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In rough set theory, attribute reduction is a basic issue, which aims to hold the dis-
cernibility of the attribute set. To obtain all of the reducts of an information system
or a decision table, researchers have introduced many discernibility matrixes based
reduction methods. However, the reducts in the sense of positive region can only be
obtained by using the existing discernibility matrixes. In this paper, we introduce two
discernibility matrixes in the sense of entropies (Shannon’s entropy and complement
entropy). By means of the two discernibility matrixes, we can achieve all of the reducts
in the sense of Shannon’s entropy and all of the reducts in the sense of complement
entropy, respectively. Furthermore, we discover the relationships among the reducts in
the sense of preserving positive region, Shannon’s entropy and complement entorpy.
The experimental studies show that by the proposed decision-relative discernibility
matrices based reduction methods, all the reducts of a decision table in sense of en-
tropies can be obtained.
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1. Introduction

Rough set theory proposed by Pawlak (Pawlak, 1991; Pawlak and Skowron,
2007a,b) is a new soft computing tool for the analysis of a vague description of
an object, and has become a popular mathematical framework for pattern recogni-
tion, image processing, data mining and knowledge discovery (Bazan et al., 2003;
Duntsch et al., 1998; Guan and Bell, 1998; Nguyen, 2006; Wei et al., 2012). At-
tribute reduction plays an essential role in analyzing an information table (Pawlak,
1991; Pawlak and Skowron, 2007b). An attribute reduct is a minimal subset of at-
tributes sets that provides the same descriptive ability as the entire set of attributes
(Yao et al., 2006). As a consequence, to acquire more general and brief decision
rules from inconsistent systems, attribute reduction is needed.

Recently, more attention has been focused on the area of attribute reduction,
and many methods of attribute reduction have been developed in rough set theory
(Hu and Cercone, 1995; Kryszkiewicz, 2001; Li et al., 2004; Mi et al., 2004; Nguyen
and Slezak, 1999; Qian et al., 2010a, 2009, 2008; Shao and Zhang, 2005; Skowron
and Rauszer, 1992; Ślȩzak, 1996; Wu et al., 2005; Yang, 2006; Yamaguchi, 2009;
Yao and Zhao, 2009; Ye and Chen, 2002; Ziarko, 1993). Among them, the discerni-
bility matrix based attribute reduction is one of important methods for obtaining
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reducts. By means of this method, we can get all the reducts of an information
systems (Skowron and Rauszer, 1992). Hu et al. (Hu and Cercone, 1995) modified
the discernibility matrix for computing the reducts of a decision table (called the
decision-relative discernibility matrix). Ye and Chen (Ye and Chen, 2002) pointed
out that the decision-relative discernibility matrix in (Hu and Cercone, 1995) is
only used to obtain the reducts of the consistent decision tables, and presented
a discernibility matrix suitable for the consistent and inconsistent decision tables.
Furthermore, Yang (Yang, 2006), by dividing the universe into the consistent part
and inconsistent part, proposed another decision-relative discernibility matrixes by
which the consuming time for computing the reducts is significantly reduced.

For convenience of our further discussion, we also review three types of attribute
reductions divided from the viewpoint of the discernibility power of reducts: (1)
Positive region reduction. For a decision table reduced by this method, the pos-
itive region of a target decision with respect to the obtained reducts is same as
with respect to the original attribute set (Hu and Cercone, 1995; Pawlak, 1991).
(2) Shannon’s entropy reduction. For a decision table reduced by this method, the
Shannon’s condition entropy of the decision attribute set with respect to the re-
duced condition attribute set is same as the one before attribute reduction. (Ślȩzak,
2000, 2002; Wang, 2003). (3) Complement entropy reduction. For a decision table
reduced by this method, the complement condition entropy of the decision attribute
set with respect to the reduced condition attribute set is same as the one before
attribute reduction (Liang et al., 2004, 2002; Wei et al., 2010, 2009).

All of the positive region reducts of a decision table can be obtained by means
of the existing decision-relative discernibility matrixes. However, the reducts in
the sense of entropies are also significant for decision making. To obtain all of
the Shannon’s entropy and the complement entropy reducts of a decision table, in
this paper, we propose two new discernibility matrixes in the sense of entropies.
Furthermore, we discover the inherent relationships among the reducts in the sense
of positive region, Shannon’s entropy and complement entropy.

The rest of the paper is organized as follows. Some preliminary concepts are
reviewed in Section 2. In Section 3, two kinds of discernibility matrix based on
entropies are introduced and the relationships among the different types of reducts
are discovered. Section 4 demonstrates effectiveness of the proposed discernibility
matrix by experiments. Section 5 concludes the paper.

2. Preliminaries

In this section, we review some basic concepts such as indiscernibility relation,
discernibility matrix and attribute reduction.

An information table is a 4-tuple S = {U,A, V, f} (for short S = {U,A)), where
U is a non-empty and finite set of objects, called a universe, and A is a non-empty
and finite set of attributes, Va is the domain of the attribute a, V =

⋃
a∈A Va and

f : U ×A = V is a function (f(x, a) ∈ Va for each a ∈ A).
An indiscernibility relation RB = {(x, y) ∈ U × U | f(x, a) = f(y, a),∀a ∈ B}

is determined by a attribute set B ⊆ A. U/RB = {[x]B | x ∈ U} (just as U/B)
indicates the partitions of U resulted from RB, where [x]B denotes the equivalence
class determined by x with respect to B, i.e., [x]B = {y ∈ U | (x, y) ∈ RB}.

Furthermore, for any Y ⊆ U , (B(Y ), B(Y )) is defined as the rough set of Y with
respect to B, where the lower approximation B(Y ) and the upper approximation
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B(Y ) of Y are indicated by

B(Y ) = {x|[x]B ⊆ Y },
B(Y ) = {x|[x]B ∩ Y 6= ∅}.

A partial relation ¹ on {U/Q | Q ⊆ P} is introduced as follows: U/P ¹ U/Q if
and only if, for every Pi ∈ U/P , there exists Qj ∈ U/Q such that Pi ⊆ Qj . Thus,
Q is coarser than P . And If we say Q is strictly coarser than P , then this relation
is denoted by U/P ≺ U/Q.

For an information system S = (U,C ∪D), if C is a condition attribute set, D is
a decision attribute set, C∩D = ∅, then it is called a decision table. Moreover, this
table is said to be consistent if U/C ¹ U/D, otherwise it’s inconsistent. The objects
in the condition classes which deduce certain decision rules constitute the consistent
part of a decision table, and the objects in other condition classes constitute the
inconsistent part of the decision table.

Pawlak (Pawlak, 1991) proposed the definition of a decision rule as follows: Zij :
des(Xi) → des(Yj), where des(Xi) and des(Yj) denote the descriptions of the
equivalence classes Xi ∈ U/C and Yj ∈ U/D. The certainty degree of a decision
rule Zij is defined as: µ(Zij) = |Xi ∩ Yj |/|Xi|, where | · | is the cardinality of a set.

Skowron and Rauszer (Skowron and Rauszer, 1992) introduced a matrix repre-
sentation for storing the sets of attributes that discern pairs of objects, called a
discernibility matrix.

Definition 1. Let S = (U,C) be an information system, the discernibility matrix
of the information system S is n × n matrix, which is defined as M I = {mij},
where mij = {c ∈ C| f(xi, c) 6= f(xj , c)}

Based on the discernibility matrix, Skowron (Skowron and Rauszer, 1992) defined
a discernibility function as follows.

Definition 2. Let S = (U,C) be an information system, the discernibility matrix
M I = {mij}, mij = {c ∈ C| f(xi, c) 6= f(xj , c)}. Then the discernibility function
of a discernibility matrix is defined as

f(M I) =
∧ {∨

(mI
ij) | ∀xi, xj ∈ U,mI

ij 6= ∅
}

.

The expression
∨

(mI
ij) is the disjunction of all attributes in mI

ij , indicating
that the object pair (xi, xj) can be distinguished by any attribute in

∨
(mI

ij). The
expression

∧
(
∨

(mI
ij)) is the conjunction of all

∨
(mI

ij), indicating that the family
of discernible object pairs can be distinguished by a set of attributes satisfying∧

(
∨

(mI
ij)).

The discernibility function f(M I) describes constraints which must hold to pre-
serve discernibility between all pairs of discernible objects from S. It requires keep-
ing at least one attribute from each non-empty entry of the discernibility matrix
corresponding to any pair of discernible objects. It can be shown that for an in-
formation system S = (U,A), the set of all prime implicants of f(M I) determines
the set of all reducts of S.

To compute the reducts of a decision table, Hu and Cercone (Hu and Cercone,
1995) extend the definitions of discernibility matrix and discernibility function as
follows.

Definition 3. Let S = (U,C ∪D) be a consistent decision table, D = {d}. Then
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the decision-relative discernibility matrix is defined as MD = {m′
ij}, where

m′
ij =

{ {c ∈ C : f(xi, c) 6= f(xj , c)}, f(xi, d) 6= f(xj , d)

mij , otherwise
.

From the definition, we can see that if the values of two objects on the deci-
sion attribute is equal, then the two objects need not be differentiated with each
other; Otherwise, the two objects need be distinguished by through their values on
conditional attribute set.

Ye (Ye and Chen, 2002) pointed out that the above decision-relative discernibility
matrix is only suitable for the consistent decision tables.

Definition 4. Let S = (U,C ∪ D) be a decision table, then Ye’s discernibility
matrix of decision table S is defined as MY e = {mY e

ij }, where

mY e
ij =

{ {c ∈ C : f(xi, c) 6= f(xj , c)}, min{d(xi), d(xj)} = 1

∅, otherwise
,

and d(xi) = |{f(xk, d), xk ∈ [xi]C}|.

Ślȩzak (Ślȩzak, 2002) proposed another decision-relative discernibility matrix,
which is constructed on the basis of the rough membership function. The matrix
is defined as follows.

Definition 5. Let S = (U,C ∪ D) be a decision table, C the condition attribute
set and D the decision attribute set, D = {d}. Then the discernibility matrix is
defined as Mµ = {mµ

ij}, where

mµ
ij =

{ {c ∈ C : f(xi, c) 6= f(xj , c)}, µik 6= µjk

∅, otherwise
,

where µik = |[xi]C∩Yk|
|[xi]C | , µjk = |[xj ]C∩Yk|

|[xj ]C | , [xi]C , [xj ]C ∈ U/C and Yk ∈ U/D.

Yang (Yang, 2006) modified Ye’s discernibility matrix, and introduced a new
discernibility matrix as follows.

Definition 6. Let S = (U,C ∪ D) be a decision table, C the condition attribute
set, D the decision attribute set, D = {d}. Then Yang’s discernibility matrix is
defined as MY ang = {mY ang

ij }, where

mY ang
ij =





{c ∈ C : f(xi, c) 6= f(xj , c)}, f(xi, d) 6= f(xj , d) and xi, xj ∈ U1

{c ∈ C : f(xi, c) 6= f(xj , c)}, xi ∈ U1, xj ∈ U2

∅, otherwise

,

U1 is the consistent part of the decision table S and U2 is the inconsistent part of
the decision table S.

According to Definition 2.3, two important results are obtained as follows: (1)
If the two values of the objects in a decision table’s consistent part is different,
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then the condition attributes on which their values are not equal should appear in
the corresponding entry in Yang’s discernibility matrix. This result indicates that
the two objects in the consistent part can be distinguished by the reducts derived
from Yang’s discernibility matrix. (2) If one of the two objects is in the consistent
part of a decision table and the other is in its inconsistent part, then the condition
attributes on which their values are different is also in the corresponding entry of
Yang’s discernibility matrix. The fact implies that we can distinguish one object
in a decision table’s consistent part and the other object in inconsistent part by
means of the reducts derived from the discernibility matrix.

Furthermore, based on the definition of Yang’s discernibility matrix, the corre-
sponding discernibility function is defined as:

f(MY ang) =
∧ {∨

(mY ang
ij ) | ∀x, y ∈ U,mY ang

ij 6= ∅
}

.

By means of the similar idea in (Skowron and Rauszer, 1992), the set of all prime
implicants of f(MY ang) determines the set of all of the positive region reducts
defined as follows.

Definition 7. (Hu and Cercone, 1995) Let S = (U,C ∪ D) be a decision table
and B ⊆ C. B is a positive region reduct of D with respect to C if B satisfies the
following conditions:

(1) POSC(D) = POSB(D); and

(2) for ∀b ∈ B, POSB(D) 6= POSB−{b}(D).

where POSC(D) =
⋃n

i=1 CYi and Yi ∈ U/D.

To illustrate how to obtain the reducts by means of the Yang’s discernibility
matrix, we present the following example.

Example 1 Table 1 is a decision table about diagnosing rheum, in which
U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} is the universe, C = {c1(Headache),
c2(Muscle pain), c3(Animal heat), c4(Cough)} is the condition attribute set, and
D = {d(Rheum)} is the decision attribute set.

The discernibility matrix of Table 1 is given as follows:

MY ang =




∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {c1, c4}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {c1, c2, c4}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {c1, c2, c3}
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {c1, c2}

{c1, c4} {c1, c2, c4} ∅ ∅ ∅ ∅ {c1, c2, c3} ∅ {c1, c2} ∅




,

Furthermore, the corresponding discernibility function is

f(MY ang) = {c1 ∨ c4} ∧ {c1 ∨ c2 ∨ c4} ∧ {c1 ∨ c2 ∨ c3} ∧ {c1 ∨ c2}
= {c1 ∨ c4} ∧ {c1 ∨ c2}
= {c1} ∨ {c2 ∧ c4}.

Therefore, we obtain that {c1} and {c2, c4} are all the positive region reducts of
Table 1.
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3. Decision-relative discernibility matrixes in the sense of entropies

In this section, we will introduce two types of new discernibility matrixes in the
sense of entropies. They are the discernibility matrix in the sense of Shannon’s
entropy and complement entropy respectively.

To present the discernibility matrix in the sense of Shannon’s entropy, we review
the definition of Shannon’s entropy.

Given a decision table S = (U,C ∪D), C is the condition attribute set, D is the
decision attribute set. Then, Shannon’s condition entropy of D with respect to C
is defined as

H(D|C) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi ∩ Yj |
|Xi| log2

|Xi ∩ Yj |
|Xi| ,

where Xi ∈ U/C and Yj ∈ U/D.

Theorem 1. (Gallager, 1968; Ślȩzak, 2000, 2002) Let S = (U,C ∪ D) and
S′ = (U,B ∪ D) be two decision tables, B ⊂ C, U/C = {X1, X2, · · · , Xm},
U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · , Xv−1, Xv+1, · · · , Xm, Xu ∪Xv} and U/D =
{Y1, Y2, · · · , Yn}, then

H(D|B) ≥ H(D|C),

especially, H(D|B) = H(D|C), if and only if µ(Zuj) = µ(Zvj) for j ≤ n, where
µ(Zuj) = |Xu∩Yj |

|Xu| and µ(Zvj) = |Xv∩Yj |
|Xv| .

From Theorem 1, it is easy to know that Shannon’s conditional entropy is un-
changed by combining two condition classes, if the certain degrees of the rules
derived from them are equal. Otherwise, the combination of two condition classes
will cause the change of Shannon’s condition entropy.

Definition 8. Let S = (U,C ∪ D) be a decision table, C condition attribute set,
D decision attribute set, B ⊆ C. If B satisfies the following conditions:

(1) H(D|C) = H(D|B) and

(2) for ∀b ∈ B, H(D|B) 6= H(D|B − {b}),

then B is a relative reduct of C in the sense of Shannon’s entropy.

Remark: By Theorem 1 and Definition 8, we obtain that the entries in the dis-
cernibility matrix in the sense of Shannon’s entropy should satisfy the following
conditions: (1) If the decision values of two objects in the consistent part of a
decision table are different, then the condition attributes on which the values of
the two objects are unequal is in the corresponding entries of a decision table’s
discernibility matrix. (2) If one object is in the consistent part of a decision table
and the other is in its inconsistent part, the condition attributes on which the
values of the two objects are different is in the corresponding entries of a decision
table’s discernibility matrix. (3) If both of two objects are in the inconsistent part
of a decision table and the certain degrees of the rules derived from the two ob-
jects are equal, then the condition attributes on which the values is not equal is
in the corresponding entries. The first two conditions are the same as the ones of
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Yang’s discernibility matrix, and the last condition is a special one required by the
property of Shannon’s condition entropy.

From these above analyses, we introduce the discernibility matrix in the sense of
Shannon’s entropy is given as follows.

Definition 9. Let S = (U,C∪D) be a decision table, C the condition attribute set,
D the decision attribute set and D = {d}. The discernibility matrix in the sense of
Shannon’s entropy is defined as MS = {mS

ij}, where

mS
ij =





{c ∈ C : f(xi, c) 6= f(xj , c)}, f(xi, d) 6= f(xj , d) and xi, xj ∈ U1

{c ∈ C : f(xi, c) 6= f(xj , c)}, xi ∈ U1, xj ∈ U2

{c ∈ C : f(xi, c) 6= f(xj , c)}, µik 6= µjk for ∀Yk ∈ U/{d}, and xi, xj ∈ U2

∅, otherwise

where µik = |[xi]C∩Yk|
|[xi]C | , µjk = |[xj ]C∩Yk|

|[xj ]C | , [xi]C ∈ U/C and [xj ]C ∈ U/C.

By means of the definition of the discernibility matrix based on Shannon’s en-
tropy, the corresponding discernibility function will be defined as follows.

Definition 10. The discernibility function based on is defined as

f(MS) =
∧ {∨

(mS
ij) | ∀x, y ∈ U,mS

ij 6= ∅
}

.

By means of the similar idea in (Skowron and Rauszer, 1992), for a decision
table, the set of all prime implicants of f(MS) determines the set of all positive
region reducts.

To illustrate how to obtain the reducts derived from the discernibility matrix in
the sense of Shannon’s entropy is given as the following example.

Example 2 The discernibility matrix of Table 1 in the sense of Shannon’s entropy
is

MS =




∅ ∅ ∅ ∅ {c2, c3, c4} {c2, c3, c4} {c2, c3, c4} ∅ ∅ {c1, c4}
∅ ∅ ∅ ∅ {c3, c4} {c3, c4} {c3, c4} ∅ ∅ {c1, c2, c4}
∅ ∅ ∅ ∅ {c2, c3, c4} {c2, c3, c4} {c2, c3, c4} ∅ ∅ ∅
∅ ∅ ∅ ∅ {c3, c4} {c3, c4} {c3, c4} ∅ ∅ ∅

{c2, c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3 {c2, c3} ∅
{c2, c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3 {c2, c3} ∅
{c2, c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3 {c2, c3} {c1, c2, c3}

∅ ∅ ∅ ∅ {c2, c3} {c2, c3} {c2, c3} ∅ ∅ ∅
∅ ∅ ∅ ∅ {c2, c3} {c2, c3} {c2, c3} ∅ ∅ {c1, c2}

{c1, c4} {c1, c2, c4} ∅ ∅ ∅ ∅ {c1, c2, c3} ∅ {c1, c2} ∅




.

The discernibility function in the sense of Shannon’s entropy is

f(MS) = {c2 ∨ c3 ∨ c4} ∧ {c3 ∨ c4} ∧ {c1 ∨ c4} ∧ {c1 ∨ c2 ∨ c3}
∧{c1 ∨ c2 ∨ c4} ∧ {c1 ∨ c2} ∧ {c2 ∨ c3}

= {c3 ∨ c4} ∧ {c1 ∨ c4} ∧ {c1 ∨ c2} ∧ {c2 ∨ c3}
= {c1 ∧ c3} ∨ {c2 ∧ c4}.

Therefore, we have that {c1, c3} and {c2, c4} are all of the Shanon’s entropy reducts
of Table 1.
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Furthermore, we introduce the following theorem to analyze the relationship
between mS

ij and mµ
ij .

Theorem 2. Let S = (U,C ∪D) be a decision table, C the condition attribute set,
D = {d} the decision attribute set. If MS = {mS

ij} is the discernibility matrix in
the sense of Shannon’s entropy and Mµ = {mµ

ij} is the the discernibility matrix in
the sense of the rough membership function, then mS

ij = mµ
ij.

Proof. For proving the theorem, there are four cases should be investigated as
follows.

(1) xi, xj ∈ U1

In this case, xi and xj are in the consistent part of the decision table S. Therefore,
for ∀Yk ∈ Ud, we have that µik = 0 or 1 and µjk = 0 or 1.

If µik 6= µjk, then µik = 0 and µjk = 1, or µik = 1 and µjk = 0. Furthermore,
µik = 1 and µik = 0 ⇒ |[xi]C∩Yk|

|[xi]C | = 1 and |[xi]C∩Yk|
|[xi]C | = 0 ⇒ [xi]C = Yk and

[xj ]C ∩ Yk = ∅ ⇒ f(xi, d) 6= f(xj , d). Similarly, µik = 0 and µjk = 1 ⇒ f(xi, d) 6=
f(xj , d). Therefore, we have µik 6= µjk ⇒ f(xi, d) 6= f(xj , d).

If f(xi, d) 6= f(xj , d), then [xi]C = Yk and [xj ]C ∩ Yk = ∅, or [xi]C ∩ Yk = ∅
and [xj ]C = Yk. Furthermore, [xi]C = Yk and [xj ]C ∩ Yk = ∅ ⇒ |[xi]C∩Yk|

|[xi]C | = 1 and
|[xi]C∩Yk|
|[xi]C | = 0 ⇒ µik = 1 and µik = 0. Similarly, f(xi, d) 6= f(xj , d) ⇒µik = 0 and

µjk = 1. Therefore, we have f(xi, d) 6= f(xj , d) ⇒ µik 6= µjk.
From the above analysis, we can conclude that mS

ij is equal to mµ
ij in this case.

(2) xi ∈ U1, xj ∈ U2

In this case, xi is in the consistent part of the decision table S and xj is in its
inconsistent. Therefore, we have that µik = 0 or 1 and 0 < µjk < 1 for ∀Yk ∈ Ud.
It is obvious that µik is unequal with µjk.

(3) xi, xj ∈ U2 and µik 6= µjk for ∀Yk ∈ U/{d}
In this case, xi and xj are in the inconsistent part of the decision table S. It is

obvious that µik is unequal with µjk.

(4) xi, xj ∈ U2 and µik = µjk for ∀Yk ∈ U/{d}
In this case, xi and xj are in the inconsistent part of the decision table S. It is

obvious that µik is equal with µjk.

In (1), (2) and (3), µik is unequal with µjk, and mS
ij = mµ

ij = {a ∈ C : f(xi, a) 6=
f(xj , a)}, µik 6= µjk for ∀Yk ∈ U/{d}. In (4), µik is equal with µjk, and mS

ij =
mµ

ij = ∅. Therefore, we have that mS
ij is equal with mµ

ij in all of the cases.

Theorem 3.5 states that the decision-relative discernibility matrix Mµ is in fact
the same as the decision-relative discernibility matrix in the sense of Shannon’s
entropy.

In the following, we present a theorem to analyze the relationship between mY ang
ij

and mS
ij .

Theorem 3. Let S = (U,C ∪ D) be a decision table, C the condition attribute
set, D = {d} the decision attribute set. If mY ang

ij and mS
ij the entries in Yang’s

8
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discernibility matrix and the discernibility matrix in the sense of Shannon’s entropy
respectively, then

mY ang
ij ⊆ mS

ij ,

especially, if mY ang
ij 6= ∅ and mS

ij 6= ∅ (or mY ang
ij = ∅ and mS

ij = ∅),

mY ang
ij = mS

ij .

Proof. For proving the theorem, there are four cases should be analyzed as follows.

(1) xi, xj ∈ U1

In this case, mY ang
ij = {c ∈ C : f(xi, c) 6= f(xj , c) and f(xi, D) 6= f(xj , D)} =

mS
ij , and mY ang

ij and mS
ij can be empty set.

(2) xi ∈ U1 and xj ∈ U2

In this case, mY ang
ij = {c ∈ C : f(xi, c) 6= f(xj , c)} = mS

ij , and mY ang
ij and mS

ij
can also be empty set.

(3) xi, xj ∈ U2 and µik 6= µjk for ∀Yk ∈ U/D

In this case, mY ang
ij = ∅, mS

ij = {c ∈ C : f(xi, c) 6= f(xj , c)}, then mS
ij ⊇ mY ang

ij .
Especially, mS

ij can also be empty set,

(4) xi, xj ∈ U2 and µik = µjk for ∀Yk ∈ U/D

In this case, mY ang
ij = ∅, mS

ij = ∅. Therefore mS
ij = mY ang

ij .

Theorem 3.6 states that the decision-relative discernibility matrix MS con-
tain more discernible information than the decision-relative discernibility matrix
MY ang. By the relation between MS and MY ang, we can deduce the following
corollary.

Corollary 1. Let S = (U,C∪D) be a decision table, C the condition attribute set,
D the decision attribute set. If CoreP

D(C) and CoreS
D(C) are the core in the sense

of positive region and the core in the sense of Shannon’s entropy respectively, then

CoreP
D(C) ⊆ CoreS

D(C).

It is easy to prove the corollary by means of Theorem 3, so we omit it. The same
result of Corollary 1 has been in (?), which is proved from different perspectives.

Furthermore, we analyze the relationship between positive region reducts and
Shannon’s entropy reducts.

By Theorem3, without any loss of generality, we suppose that mS
pq = {cw} ⊃

mY ang
pq = ∅, and mS

ij = mY ang
ij for ∀ i 6= p, j 6= q. The set of all posi-

tive region reducts is REDP
D(C) = {redP

D(C)1, redP
D(C)2, · · · , redP

D(C)|REDP
D(C)|},

c1 /∈ redP
D(C)i, 1 ≤ i ≤ |REDP

D(C)|. Thus, we have that

9
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f(MS) =
∨

k≤|REDP
D(C)|

(∧ci∈mS
pq

ci) ∧ (∧cj∈redP
D(C)k

cj)

=
∨

k≤|REDP
D(C)|

(cw ∧ (∧cj∈redP
D(C)k

cj)).

By the expression of f(MS), there exists redS
D(C)u ∈ REDS

D(C) such that

cw ∧ (∧cj∈redP
D(C)v

cj) ⊇ redS
D(C)u.

There are three cases should be analyzed as follows:

(1) cw ∧ (∧ci∈redP
D(C)v

ci) ⊃ redS
D(C)u, cw /∈ redP

D(C)v and cw ∈ redS
D(C)u

In this case, there exists at least one attribute b ∈ redP
D(C)v and b /∈ redS

D(C)u.
Therefore redP

D(C)v 6= redS
D(C)u, and redP

D(C)v ∩ redS
D(C)u ⊂ redP

D(C)v

(2) cw ∧ (∧ci∈redP
D(C)v

ci) = redS
D(C)u, cw /∈ redP

D(C)v and cw ∈ redS
D(C)u

In this case, redP
D(C)v ⊂ redS

D(C)u.
(3) cw ∧ (∧ci∈redP

D(C)v
ci) = redS

D(C)u, cw ∈ redP
D(C)v and cw ∈ redS

D(C)u

In this case, redP
D(C)v = redS

D(C)u.

Based on the above analysis, we can divide all positive region reducts into three
types as follows.

(1) A positive region reduct is not the subset of each of shannon’s entropy reducts.
For convenience, the set of this type of reducts is denoted as REDP1

D (C)v.
(2) A positive region reduct is the proper subset of one of shannon’s entropy

reducts. For convenience, the set of this type of reducts is denoted as REDP2
D (C).

(3) A positive region reduct is the same as one of shannon’s entropy reducts. For
convenience, the set of this type of reducts is denoted as REDP3

D (C).
For these three types of positive region reducts, REDP

D(C) = REDP1
D (C) ∪

REDP2
D (C) ∪ REDP3

D (C). REDP1
D (C), REDP2

D (C) and REDP3
D (C) could be ∅

respectively. But they can not be empty sets at the same time. This classification
of positive region reducts is help to discover the relationship between positive region
reducts and Shannon’s entorpy reducts.

In the following, we introduce the decision-relative discernibility matrix in the
sense of complement entropy. So the complement condition entropy is first reviewed.

For a decision table S = (U,C ∪D), complement entropy of D with respect to
C is denoted as (Liang et al., 2009, 2006)

E(D|C) =
m∑

i=1

n∑

j=1

|Xi ∩ Yj |
|Xi|

|Y c
j −Xc

i |
|Xi| ,

where Y c
j and Xc

i are the complements of Yj and Xi, respectively.

Furthermore, we review the change mechanism of complement entropy with the
partition of universe.

Theorem 4. (Wei et al., 2010) Let S = (U,C ∪D) and S′ = (U,B ∪D) be two
decision tables, U/C = {X1, X2, · · · , Xm}, U/B = {X1, X2, · · · , Xu−1, Xu+1, · · · ,

10
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Xv−1, Xv+1, · · · , Xm, Xu ∪Xv} and U/D = {Y1, Y2, · · · , Yn}, then

E(D|B) ≥ E(D|C),

especially, if ∃ w ≤ n such that µ(Zuw) = µ(Zvw) = 1 and for ∀j ≤ n and j 6= w
such that µ(Zuj) = µ(Zvj) = 0 , then

E(D|B) = E(D|C).

From Theorem 4, we can see that complement condition entropy is unchanged
while two condition classes in which the decision values of objects are same combine
and they are in the consistent part of a decision table. Otherwise, the combination
of two different equivalence classes make the complement condition entropy to
become larger.

For convenience of our further discussion, we give the definition of complement
condition entropy as follows.

Definition 11. Let S = (U,C ∪ D) be a decision table, B ⊆ C. We call B a
complement entropy reduct of D with respect to C if B satisfies the following con-
ditions:

(1) E(D|C) = E(D|B); and

(2) for ∀a ∈ B, E(D|B) 6= E(D|B − {a}).

Remark: By means of Definition 11 and Theorem 4, the entries in the discernibility
matrix in the sense of complement entropy should satisfy the following conditions:
(1) If the values of two objects in a decision table’s consistent part of is different,
then the condition attributes on which the values of these two objects are unequal
should be in the corresponding entries in the discernibility matrix in the sense of
complement entropy. (2) If one object in a table’s consistent part and the other is
in its inconsistent part, the condition attributes on which the values of these two
objects are different should be in the corresponding entries in the discernibility
matrix in the sense of complement entropy. (3) If both of two objects are in a
decision table’s inconsistent part, the condition attributes on which the values of the
two objects are different should be in the corresponding entries in the discernibility.
In these three conditions, the first two are the same as the conditions of Yang’s
discernibility matrix and discernibility matrix based on Shannon’s entropy, and the
last condition is a special one.

Based on the above analyses, we give the discernibility matrix in the sense of
complement entropy as follows.

Definition 12. Let S = (U,C ∪D) be a decision table, C the condition attribute
set, D the decision attribute set, D = {d}. Then, the discernibility matrix in the
sense of complement entropy is defined as MC = {mC

ij}, where

mC
ij =





{c ∈ C : f(xi, c) 6= f(xj , c)}, f(xi, d) 6= f(xj , d) and xi, xj ∈ U1

{c ∈ C : f(xi, c) 6= f(xj , c)}, xi ∈ U1, xj ∈ U2

{c ∈ C : f(xi, c) 6= f(xj , c)}, xi, xj ∈ U2

∅, otherwise

(1)

11
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Furthermore, the corresponding discernibility function based on complement en-
tropy is defined as

f(MC) =
∧ {∨

(mC
ij) | ∀x, y ∈ U,mC

ij 6= ∅
}

. (2)

By means of the similar idea in (Skowron and Rauszer, 1992), for a decision
table, the set of all prime implicants of f(MC) determines the set of all comple-
ment entropy reducts. To illustrate how to obtain the reducts by means of the
discernibility matrix in the sense of complement entropy, we present the following
example.

Example 3 For Table 1, the discernibility matrix in the sense of complement
entropy is

MC =




∅ {c2} ∅ {c2} {c2, c3, c4} {c2, c3, c4} {c2, c3, c4} {c2, c4} {c2, c4} {c1, c4}
{c2} ∅ {c2} ∅ {c3, c4} {c3, c4} {c3, c4} {c2, c4} {c2, c4} {c1, c2, c4}
∅ {c2} ∅ {c2} {c2, c3, c4} {c2, c3, c4} {c2, c3, c4} {c2, c4} {c2, c4} ∅

{c2} ∅ {c2} ∅ {c3, c4} {c3, c4} {c3, c4} {c2, c4} {c2, c4} ∅
c2, {c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3} {c2, c3} ∅
c2, {c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3} {c2, c3} ∅
c2, {c3, c4} {c3, c4} {c2, c3, c4} {c3, c4} ∅ ∅ ∅ {c2, c3} {c2, c3} {c1, c2, c3}
{c2, c4} {c2, c4} {c2, c4} {c2, c4} {c2, c3} {c2, c3} {c2, c3} ∅ ∅ ∅
{c2, c4} {c2, c4} {c2, c4} {c2, c4} {c2, c3} {c2, c3} {c2, c3} ∅ ∅ {c1, c2}
{c1, c4} {c1, c2, c4} ∅ ∅ ∅ ∅ {c1, c2, c3} ∅ {c1, c2} ∅




,

The discernibility function derived from the above discernibility matrix is

f(MC) = {c2} ∧ {c2 ∨ c3 ∨ c4} ∧ {c3 ∨ c4} ∧ {c1 ∨ c4} ∧ {c1 ∨ c2 ∨ c3}
∧{c1 ∨ c2 ∨ c4} ∧ {c1 ∨ c2} ∧ {c2 ∨ c3}

= {c2} ∧ {c3 ∨ c4} ∧ {c1 ∨ c4}
= {c1 ∧ c2 ∧ c3} ∨ {c2 ∧ c4}

Therefore, we have that {c1, c2, c3} and {c2, c4} are all the Shannon’s entropy
reducts of Table 1.

Theorem 5. Let S = (U,C ∪D) be a decision table, mS
ij and mC

ij are the entries
in the discernibility matrices in the sense of Shannon’s entropy and complement
entropy respectively, then

mS
ij ⊆ mC

ij

especially, if mS
ij 6= ∅ and mC

ij 6= ∅ (or mS
ij = ∅ and mC

ij = ∅),

mS
ij = mC

ij .

In similar way with the proof of Theorem 3, the theorem can be easily proved.

Corollary 2. Let S = (U,C ∪D) be a decision table. If CoreS
D(C) and CoreC

D(C)
are the cores in the sense of Shannon’s entropy and in the sense of complement
entropy respectively, then

CoreS
D(C) ⊆ CoreC

D(C)

It is easily to prove the above corollary by Theorem 5, so we omit it.
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From Corollary

CoreP
D(C) ⊆ CoreS

D(C) ⊆ CoreC
D(C)

By the results of Theorem5, based on the similar analysis with the classification
of positive region reducts, we can divide all Shannon’s entropy reducts into three
types as follows.

(1) The shannon’s entropy reduct that is not the subset of each of complement
entropy reducts. For convenience, the set of this type of reducts is denoted as
REDS1

D (C).
(2) The shannon’s entropy reduct that is the proper subset of one of complement

entropy reducts. For convenience, the set of this type of reducts is denoted as
REDS2

D (C).
(3) The shannon’s entropy reduct that is the same as one of complement entropy

reducts. For convenience, the set of this type of reducts is denoted as REDS3
D (C).

For these three types of Shannon’s entropy reducts, REDS
D(C) = REDS1

D (C) ∪
REDS2

D (C) ∪ REDS3
D (C). REDS1

D (C), REDS2
D (C) and REDS3

D (C) could be ∅
respectively. But they can not be empty sets at the same time. This classification of
Shannon’s entropy is help to discover the inherent relationship between Shannon’s
entorpy reducts and complement entorpy reducts.

4. Experiment analysis

There are two representative strategies which can obtain all reducts of a decision ta-
ble. They are the strategy traversing all powerset of condition attribute set (is short
for traversing strategy) and the strategy based on discernibility matrix (is short for
discernibility matrix strategy), respectively. It is easy to know the former is more
time consuming than the later, and the same reducts can be obtained (Skowron
and Rauszer, 1992). For convenience of development of this paper, the algorithms
computing positive region reducts, Shannon’s entropy reducts and complement en-
tropy reducts based on traversing strategy are denoted as Algorithm P1, Algorithm
S1, Algorithm L1, respectively. And the algorithms obtaining these reducts based
on discernibility matrix are denoted as Algorithm P2, Algorithm S2, Algorithm
L2, respectively. Since these algorithms are common, we omit their description.

In the sequence, in order to compare the reducts obtained by algorithms P1, S1
and C1 with P2, S2 and C2, we employ the UCI dataset Spect, and construct ten
datasets by randomly selecting 200 objects from this dataset, which are denoted as
Dataset 1, Dataset 2, ..., and Dataset 10. These algorithms are run on a personal
computer with Windows XP and Intel(R) Core(TM)2 Quad CPU Q9400, 2.66GHz
and 3.37GB memory. The software being used is Matlab 7.0.

From the experimental results, we can see that the reducts obtained by using
the algorithms based on traversing strategy are the same as based on discernibility
matrix strategy. For the length limitation of this paper, we do not list all reducts
of 10 datasets obtained by these algorithms (P1, S1, C1, P2, S2 and C2), and only
give the numbers of these reducts in Table 2. From Table 2, we can find that the
numbers of positive region reducts are usually larger than the ones of Shannon’s
entropy reducts, and the numbers of Shannon’s entropy reducts are usually larger
than the ones of complement entropy reducts. However, the principle do not always

13
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holds, for example Dataset 10.

To verify the relationships among these types of reducts, we list all
of reducts of Dataset 2 in Tables 3-5 for the representative of ten
experimental datasets. From Table 3, we can see that REDP1

D (C) =
{p1, p4, p5, p6, p7, p9, p11, p21}, REDP2

D (C) = {p2, p3, p8, p10, p12, p13, p14, p15,
p16, p17, p18, p19, p20, p22, p23, p24, p25}, REDP3

D (C) = {p26, p27, p28, p29, p30, p31, p32,
p33}. From the results of Table 4, we can see that REDS1

D (C) = ∅,
REDS2

D (C) = {s1, s4, s7, s8, s9, s10, s11, s12}, REDS3
D (C) = {s2, s3, s5, s6,

s13, s14, s15, s16, s17, s18, s19, s20, s21, s22, s23, s24}. In Table 5, all of complement en-
tropy reducts are given.

5. Conclusions

In this paper, we introduce the discernibility matrixes in the sense of Shannon’s
entropy and complement entropy. By means of the discernibility functions derived
from them, we can obain all shannon’s entropy reducts and complement entropy
reducts. Furthermore, through analyzing the reducts in the sense of different dis-
cernibility power, we revealed the relations among different reducts. Finally, the
numerical experiments show the effective of these two proposed matrixes in the
sense of entropies, and verify the relationships among these different reducts. These
results are helpful to guide the selection of reducts for some practical applications,
and the granularity selection in multi-granular rough sets.
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Table 1. A decision table about diagnosing rheum
Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes Yes Normal No No

e2 Yes Yes High No No

e3 Yes Yes Normal No Yes
e4 Yes Yes high No Yes

e5 Yes No High Yes Yes

e6 Yes No High Yes Yes
e7 Yes No High Yes No

e8 Yes Yes Very high Yes Yes

e9 Yes Yes Very high Yes No
e10 No Yes Normal Yes Yes

Table 2. The comparison of the numbers of reducts through different algorithms on 10 datasets
Datasets Algorithm P1 Algorithm P2 Algorithm S1 Algorithm S2 Algorithm C1 Algorithm C2

1 2 2 2 2 2 2
2 33 33 24 24 24 24

3 16 16 12 12 12 12
4 6 6 4 4 4 4
5 4 4 4 4 4 4

6 12 12 12 12 12 12

7 12 12 12 12 8 8
8 6 6 6 6 6 6

9 4 4 4 4 4 4
10 22 22 14 14 16 16

Table 3. Comparison of the reducts obtained by using Algorithm P2 and Algorithm S2 on Dataset 2
No. Positive region reducts Relationship
p1 1,2,3,4,5,6,8,10,14,16,19,21,22 p1 ∪ {13, 20} ⊃ s1

p2 1,2,3,4,6,8,10,12,14,16,19,21,22 p2 ∪ {13} = s2

p3 1,2,3,4,8,10,11,14,16,19,21,22 p3 ∪ {13, 20} = s8

p4 1,2,3,4,6,7,8,10,14,16,19,21,22 p4 ∪ {13, 20} ⊃ s14

p5 1,3,4,6,7,8,9,10,14,16,19,21,22 p5 ∪ {13, 20} ⊃ s14

p6 1,3,4,6,7,8,10,13,14,16,19,21,22 p6 ∪ {20} ⊃ s14

p7 1,3,4,6,7,8,10,14,16,17,19,21,22 p7 ∪ {13, 20} ⊃ s14

p8 1,3,4,6,7,8,10,14,16,19,20,21,22 p8 ∪ {13} = s14

p9 1,3,4,7,8,9,10,11,14,16,19,21,22 p9 ∪ {13, 20} ⊃ s20

p10 1,3,4,7,8,10,11,13,14,16,19,21,22 p10 ∪ {20} = s20

p11 1,3,4,7,8,10,11,14,16,17,19,21,22 p11 ∪ {13, 20} ⊃ s20

p12 1,3,4,7,8,10,11,14,16,19,20,21,22 p12 ∪ {13} = s20

p13 1,2,3,4,5,6,8,14,16,19,20,21,22 p13 ∪ {13} = s1

p14 1,2,3,4,6,8,12,14,16,17,19,20,21,22 p14 ∪ {13} = s3

p15 1,2,3,4,5,8,11,14,16,19,20,21,22 p15 ∪ {13} = s7

p16 1,2,3,4,8,11,14,16,17,19,20,21,22 p16 ∪ {13} = s9

p17 1,3,4,5,6,7,8,14,16,19,20,21,22 p17 ∪ {13} = s13

p18 1,3,4,6,7,8,14,16,17,19,20,21,22 p18 ∪ {13} = s15

p19 1,3,4,5,7,8,11,14,16,19,20,21,22 p19 ∪ {13} = s19

p20 1,3,4,7,8,11,14,16,17,19,20,21,22 p20 ∪ {13} = s21

p21 1,2,3,5,6,8,9,10,13,14,16,19,21,22 p21 ∪ {20} ⊃ s4

p22 1,2,3,6,8,9,10,12,13,14,16,19,21,22 p22 ∪ {20} = s5

p23 1,2,3,8,9,10,11,13,14,16,19,21,22 p23 ∪ {20} = s11

p24 1,3,6,7,8,9,10,13,14,16,19,21,22 p24 ∪ {20} = s17

p25 1,3,7,8,9,10,11,13,14,16,19,21,22 p25 ∪ {20} = s23

p26 1,2,3,5,6,8,9,13,14,16,19,20,21,22 p26 = s4

p27 1,2,3,6,8,9,12,13,14,16,17,19,20,21,22 p27 = s6

p28 1,2,3,5,8,9,11,13,14,16,19,20,21,22 p28 = s10

p29 1,2,3,8,9,11,13,14,16,17,19,20,21,22 p29 = s12

p30 1,3,5,6,7,8,9,13,14,16,19,20,21,22 p30 = s16

p31 1,3,6,7,8,9,13,14,16,17,19,20,21,22 p31 = s18

p32 1,3,5,7,8,9,11,13,14,16,19,20,21,22 p32 = s22

p33 1,3,7,8,9,11,13,14,16,17,19,20,21,22 p33 = s24
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Table 4. Comparison of the reducts obtained by using Algorithm S2 and Algorithm C2 on Dataset 2
No. Shannon’s entropy reducts Relationship
s1 1,2,3,4,5,6,8,13,14,16,19,20,21,22 s1 ∪ {12} = c13
s2 1,2,3,4,6,8,10,12,13,14,16,19,20,21,22 s2 = c14
s3 1,2,3,4,6,8,12,13,14,16,17,19,20,21,22 s3 = c15
s4 1,2,3,5,6,8,9,13,14,16,19,20,21,22 s4 ∪ {12} = c16
s5 1,2,3,6,8,9,10,12,13,14,16,19,20,21,22 s5 = c17
s6 1,2,3,6,8,9,12,13,14,16,17,19,20,21,22 s6 = c18
s7 1,2,3,4,5,8,11,13,14,16,19,20,21,22 s7 ∪ {12} = c18
s8 1,2,3,4,8,10,11,13,14,16,19,20,21,22 s8 ∪ {12} = c20
s9 1,2,3,4,8,11,13,14,16,17,19,20,21,22 s9 ∪ {12} = c21
s10 1,2,3,5,8,9,11,13,14,16,19,20,21,22 s10 ∪ {12} = c22
s11 1,2,3,8,9,10,11,13,14,16,19,20,21,22 s11 ∪ {12} = c23
s12 1,2,3,8,9,11,13,14,16,17,19,20,21,22 s12 ∪ {12} = c24
s13 1,3,4,5,6,7,8,13,14,16,19,20,21,22 s13 = c1
s14 1,3,4,6,7,8,10,13,14,16,19,20,21,22 s14 = c2
s15 1,3,4,6,7,8,13,14,16,17,19,20,21,22 s15 = c3
s16 1,3,5,6,7,8,9,13,14,16,19,20,21,22 s16 = c4
s17 1,3,6,7,8,9,10,13,14,16,19,20,21,22 s17 = c5
s18 1,3,6,7,8,9,13,14,16,17,19,20,21,22 s18 = c6
s19 1,3,4,5,7,8,11,13,14,16,19,20,21,22 s19 = c7
s20 1,3,4,7,8,10,11,13,14,16,19,20,21,22 s20 = c8
s21 1,3,4,7,8,11,13,14,16,17,19,20,21,22 s21 = c9
s22 1,3,5,7,8,9,11,13,14,16,19,20,21,22 s22 = c10
s23 1,3,7,8,9,10,11,13,14,16,19,20,21,22 s23 = c11
s24 1,3,7,8,9,11,13,14,16,17,19,20,21,22 s24 = c12

Table 5. the reducts obtained by using Algorithm C2 on Dataset 2
No. complement entropy reducts
c1 1,3,4,5,6,7,8,13,14,16,19,20,21,22
c2 1,3,4,6,7,8,10,13,14,16,19,20,21,22

c3 1,3,4,6,7,8,13,14,16,17,19,20,21,22

c4 1,3,5,6,7,8,9,13,14,16,19,20,21,22
c5 1,3,6,7,8,9,10,13,14,16,19,20,21,22

c6 1,3,6,7,8,9,13,14,16,17,19,20,21,22

c7 1,3,4,5,7,8,11,13,14,16,19,20,21,22
c8 1,3,4,7,8,10,11,13,14,16,19,20,21,22

c9 1,3,4,7,8,11,13,14,16,17,19,20,21,22

c10 1,3,5,7,8,9,11,13,14,16,19,20,21,22
c11 1,3,7,8,9,10,11,13,14,16,19,20,21,22

c12 1,3,7,8,9,11,13,14,16,17,19,20,21,22

c13 1,2,3,4,5,6,8,12,13,14,16,19,20,21,22
c14 1,2,3,4,6,8,10,12,13,14,16,19,20,21,22

c15 1,2,3,4,6,8,12,13,14,16,17,19,20,21,22
c16 1,2,3,5,6,8,9,12,13,14,16,19,20,21,22

c17 1,2,3,6,8,9,10,12,13,14,16,19,20,21,22
c18 1,2,3,6,8,9,12,13,14,16,17,19,20,21,22
c19 1,2,3,4,5,8,11,12,13,14,16,19,20,21,22

c20 1,2,3,4,8,10,11,12,13,14,16,19,20,21,22

c21 1,2,3,4,8,11,12,13,14,16,17,19,20,21,22
c22 1,2,3,5,8,9,11,12,13,14,16,19,20,21,22

c23 1,2,3,8,9,10,11,12,13,14,16,19,20,21,22

c24 1,2,3,8,9,11,12,13,14,16,17,19,20,21,22
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