number of clusters k.

Table 4
Contingency table for comparing partitions P and Q.

Partition Group Q Total

q1 q2 � � � qc

p1 t11 t12 � � � t1c t1:

P p2 t21 t22 � � � t2c t2:

^ ^ ^ & ^ ^
pk tk1 tk2 � � � tkc tk:

Total t:1 t:2 � � � t:c t:: ¼ n

Table 5
Means and variances of the ten-cluster data set.

Attributes Mean –

Variance

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

X Mean 0.0 5.0 5.0 1.5 �2.0 �5.5 �5 �2.0 2.0 7.0

Variance 0.8 0.5 0.5 0.8 1.0 1.0 0.5 0.5 0.5 1.0

Y Mean 0.0 4.5 0.0 3.0 �4.5 �1.5 2.0 4.5 �3.5 �3.5

Variance 0.8 0.5 0.5 0.5 1.0 0.5 1.0 1.0 1.0 0.5
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C1 ¼ fx1,x2,x3g, C2 ¼ fx4,x5,x6g and C3 ¼ fx7,x8,x9g, and the corre-
sponding cluster prototypes are z1 ¼ fa,f ,0:5,0:5233g,
z2 ¼ fb,e,0:3067,0:4333g and z3 ¼ fa,d,0:5,0:2533g in the current
iteration process, respectively.

4.2. Overview of the proposed algorithm

Based on the above mentioned formulations and notation, an
algorithm is developed for determining the number of clusters in
mixed data, which is described in Table 3.

Referring to the proposed algorithm, the time complexity is
analyzed as follows. In each loop, the time complexity mainly
consists of two parts. In the first part, the cost of applying the
modified k-prototypes algorithm on the input data set to obtain i

clusters is Oðit9U99A9Þ, where t is the number of iterations of the
modified k-prototypes algorithm in current loop. On the other
hand, when identifying the worst cluster, the between-cluster
entropy needs to be calculated between any pair of clusters, and
thus the time complexity of this calculation is Oð9U929A92

Þ. There-
fore, the overall time complexity of the proposed algorithm is
Oððkmax�kminþ1Þð9U929A92

ÞÞ.

X

Fig. 2. Scatter plot of the ten-cluster data set.
5. Experimental analysis

In this section, we evaluate the effectiveness of the proposed
algorithm in detecting the optimal number of clusters and
obtaining better clustering results. We have carried out a number
of experiments on both synthetic and real data sets. On the one
hand, in order to evaluate the ability of detecting the optimal
number of clusters, the proposed algorithm was compared with
the method in [59]. On the other hand, the comparisons between
the proposed algorithm and the other algorithms with a known
number of clusters (the modified k-prototypes algorithm and k-
centers algorithm [60]) have been implemented to evaluate the
effectiveness of obtaining better clustering results. In the
following experiments, unless otherwise mentioned, the kernel
size s in the proposed algorithm is set to 0.05. And the weight
parameter g used in the k-centers algorithm [60] is set to 0.5. To
avoid the influence of the randomness arising from the initializa-
tion of cluster centers, each experiment is executed 100 times on
the same data set. As choosing the best range of the number of
clusters is a difficult problem, we have adopted Bezdek’s sugges-
tion of kmin ¼ 2 and kmax ¼

ffiffiffi
n
p

[61], where n is the number of
objects in the data set. To evaluate the results of clustering
algorithms, two criteria are introduced in the following.



Table 6
The summary results of three algorithms on the ten-cluster data set.

Indices Modified k-Prototypes k-Centers Proposed algorithm

CUM 0.1857 0.1837 0.1868
ARI 0.7252 0.7679 0.8270

Table 7
Synthetic mixed student data set.

Sex Age Amount Product Department College

M(50%),FM(50%) Nð20;2Þ 70–90 Orange I.D. Design

Apple V.C.

Coke E.E. Engineering

Pepsi M.E.

Rice I.S. Management

Bread B.A.
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Fig. 3. The estimated number of clusters for the ten-cluster data set (a) the

proposed algorithm and (b) the algorithm mentioned in [59].
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Category utility function for mixed data: The category utility
function for mixed data (abbreviated as CUM) is an internal
criterion which attempts to maximize both the probability
that two data objects in the same cluster have attribute values
in common and the probability that data points from different
clusters have different values. The formula for calculating the
expected value of the CUM can be found in Section 3.
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Fig. 4. The estimated number of clusters for the student data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].
Adjusted rand index: The adjusted rand index [62], also referred
to as ARI, is a measure of agreement between two partitions:
one given by a clustering algorithm and the other defined by
external criteria. Consider a set of n objects U ¼ fx1,x2, . . . ,xng

and suppose that P¼ fp1,p2, . . . ,pkg and Q ¼ fq1,q2, . . . ,qcg

represent two different partitions of the objects in U such thatSk
i ¼ 1 pi ¼

Sc
j ¼ 1 qj ¼U and pi \ pi0 ¼ qj \ qj0 ¼ | for 1r ia i0rk

and 1r ja j0rc. Given two partitions, P and Q, with k and c

subsets, respectively, the contingency table (see Table 4) can
be formed to indicate group overlap between P and Q.

In Table 4, a generic entry, tij, represents the number of objects
that were classified in the ith subset of partition P and in the jth
subset of partition Q. ARI can be computed by

ARI¼

ðn2Þ
Pk

i ¼ 1

Pc
j ¼ 1ð

tij

2 Þ�½
Pk

i ¼ 1

ðti:
2Þ
Pc

j ¼ 1ð
t:j
2Þ�

1
2 ð

n
2Þ½
Pk

i ¼ 1ð
ti:
2Þþ

Pc
j ¼ 1ð

t:j
2Þ��½

Pk
i ¼ 1ð

ti:
2Þ
Pc

j ¼ 1ð
t:j
2Þ�

ð27Þ

with maximum value 1. If the clustering result is close to the true
class distribution, then the value of ARI is high.

5.1. Numerical examples with synthetic data sets

The 1000 synthetic numerical data points were generated from
a mixture of Gaussian distributions with 10 clusters (also referred
to as ten-cluster data set). Each data point was described by two
numerical attributes (X and Y ). These attribute values were
generated by sampling normal distributions with different means
and variances for each cluster. The means and variances of the ten
clusters are given in Table 5. The scatter plot of this generated
data set is shown in Fig. 2. Fig. 3 shows the estimated number of
clusters for this data set by the proposed algorithm compared
with the algorithm given in [59]. Table 6 lists the results of three
different algorithms on this data set.

We have also examined the result on the synthetic data set
with numerical attributes and categorical attributes, which was
used in [20]. The data set, named student, has 600 objects with



Table 8
The summary results of three algorithms on the student data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.1168 0.1254 0.1256
ARI 0.5063 0.8120 0.5362

Table 9
The summary of real data sets’ characteristics.

Data sets Abbreviation #

Instances

#

Numerical

attributes

#

Categorical

attributes

#

Clusters

Wine

recognition

Wine 178 13 0 3

Wisconsin

Breast Cancer

Breast

cancer

699 9 0 2

Congressional

voting records

Voting 435 0 16 2

Car evaluation

database

Car 1728 0 6 4

Splice-junction

gene

sequences

DNA 3190 0 60 3

Teaching

assistant

evaluation

TAE 151 1 4 3

Heart disease Heart 303 5 8 2

Australian

credit approval

Credit 690 6 8 2

Contraceptive

method choice

CMC 1473 2 7 3

Adult Adult 44 842 6 8 2
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Fig. 5. The estimated number of clusters for the Wine data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 10
The summary results of three algorithms on the Wine data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 1.8714 1.8834 1.9166
ARI 0.8025 0.8076 0.8471
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Fig. 6. The estimated number of clusters for the Breast Cancer data set (a) the

proposed algorithm and (b) the algorithm mentioned in [59].

Table 11
The summary results of three algorithms on the Breast Cancer data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 2.1490 2.1210 2.1840
ARI 0.8040 0.7967 0.8216
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data distribution as shown in Table 7. The data has six attributes:
three categorical attributes (sex, product, and department), two
numerical attributes (age and amount), and one decision attribute
(college). The latter does not participate in clustering. The class
value of each pattern is assigned deliberately according to its
department and product values to facilitate the measurement of
cluster quality. Fig. 4 shows the estimated number of clusters for
this data set by the proposed algorithm compared with the
algorithm in [59]. The summary results of three different algo-
rithms on this data set are shown in Table 8.

From Figs. 3 and 4, one can see that the proposed algorithm is
able to correctly detect the number of clusters on two synthetic
data sets, however, the algorithm in [59] fails to detect the
number of clusters on these two data sets.
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Fig. 7. The estimated number of clusters for the Voting data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 12
The summary results of three algorithms on the Voting data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 1.4478 0.9923 1.4482
ARI 0.5208 0.3555 0.5340
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Fig. 8. The estimated number of clusters for the Car data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 13
The summary results of three algorithms on the Car data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.1140 0.1047 0.1210
ARI 0.0263 0.0215 0.0323
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5.2. Numerical examples with real data sets

In this section, we have performed experiments with 10
different kinds of real data sets. These ten data sets are down-
loaded from the UCI Machine Learning Repository [64]. These
representative data sets have two with numerical valued attri-
butes, three with categorical valued attributes, and the others
with a combination of numerical and categorical attributes. The
data sets’ characteristics are summarized in Table 9. In the
following, we give the detailed information of these ten data sets
and the corresponding experimental results, respectively.

Wine: This data set contains the results of a chemical analysis
of wines grown in the same region in Italy but derived from three
different cultivars. The analysis determines the quantities of 13
constituents found in each of the three types of wines. The
attributes are, respectively, alcohol, malic acid, ash, magnesium,
etc. The total number of instances in this data set is 178, i.e., 59
for class 1, 71 for class 2, and 48 for class 3. Fig. 5 shows the
estimated number of clusters for this data set by the proposed
algorithm compared with the algorithm mentioned in [59]. The
summary results of three different algorithms on this data set are
shown in Table 10.

Breast Cancer: This data set was collected by Dr. William H.
Wolberg at the University of Wisconsin Madison Hospitals. There
are 699 records in this data set. Each record has nine attributes,
which are graded on an interval scale from a normal state of 1–10,
with 10 being the most abnormal state. In this database, 241
records are malignant and 458 records are benign. Fig. 6 shows
the estimated number of clusters for this data set by the proposed
algorithm compared with the algorithm mentioned in [59]. The
summary results of three different algorithms on this data set are
shown in Table 11.

Voting: This UCI categorical data set gives the votes of each
member of the U.S. House of Representatives of the 98th Congress
on 16 key issues. It consists of 435 US House of Representative
members’ votes on 16 key votes (267 democrats and 168 repub-
licans). Votes were numerically encoded as 0.5 for ‘‘yea’’, �0.5 for
‘‘nay’’ and 0 for unknown disposition, so that the voting record of
each congressman is represented as a ternary-valued vector in
R16. Fig. 7 shows the estimated number of clusters for this data set
by the proposed algorithm compared with the algorithm men-
tioned in [59]. The summary results of three different algorithms
on this data set are shown in Table 12.

Car: This data set evaluates cars based on their price and
technical characteristics. This simple model was developed
for educational purposes and is described in [63]. The data set
has 1728 objects, each being described by six categorical attri-
butes. The instances were classified into four classes, labeled
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Fig. 9. The estimated number of clusters for the DNA data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 14
The summary results of three algorithms on the DNA data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.2691 0.1483 0.3175
ARI 0.0179 0.0414 0.0240
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Fig. 10. The estimated number of clusters for the TAE data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 15
The summary results of three algorithms on the TAE data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.1160 0.0940 0.1435
ARI 0.0132 0.0154 0.0256
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‘‘unacc’’, ‘‘acc’’, ‘‘good’’ and ‘‘v-good’’. Fig. 8 shows the estimated
number of clusters for this data set by the proposed algorithm
compared with the algorithm mentioned in [59]. The summary
results of three different algorithms on this data set are shown in
Table 13.

DNA: In this data set, each data point is a position in the
middle of a window 60 DNA sequence elements. There is an
intron/exon/neither field for each DNA sequence (which is not
used for clustering). All of the 60 attributes are categorical and the
data set contains 3190 data points (768 intron, 767 exon, and
1,655 neither). Fig. 9 shows the estimated number of clusters for
this data set by the proposed algorithm compared with the
algorithm mentioned in [59]. The summary results of three
different algorithms on this data set are shown in Table 14.

TAE: The data set consists of evaluations of teaching perfor-
mance over three regular semesters and two summer semesters
of 151 teaching assistant assignments at the Statistics Depart-
ment of the University of Wisconsin-Madison. The scores were
divided into three roughly equal-sized categories (‘‘low’’, ‘‘med-
ium’’, and ‘‘high’’) to form the class variable. It differs from
the other data sets in that there are two categorical attributes
with large numbers of categories. Fig. 10 shows the estimated
number of clusters for this data set by the proposed algorithm
compared with the algorithm mentioned in [59]. The summary
results of three different algorithms on this data set are shown in
Table 15.

Heart: This data generated at the Cleveland Clinic, is a mixed
data set with categorical and numerical features. Heart disease
refers to the build-up of plaque on the coronary artery walls that
restricts blood flow to the heart muscle, a condition that is termed
‘‘ischemia’’. The end result is a reduction or deprivation of the
necessary oxygen supply to the heart muscle. The data set
consists of 303 patient instances defined by 13 attributes. The
data comes from two classes: people with no heart disease and
people with different degrees (severity) of heart disease. We get
the estimated number of clusters for this data set by the proposed
algorithm compared with the algorithm mentioned in [59] as
plotted in Fig. 11. The summary results of three different algo-
rithms on this data set are shown in Table 16.

Credit: The data set has 690 instances, each being described by
six numerical and nine categorical attributes. The instances were
classified into two classes, approved labeled as ‘‘þ ’’ and rejected
labeled as ‘‘� ’’. Fig. 12 shows the estimated number of clusters for
this data set by the proposed algorithm compared with the
algorithm mentioned in [59]. The summary results of three
different algorithms on this data set are shown in Table 17.
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Fig. 11. The estimated number of clusters for the Heart data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 16
The summary results of three algorithms on the Heart data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.3406 0.2017 0.3406
ARI 0.3303 0.1888 0.3383
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Fig. 12. The estimated number of clusters for the Credit data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 17
The summary results of three algorithms on the Credit data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.2658 0.1525 0.2678
ARI 0.2520 0.2323 0.2585
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CMC: The data are taken from the 1987 National Indonesia
Contraceptive Prevalence Survey. The samples are married
women who were either not pregnant or did not know if
they were pregnant at the time of the interview. The problem
is to predict the current contraceptive method choice (no use,
long-term methods, or short-term methods) of a woman based
on her demographic and socio-economic characteristics. There
are three classes, two numerical attributes, seven categorical
attributes, and 1473 records. Fig. 13 shows the estimated number
of clusters for this data set by the proposed algorithm com-
pared with the algorithm mentioned in [59]. The summary results
of three different algorithms on this data set are shown in
Table 18.

Adult: This data set was also from the UCI repository [64]. The
dataset has 48 842 patterns of 15 attributes (eight categorical, six
numerical, and one class attribute). The class attribute Salary
indicates where the salary is over 50 K (450 K) or 50 K or lower
(r50 K). Fig. 14 shows the estimated number of clusters for this
data set by the proposed algorithm compared with the algorithm
mentioned in [59]. Note that in order to show the variation
tendency clearly, the numbers of clusters vary from 2 to 20 in this
plot. The summary results of three different algorithms on this
data set are shown in Table 19.
According to Figs. 5–14, it is clear that the numbers of clusters
detected by the proposed algorithm are in agreement with the
true numbers of these real data sets. However, the algorithm in
[59] fails to detect the number of clusters on some real data sets,
such as Breast Cancer, Car, DNA, TAE and CMC. As regards the
clustering results shown in Tables 10–19, the proposed algorithm
is superior to the other algorithms on the most data sets in terms
of CUM and ARI.

5.3. Comparison in terms of time cost

In addition to the comparisons of the ability to detect the
optimal number of clusters and obtain better clustering results,
we have carried out time comparison between the proposed
algorithm and the algorithm in [59]. The experiments are con-
ducted on a PC with an Intel Pentium D processor (2.8 GHz) and
1 Gbyte memory running the Windows XP SP3 operating system.
For statistical purposes, we ran these two algorithms 10 times
and recorded the average number of the CPU time, respectively.
For the algorithm in [59], it is difficult to set an appropriate step
size of the similarity value threshold. Therefore, the similarity
threshold varies from 0.01 to 1 with step-size 0.01 for all data sets
used in this experiment. Once the algorithm starts producing
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Fig. 13. The estimated number of clusters for the CMC data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 18
The summary results of three algorithms on the CMC data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.1731 0.1513 0.1839
ARI 0.0182 0.0177 0.0167
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Fig. 14. The estimated number of clusters for the Adult data set (a) the proposed

algorithm and (b) the algorithm mentioned in [59].

Table 19
The summary results of three algorithms on the Adult data set.

Indices Modified k-prototypes k-Centers Proposed algorithm

CUM 0.2170 0.1594 0.2315
ARI 0.1473 0.0937 0.1742

Table 20
The comparisons of execution time.

Data sets Time consumption in second

The algorithm in [59] Proposed algorithm

Ten-cluster 42.516 34.25
Student 6.859 27.672

Wine 3.672 0.703
Breast Cancer 20.015 21.984

Voting 3.032 5.656

Car 46.641 34.531
DNA 214.063 694.484

TAE 1.172 2.157

Heart 6.015 4.093
Credit 3.703 38.047
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small interval length (L) of similarity threshold continuously
(Lo2), it will terminate. The comparisons of the CPU time on
both synthetic and real data sets are shown in Table 20.

According to Table 20, our algorithm spends little time on four
data sets, while the algorithm in [59] does the same on the other
data sets. That is to say, there is no difference for these two
algorithms in time consumption. However, the proposed algo-
rithm can find the number of clusters and obtain better clustering
results simultaneously, whereas the algorithm in [59] can only
find the number of clusters. And the execution time of the
algorithm in [59] depends on step size of the similarity threshold.

In summary, the experimental results performed on both
synthetic and real data sets show the superiority and effective-
ness of the proposed algorithm in detecting the correct number of
clusters and obtaining better clustering results.
CMC 57.719 186.172

Adult 613.735 3657.484
6. Conclusions

The goal of this research is to develop a clustering algorithm
for determining the optimal number of clusters for mixed data
sets. In order to achieve this goal, a generalized mechanism for
characterizing within-cluster entropy and between-cluster
entropy and identifying the worst cluster in a mixed data set
has been given by exploiting information entropy. To evaluate the
clustering results, an effective cluster validity index has been
defined by extending the category utility function. Based on the
generalized mechanism, the cluster validity index and the
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k-prototypes algorithm with a new dissimilarity measure, an
algorithm has been developed to determine the number of
clusters for mixed data sets. Experimental results on both syn-
thetic and real data with mixed attributes show that the proposed
algorithm is superior to the other algorithms both in detecting the
number of clusters and in obtaining better clustering results.
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