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Abstract

As two classical measures, approximation accuracy and consistency degree can be extended for evaluating the decision
performance of an incomplete decision table. However, when the values of these two measures are equal to zero, they can-
not give elaborate depictions of the certainty and consistency of an incomplete decision table. To overcome this shortcom-
ing, we first classify incomplete decision tables into three types according to their consistency and introduce four new
measures for evaluating the decision performance of a decision-rule set extracted from an incomplete decision table.
We then analyze how each of these four measures depends on the condition granulation and decision granulation of each
of the three types of incomplete decision tables. Experimental analyses on three practical data sets show that the four new
measures appear to be well suited for evaluating the decision performance of a decision-rule set extracted from an incom-
plete decision table and are much better than the two extended measures.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Incomplete decision tables; Decision rules; Information granulation; Decision evaluation
1. Introduction

Rough set theory proposed by Pawlak in [35] is a relatively new soft computing tool for the analysis of a
vague description of an object, and has become a popular mathematical framework for pattern recognition,
image processing, feature selection, neuro computing, conflict analysis, decision support, data mining and
knowledge discovery from large data sets [1,34,37–41]. The indiscernibility relation constitutes a mathematical
basis of rough set theory [42]. It induces a partition of the universe into blocks of indiscernible objects, called
elementary sets, which can be used to build knowledge about a real or abstract world [32,36,43,45,55].
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Rough set-based data analysis starts from a data table, which is also called an information system and con-
tains data about objects of interest that are characterized by a finite set of attributes. According to whether or
not there are missing data (null values), information systems can be classified into two categories: complete
and incomplete [2,3]. By an incomplete information system we mean a system with missing data (null values)
[11,12]. In this paper, we will only deal with the case of unknown values in which a null value may be some
value in the domain of the corresponding attribute [17,18,20,22,23,44]. For the case that a null value means an
inapplicable value, it can be handled by adding to the attribute domains a special symbol for the inapplicable
value. For an incomplete information system, if condition attributes and decision attributes are distinguished,
then it is called an incomplete decision table. In general, one can extract some decision rules from an incom-
plete decision table [13,15].

For further developments, as follows, we briefly review some methods for rule extracting from incomplete
decision tables. In the literature (e.g. CN2 [6], RIPPER [7], C4.5 [48]), many algorithms have been developed
for learning a set of classification rules from a number of observations with their corresponding class labels (a
decision table). Several solutions to the problem of generating a decision tree from a training set of examples
with unknown values have been proposed in the area of artificial intelligence (AI). The simplest among them is
to remove the examples with unknown values or replace the unknown values with the most common values.
More complex approaches were presented in [14,47]. The problem of decision-rules generation from incom-
plete information systems was also investigated in the context of Rough Set Theory [5,16,52]. Modelling by
means of fuzzy sets the uncertainty caused by the appearance of unknown values was discussed in [52].
Two methods of treating unknown values are available in the LERS system [5]. The methodology proposed
in [16] allows to generate generalized rules directly from the original incomplete decision table. In [18], another
method of computing all certain rules from an incomplete information decision table was presented, which
does not require changing the size of the original system. In recent years, the generation of all optimal certain
rules or a class of optimal certain rules from an incomplete decision table was also investigated in [21,24]. For
decision problems in rough set theory, by various kinds of reduct techniques, a set of decision rules can be
generated from a decision table for classification and prediction using information granules [14,49,56]. In
the past twenty years, many kinds of reduct techniques for information systems and decision tables have been
proposed in rough set theory [4,19,23,29–31,33,36,37,46,50,51,53–55,57]. b-reduct proposed by Ziarko pro-
vides a kind of attribute reduction methods in the variable precision rough set model [54]. a-reduct and a-rel-
ative reduct that allow the occurrence of additional inconsistency were proposed in [33] for information
systems and decision tables, respectively. An attribute reduction method that preserves the class membership
distribution of all objects in information systems was proposed by Slezak in [50,51]. Five kinds of attribute
reducts and their relationships in inconsistent systems were investigated by Kryszkiewicz [19], Li et al. [24]
and Mi et al. [31], respectively. By eliminating some rigorous conditions required by the distribution reduct,
a maximum distribution reduct was introduced by Mi et al. in [31]. Unlike the possible reduct [24], the max-
imum distribution reduct can derive decision rules that are compatible with the original system.

Generally speaking, a set of decision rules can be generated from a decision table by adopting any kind of
rule-extracting methods mentioned above. In recent years, how to evaluate the decision performance of a deci-
sion rule has become a very important issue in rough set theory. In [8], based on information entropy, Düntsch
and Gediga suggested some uncertainty measures of a decision rule and proposed three criteria for model
selection. In [10], Greco et al. applied some well-known confirmation measures within the rough set approach
to discover relationships in data in terms of decision rules. For a decision-rule set consisting of every decision-
rule induced from a decision table, three parameters are traditionally associated: the strength, the certainty
factor and the coverage factor of the rule [10]. In many practical decision problems, we always adopt several
rule-extracting methods for the same decision table. In this case, it is very important to check whether or not
each of the rule-extracting approaches adopted is suitable for the given decision table. In other words, it is
desirable to evaluate the decision performance of the decision-rule set extracted by each of the rule-extracting
approaches. This strategy can help a decision maker to determine which of rule-extracting methods is
preferred for a given decision table. However, all of the above measures for this purpose are only defined
for a single decision rule and are not suitable for evaluating the decision performance of a decision-rule
set. There are two more kinds of measures in the literature [36,39], which are approximation accuracy for deci-
sion classification and consistency degree for a decision table. Although these two measures, in some sense,



Y. Qian et al. / Data & Knowledge Engineering 65 (2008) 373–400 375
could be regarded as measures for evaluating the decision performance of all decision-rules generated from a
complete decision table, they have some limitations. For instance, the certainty and consistency of a rule set
could not be well characterized by the approximation accuracy and consistency degree when their values
reaches zero. As we know, when the approximation accuracy or consistency degree is equal to zero, it is only
implied that there is no decision rule with the certainty of one in the complete decision table. This shows that
the approximation accuracy and consistency degree of a complete decision table cannot give elaborate depic-
tions of the certainty and consistency for a rule set. To overcome the shortcomings of the existing measures,
three new evaluation measures were proposed for evaluating the decision performance of a set of decision-
rules extracted from a complete decision table, which are certainty measure (a), consistency measure (b)
and support measure (c) [44]. To date, however, how to assess the decision performance of a decision-rule
set extracted from an incomplete decision table has not been reported. Like the measures (a, b and c), the cer-
tainty, consistency and support of a decision-rule set extracted from an incomplete decision table should be
also studied to assess their decision performance. Moreover, the degree of the cover on the universe induced
by the missing values in the condition part is also an important factor that affects the decision performance of
a decision-rule set extracted from an incomplete decision table. In fact, the approximation accuracy and con-
sistency degree can be extended for evaluating the decision performance of an incomplete decision table. Nev-
ertheless, these two extensions have the same limitations, which still cannot give elaborate depictions of the
certainty and consistency of a decision-rule set extracted from an incomplete decision table. To overcome this
drawback, this paper introduces four new measures for evaluating the decision performance of a set of deci-
sion-rules extracted from an incomplete decision table, which are certainty measure (a), consistency measure
(b), support measure (c) and cover measure (#).

The rest of this paper is organized as follows. Some preliminary concepts such as incomplete information
systems, incomplete decision tables, the maximal consistent block technique and partial relation are briefly
recalled in Section 2. In Section 3, some new concepts and two lemmas for further developments are intro-
duced, which show how to classify incomplete decision tables into three types. In Section 4, through some
examples, the limitations of the two extended measures are revealed. In Section 5, four new measures (a, b,
c and #) are introduced for evaluating the decision performance of a set of rules extracted from an incomplete
decision table, it is analyzed how each of these four measures depends on the condition granulation and deci-
sion granulation of each of the three types of incomplete decision tables, and experimental analyses of each of
the measures (a, b and c) are performed on three practical data sets. Finally, Section 6 concludes this paper
with some remarks and discussion.
2. Preliminaries

In this section, we review some basic concepts such as incomplete information systems, incomplete decision
tables, maximal consistent block technique and partial relation.

An information system is a pair S ¼ ðU ;AÞ, where

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) for every a 2 A, there is a mapping a : U ! V a, where V a is called the value set of a.

Each subset of attributes P � A determines a binary indistinguishable relation INDðP Þ given by
INDðP Þ ¼ fðu; vÞ 2 U � U j 8a 2 P ; aðuÞ ¼ aðvÞg:
It can be shown that INDðP Þ is an equivalence relation on the set U. For P � A, the relation INDðPÞ consti-
tutes a partition of U, which is denoted by U=INDðP Þ, or just U=P .

It may happen that some of the attribute values for an object are missing. For example, in medical infor-
mation systems there may exist a group of patients for which it is impossible to perform all the required tests.
These missing values can be represented by the set of all possible values for the attribute. To indicate such a
situation, a distinguished value (the so-called null value) is usually assigned to those attributes.
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If V a contains a null value for at least one attribute a 2 A, then S is called an incomplete information sys-
tem; otherwise it is complete [17,18]. From now on, we will denote the null value by �. Let S ¼ ðU ;AÞ be an
information system and P � A an attribute set.

We define a binary relation on U by
Table
The in

Car

u1

u2

u3

u4

u5

u6
SIMðP Þ ¼ fðu; vÞ 2 U � U j 8a 2 P ; aðuÞ ¼ aðvÞ or aðuÞ ¼ � or aðvÞ ¼ �g:

In fact, SIMðP Þ is a tolerance relation on U. The concept of a tolerance relation has a wide variety of appli-
cations in classifications [19,23]. It can be easily shown that SIMðP Þ ¼

T
a2P SIMðfagÞ. Let SP ðuÞ denote the set

fv 2 U j ðu; vÞ 2 SIMðPÞg. Then, SP ðuÞ is the maximal set of objects which are possibly indistinguishable by P

with u. Let U=SIMðP Þ denote the family sets fSP ðuÞ j u 2 Ug, which are the classification or the knowledge
induced by P. A member SP ðuÞ from U=SIMðPÞ will be called a tolerance class or a granule of information.
It should be noticed that the tolerance classes in U=SIMðP Þ do not constitute a partition of U in general. They
constitute a cover of U, i.e., SP ðuÞ 6¼£ for every u 2 U , and

S
u2U SP ðuÞ ¼ U .

An incomplete information system S ¼ ðU ;C [ DÞ is called an incomplete decision table if condition attri-
butes and decision attributes are distinguished, where C is the condition attribute set and D is the decision
attribute set. This is illustrated in the following example:

Example 1. Consider the descriptions of several cars in Table 1 [18]. This is an incomplete decision table,
where U ¼ fu1; u2; u3; u4; u5; u6g, C ¼ fa1; a2; a3, a4g with a1 – price, a2 – mileage, a3 – size, a4 – max-speed,
and D ¼ fdg. By computing, it follows that
U=SIMðCÞ ¼ fSCðu1Þ; SCðu2Þ; SCðu3Þ; SCðu4Þ; SCðu5Þ; SCðu6Þg;

where SCðu1Þ ¼ fu1g, SCðu2Þ ¼ fu2; u6g, SCðu3Þ ¼ fu3g, SCðu4Þ ¼ fu4; u5g, SCðu5Þ ¼ fu4; u5; u6g and SCðu6Þ ¼
fu2; u5; u6g.

It is easy to observe from Table 1 that the value of the generalized decision od for an object in an incomplete
decision table is the superset of the object’s value (see od in Table 1).

Now we define a partial order on the set of all classifications of U. Let S ¼ ðU ;AÞ be an incomplete infor-
mation system, and P ;Q � A. We say that Q is coarser than P (or P is finer than Q), denoted by P � Q, if and
only if SP ðuiÞ � SQðuiÞ for 8i 2 f1; 2; . . . ; j U jg. If P � Q and P 6¼ Q, we say that Q is strictly coarser than P (or
P is strictly finer than Q) and denoted by P � Q. In fact, P � Q() for 8i 2 f1; 2; . . . ; j U jg, SP ðuiÞ � SQðuiÞ,
and 9j 2 f1; 2; . . . ; j U jg such that SP ðujÞ � SQðujÞ.

In general, the tolerance classes are used to describe knowledge or information in incomplete information
systems, however, as it has been pointed out in [9,23], they are not the minimal units. Let S ¼ ðU ;AÞ be an
information system, P � A an attribute set and X � U a subset of objects. We say X is consistent with respect
to P if ðu; vÞ 2 SIMðP Þ for any u; v 2 X . If there does not exist a subset Y � U such that X � Y , and Y is con-
sistent with respect to P, then X is called a maximal consistent block of P.

Obviously, in a maximal consistent block, all objects are not indiscernible with available information pro-
vided by a similarity relation [23]. Henceforth, we denote by MCP the set of all maximal consistent blocks
determined by P � A, and by MCP ðuÞ the set of all maximal consistent blocks of P which includes some object
u 2 U , respectively. It is clear that X 2 MCP if and only if X ¼

T
u2X SP ðuÞ [23]. This is illustrated in Example 2.

In fact, the set of all the maximal consistent blocks, MCP , will degenerate into the partition U=P induced by
the attribute set P in a complete information system, i.e., MCP ¼ U=P .
1
complete decision table about car [18]

Price Mileage Size Max-speed d od

High Low Full Low Good {good}
Low � Full Low Good {good}
� � Compact Low Poor {poor}
high � Full High Good {good,excellent}
� � Full High Excellent {good,excellent}
Low High Full � Good {good,excellent}
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Example 2. Compute all the maximal consistent blocks of C in Table 1. From Example 1, it follows that
MCC ¼ ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg;
where MCC is the set of all the maximal consistent blocks determined by C on U.

Next, we define another partial relation in incomplete information systems. Let S ¼ ðU ;AÞ be an incom-
plete information system, P ;Q � A, MCP ¼ fP 1; P 2; . . . ; P mg and MCQ ¼ fQ1;Q2; . . . ;Qng. Then, a partial rela-
tion �0 is defined as follows:

P�0Q() for every P i 2 MCP , there exists Qj 2 MCQ such that P i � Qj.
If P�0Q and P 6¼ Q, i.e., for some P i0 2 MCP , there exists Qj0

2 MCQ such that P i0 � Qj0
, then we denote it

as P�0Q.

3. Decision rule and information granulation in incomplete decision tables

In the first part of this section, we briefly review the notions of decision rules and certainty measure, support
measure and converge measure of a decision rule in incomplete decision tables.

The knowledge hidden in incomplete decision tables may be discovered and expressed in the form of deci-
sion rules: t ¼ ^ða; vÞ, a 2 C, v 2 V a [ f�g, and s ¼ ðd;xÞ, x 2 V d . In the sequel, we will call t and s the con-
dition part and decision part of a rule, respectively. We will say that an object u 2 U supports a rule t! s iff u

has both t and s properties in the given decision table.
Let S ¼ ðU ;C [ DÞ be an incomplete decision table, P � C, X i 2 MCP , Y j 2 U=D and X i \ Y j 6¼£. By

desðX iÞ and desðY jÞ, we denote the descriptions of the maximal consistent block X i and the decision class
Y j in the decision table S. A decision rule is formally defined as
Zij : desðX iÞ ! desðY jÞ:

This is illustrated in the following example:

Example 3. As that in Example 2 for Table 1, let X 1 ¼ fu1g, X 2 ¼ fu2; u6g, X 3 ¼ fu3g, X 4 ¼ fu4; u5g,
X 5 ¼ fu5; u6g, X i 2 MCC, and Y 1 ¼ fu1; u2; u4; u6g, Y 2 ¼ fu3g, Y 3 ¼ fu5g. Then, the following decision rules
can be induced from Table 1:

Z11: ðP ; highÞ ^ ðM ; lowÞ ^ ðS; fullÞ ^ ðX ; lowÞ ! ðd; goodÞ,
Z21: ððP ; lowÞ ^ ðS; fullÞÞ ^ ððM ; highÞ _ ðX ; lowÞÞ ! ðd; goodÞ,
Z32: ðS; compactÞ ^ ðX ; lowÞ ! ðd; poorÞ,
Z41: ððS; fullÞ ^ ðX ; highÞÞ ^ ððP ; highÞ _ ðP ; �ÞÞ ! ðd; goodÞ,
Z43: ððS; fullÞ ^ ðX ; highÞÞ ^ ððP ; highÞ _ ðP ; �ÞÞ ! ðd; excellentÞ,
Z51: ðS; fullÞ ^ ððX ; highÞ _ ððP ; lowÞ ^ ðM ; highÞÞÞ ! ðd; goodÞ,
Z53: ðS; fullÞ ^ ððX ; highÞ _ ððP ; lowÞ ^ ðM ; highÞÞÞ ! ðd; excellentÞ.

In the condition parts of the rules Z41 and Z43, the symbol ‘‘*” is used to factually characterize the descrip-
tion of the maximal consistent block. As we know, the symbol ‘‘*” is a missing value and can be filled with any
value in its value field. Therefore, one cannot delete the description of the attribute in a decision rule as the
value of an attribute is missing. In fact, the set fu4; u5g is a maximal consistent block induced by the condition
attributes and its description is ðS; fullÞ ^ ðX ;highÞ ^ ððP ; highÞ _ ðP ; �ÞÞ. In this paper, we will not investigate
how to generate all optimal decision rules or a class of optimal decision rules. In fact, these decision rules are
equivalent to those in Example 4.2 of [18]. We will express the condition parts of these decision rules by using
maximal consistent blocks in MCC and the decision parts of them by using decision classes in U=d,
respectively.

Like decision rules in complete information systems [36], the certainty measure, support measure and cov-
erage measure of a decision rule Zij in an incomplete decision table can also be defined as
lðZijÞ ¼ jX i \ Y jj=jX ij; sðZijÞ ¼ jX i \ Y jj=jU j and sðZijÞ ¼ jX i \ Y jj=jY jj;
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respectively, where j � j is the cardinality of a set. It is clear that the value of each of lðZijÞ, sðZijÞ and sðZijÞ of a

decision rule Zij falls into the interval 1
jU j ; 1
h i

. If the value of certainty measure of a decision rule is equal to

one, then it is called certain; otherwise it is called uncertain. These three measures are illustrated in the follow-
ing example.

Example 4. Continue from Example 3. By computing, we have that

Z11: lðZ11Þ ¼ 1, sðZ11Þ ¼ 1
6
, sðZ11Þ ¼ 1

4
,

Z21: lðZ21Þ ¼ 1, sðZ21Þ ¼ 1
3
, sðZ21Þ ¼ 1

2
,

Z32: lðZ32Þ ¼ 1, sðZ32Þ ¼ 1
6
, sðZ32Þ ¼ 1,

Z41: lðZ41Þ ¼ 1
2
, sðZ41Þ ¼ 1

6
, sðZ41Þ ¼ 1

4
,

Z43: lðZ43Þ ¼ 1
2
, sðZ43Þ ¼ 1

6
, sðZ43Þ ¼ 1,

Z51: lðZ51Þ ¼ 1
2
, sðZ51Þ ¼ 1

6
, sðZ51Þ ¼ 1

4
,

Z53: lðZ53Þ ¼ 1
2
, sðZ53Þ ¼ 1

6
, sðZ53Þ ¼ 1.

Example 4 shows that the decision rules Z11, Z21 and Z32 are all certain, while others are all uncertain.
It is deserved to point out that, unlike a complete decision table, due to the generation of tolerance relation

induced by condition attributes with null value ‘‘*”, the sum of support measures of all decision rules induced
by an incomplete decision table is not equal to one in general. For instance,

P
sðZijÞ ¼ 6� 1

6
þ 1

3
¼ 4

3
> 1 in the

above example.
In rough set theory, one can extract some decision rules from a given incomplete decision table. However,

in some practical issues, it may happen that there does not exist any certain decision rule with the certainty of
one in the decision-rule set extracted from a given incomplete decision table. In this situation, the lower
approximation of the target decision is equal to an empty set in this incomplete decision table. To characterize
this type of incomplete decision tables, in the following, incomplete decision tables are classified into three
types according to their consistencies, which are consistent incomplete decision tables, conversely consistent
incomplete decision tables and mixed incomplete decision tables.

As follows, we introduce several new concepts and notations, which will be applied in our further develop-
ments. We will denote by j Zij j the cardinality of the set X i \ Y j, which is called the support number of the rule
Zij, and by aðuÞ and dðuÞ the values of an object u under a condition attribute a 2 C and a decision attribute
d 2 D, respectively.

Definition 1. Let S ¼ ðU ;C [ DÞ be an incomplete decision table, MCC ¼ fX 1;X 2; . . ., X mg and
U=D ¼ fY 1; Y 2; . . . ; Y ng. A maximal consistent block X i 2 MCC is said to be consistent if dðuÞ ¼ dðvÞ
8u; v 2 X i and 8d 2 D; a decision class Y j 2 U=D is said to be conversely consistent if there exists a maximal
consistent block X i such that u; v 2 X i 8u; v 2 Y j.

Definition 2. Let S ¼ ðU ;C [ DÞ be an incomplete decision table, MCC ¼ fX 1;X 2; . . ., X mg and
U=D ¼ fY 1; Y 2; . . . ; Y ng. S is said to be consistent if every maximal consistent block X i 2 MCC is consistent;
S is said to be conversely consistent if every decision class Y j 2 U=D is conversely consistent.

An incomplete decision table is called a mixed decision table if it is neither consistent nor conversely
consistent.

From the above definitions, it follows immediately that:

	 an incomplete decision table S is consistent () MCC�0MCD (MCD ¼ U=D),
	 an incomplete decision table S is conversely consistent () MCD�0MCC.

Obviously, a conversely consistent decision table is inconsistent. In addition to the above concepts and
notations, we say that S ¼ ðU ;C [ DÞ is strictly consistent (strictly and conversely consistent) if
MCC�0MCD (MCD�0MCC), where MCD ¼ U=D. For convenience, we denote U=D by MCD in the next part.
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Remark. It is deserved to point out that these definitions are natural generalizations of Definitions 2 and 3 for
a complete decision table in [44]. That is to say, if S is a complete decision table, then the maximal consistent
blocks induced by the condition attribute set C will degenerate into the partition induced by C and the partial
relation �0 will degenerate into the partial relation on all partitions induced by the power set 2C.

Granularity, a very important concept in rough set theory, is often used to indicate a partition or a cover of
the universe of an information system or a decision table [22,24,25]. The decision performance of a decision
rule depends directly on the condition granularity and decision granularity of a decision table [44]. In general,
the change of granulation of a decision table can be realized through two ways [44]: (1) refining/coarsening the
domain of attributes and (2) adding/reducing attributes. In general, information granulation is employed to
measure the discernibility ability of a knowledge in information systems. The smaller information granulation
of a knowledge is, the stronger its discernibility ability is [26,27]. In [28], Liang introduced an information
granulation GðAÞ to measure the discernibility ability of a knowledge in incomplete information systems,
which is given in the following definition.

Definition 3. [28] Let S ¼ ðU ;AÞ be an incomplete information system and U=SIMðAÞ ¼
fSAðu1Þ; SAðu2Þ; . . . ; SAðujU jÞg. Information granulation of A is defined as
GðAÞ ¼ 1

jU j
XjU j
i¼1

jSAðuiÞj
jU j : ð1Þ
Following this definition, for a given decision table S ¼ ðU ;C [ DÞ, we call GðCÞ, GðDÞ and GðC [ DÞ con-
dition granulation, decision granulation and granulation of S, respectively.

As a result of the above discussions, we come to the following two lemmas.

Lemma 1. Let S ¼ ðU ;C [ DÞ be a strictly consistent decision table, i.e., MCC�0MCD. Then, there exists at least

one decision class in MCD such that it can be represented as the union of more than one maximal consistent blocks

in MCC.

Proof. Let MCC ¼ fX 1;X 2; . . . ;X mg and MCD ¼ fY 1; Y 2; . . . ; Y ng. By the consistency of S, for any decision
class Y 2 MCD, it is the union of some maximal consistent blocks X 2 MCC. Furthermore, since S is strictly
consistent, there exist X 0 2 MCC and Y 0 2 MCD such that X 0 � Y 0. It indicates that Y 0 is equal to the union
of more than one maximal consistent blocks in MCC. This completes the proof. h

Lemma 2. Partial relation �0 is a special instance of partial relation �.

Proof. Let S ¼ ðU ;AÞ be an incomplete information system, P ;Q � A with P�0Q, MCP ¼ fP 1; P 2; . . . ; P mg and
MCQ ¼ fQ1;Q2; . . . ;Qng. It follows from the definition of � 0 that for any P i 2 MCP , there exists Qj 2 MCQ

such that P i � Qj.Next, we prove that SP ðuÞ � SQðuÞ, 8u 2 U . Assume that MCP ðuÞ ¼ fX 1;X 2; . . . ;X mg and
MCQðuÞ ¼ fY 1; Y 2; . . . ; Y ng. We know from Property 4 in [23] that SP ðuÞ ¼

S
fX k 2 MCP j X k �

SP ðuÞg ¼
S
fX k 2 MCP ðuÞg ðk 6 mÞ and SQðuÞ ¼

S
fY t 2 MCQ j Y t � SQðuÞg ¼

S
fY t 2 MCQðuÞg ðt 6 nÞ.

From the definition of maximal consistent block, we have that u 2 MCP ðuÞ, u 2 MCQðuÞ,
u 62 MCP 
MCP ðuÞ and u 62 MCQ 
MCQðuÞ. Hence, it follows from P�0Q that for any X k 2 MCP ðuÞ, there
exists Y t 2 MCQðuÞ such that X k � Y t. Thus, for any u 2 U , we can get that
SP ðuÞ ¼
[
fX k 2 MCP jX k � SP ðuÞg ¼

[m
k¼1

X k

�
[n
t¼1

Y t ¼
[
fY t 2 MCQjY t � SQðuÞg ¼ SQðuÞ;
that is P � Q. Therefore, partial relation �0 is a special instance of partial relation �. This completes the
proof. h
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By Lemma 2, one can easily obtain the following theorem.

Theorem 1. Let S ¼ ðU ;C [ DÞ be an incomplete decision table.

(1) If S is consistent, then GðCÞ 6 GðDÞ.
(2) If S is conversely consistent, then GðCÞP GðDÞ.
Proof. (1) If S ¼ ðU ;C [ DÞ is consistent, we have that MCC�0MCD. Hence, from Lemma 2, it follows that for
any u 2 U one can obtain that SCðuÞ � SDðuÞ, i.e., j SCðuÞ j�j SDðuÞ j. Therefore,
GðCÞ ¼ 1

jU j
XjU j
i¼1

jSCðuiÞj
jU j 6

1

jU j
XjU j
i¼1

jSDðuiÞj
jU j ¼ GðDÞ;
that is GðCÞ 6 GðDÞ.
Analogously, (2) can be proved. h

It should be noted that the inverse propositions of Lemma 1 and Theorem 1 need not be true.

4. Limitations of traditional measures for incomplete decision tables

In this section, we reveal the limitations of some measures for evaluating the decision performance of an
incomplete decision table.

In rough set theory, several measures for a decision rule Zij : desðX iÞ ! desðY jÞ have been introduced in
[36], such as certainty measure lðX i; Y jÞ ¼j X i \ Y j j = j X i j, support measure sðX i; Y jÞ ¼j X i \ Y j j = j U j
and coverage measure sðX i; Y jÞ ¼j X i \ Y j j = j Y j j. Naturally, their extensions in Section 2 of this paper
are also suitable for evaluating the decision performance of a decision-rule extracted from an incomplete deci-
sion table. However, because lðX i; Y jÞ, sðX i; Y jÞ and sðX i; Y jÞ are only defined for a single decision rule and
are not suitable for evaluating the decision performance of a decision-rule set extracted from an incomplete
decision table.

In [40], approximation accuracy of a classification is introduced by Pawlak. Let F ¼ fY 1; Y 2; . . . ; Y ng be a
classification or decision of the universe U (it can be regarded as a partition induced by decision attribute set D

in a decision table, i.e., F ¼ U=D) and C a condition attribute set. CF ¼ fCY 1;CY 2; . . . ;CY ng and
CF ¼ fCY 1;CY 2; . . . ;CY ng are called C-lower and C-upper approximations of F, respectively, where
CY i ¼

S
fx 2 U j ½x�C � Y i 2 F g (1 6 i 6 n) and CY i ¼

S
fx 2 U j ½x�C \ Y i 6¼£; Y i 2 F g (1 6 i 6 n). The

approximation accuracy of F by C is defined as
aCðF Þ ¼
P

Y i2U=DjCY ijP
Y i2U=DjCY ij

: ð2Þ
The approximation accuracy expresses the percentage of possible correct decisions when classifying objects by
employing the attribute set C.

Definition 4. [23] Let S ¼ ðU ;AÞ be an incomplete information system and P � A. The approximation
operators aprP and aprP are defined as
aprP ðX Þ ¼
[
fY 2 MCP jY � Xg;

aprP ðX Þ ¼
[
fY 2 MCP jY \ X 6¼£g:
Let F ¼ U=D ¼ fY 1; Y 2; . . . ; Y ng be a classification of the universe U, and C a condition attribute set. In the
view of maximal consistent block technique, we call aprCF ¼ faprCðY 1Þ; aprCðY 2Þ; . . . ; aprCðY nÞg and
aprCF ¼ faprCðY 1Þ; aprCðY 2Þ; . . . ; aprCðY nÞg C-lower and C-upper approximations of F, respectively, where
aprCðY iÞ ¼
[
fu 2 U jMCCðuÞ � Y i; Y i 2 F g; 1 6 i 6 n;
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and
aprCY i ¼
[
fu 2 U jMCCðuÞ \ Y i 6¼£; Y i 2 F g; 1 6 i 6 n:
Similar to formula (2), the approximation accuracy of F by C can be defined as
aCðF Þ ¼
P

Y i2U=DjaprCðY iÞjP
Y i2U=DjaprCðY iÞj

: ð3Þ
In some situations, aCðF Þ can be used to measure the certainty of an incomplete decision table. However, its
limitations are revealed by the following example.

Example 5 (Continued from Example 1). By computing, one can obtain that

MCa2
¼ ffu1; u2; u3; u4; u5g; fu2; u3; u4; u5; u6gg,

MCa2[a4
¼ ffu1; u2; u3g; fu4; u5; u6gg and

U=d ¼ ffu1; u2; u4; u6g; fu3g; fu5gg.

From formula (3), we have that
aa2
ðU=dÞ ¼

P
Y i2U=d japra2

ðY iÞjP
Y i2U=d japra2

ðY iÞj
¼ 0

6þ 6þ 6
¼ 0
and
aa2[a4
ðU=dÞ ¼

P
Y i2U=d japra2[a4

ðY iÞjP
Y i2U=d japra2[a4

ðY iÞj
¼ 0

6þ 3þ 3
¼ 0:
That is to say aa2
ðU=dÞ ¼ aa2[a4

ðU=dÞ.

In fact, the maximal consistent blocks induced by a2 [ a4 should be much finer than those induced by a2,
i.e., the decision rules extracted by using a2 [ a4 will have much higher certainty than those decision-rules
extracted by using a2. However, this example implies that the approximation accuracy cannot well characterize
the certainty of an incomplete decision table when the lower approximation of the decision classification is an
empty set. Therefore, a more comprehensive and effective measure for evaluating the certainty of an incom-
plete decision table is desired.

The consistency degree of a complete decision table S ¼ ðU ;C [ DÞ, another important measure proposed
in [36], is defined as
cCðDÞ ¼
Pn

i¼1jCY ij
jU j : ð4Þ
The consistency degree expresses the percentage of objects which can be correctly classified to decision classes
of U=D by a condition attribute set C. In some situations, cCðDÞ can be employed to measure the consistency
of a decision table.

For an incomplete decision table, we can extend the consistency degree for measuring the consistency of
a decision-rule set. Similar to formula (4), the consistency degree of an incomplete decision table is defined
as
cCðDÞ ¼
Pn

i¼1japrCðY iÞj
jU j : ð5Þ
Similar to Example 5, the consistency of an incomplete decision table also cannot be well characterized by
the extended consistency degree because it only considers the lower approximation of a target decision. There-
fore, a more comprehensive and effective measure for evaluating the consistency of an incomplete decision
table is also needed.

From the definitions of the approximation accuracy and consistency degree, one can easily obtain the fol-
lowing property.
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Property 1. If S ¼ ðU ;C [ DÞ is a strictly and conversely consistent incomplete decision table, then
aCðU=DÞ ¼ 0 and cCðDÞ ¼ 0.

Property 1 shows that the extensions of the approximation accuracy and consistency degree cannot well
characterize the certainty and consistency of a strictly and conversely consistent incomplete decision table.

Remark. From the above analyses, it is easy to see that the shortcomings of these two extended measures are
mainly caused by the condition maximal consistent blocks that cannot be included in the lower approximation
of the target decision in a given incomplete decision table. As we know, in an inconsistent incomplete decision
table, there must exist some condition maximal consistent blocks that cannot be included in the lower approx-
imation of the target decision. In fact, for a strictly and conversely consistent incomplete decision table, the
lower approximation of the target decision is an empty set. Hence, we can draw the conclusion that the exten-
sions of the approximation accuracy and consistency degree cannot be employed to effectively evaluate the
decision performance of an inconsistent incomplete decision table. To overcome this drawback of the two
extended measures, the effect of the condition maximal consistent blocks that are not included in the lower
approximation of the target decision should be taken into account in evaluating the decision performance
of an inconsistent incomplete decision table.
5. Performance evaluation of a decision-rule set

To evaluate the decision performance of a decision-rule set extracted from a complete decision table, one
must take into consideration three important factors, that is, the certainty, consistency and support of the
decision-rule set [44]. For decision problems in incomplete decision tables, these three factors also play an
important role. Moreover, the degree of the cover induced by the missing values in the condition part can
affect the decision performance of a decision-rule set extracted from an incomplete decision table. Although
the extended approximation accuracy and consistency degree in Section 4, in some sense, can be used to mea-
sure the certainty and consistency of a decision-rule set extracted from an incomplete decision table, they will
be invalid when the lower approximation of the target decision of an incomplete decision table equals an
empty set.

To adequately evaluate the decision performance of an incomplete decision table, in this section, we intro-
duce four new measures (a, b, c and #) and analyze how each of these four measures depends on the condition
granulation and decision granulation of each of consistent incomplete decision tables and conversely consis-
tent incomplete decision tables. Three incomplete decision tables from the real world are employed to
demonstrate the advantage of the four new measures for evaluating the decision performance of a decision-
rule set extracted from a general incomplete decision table.

Definition 5. Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZij j Zij :
desðX iÞ ! desðY jÞ;X i 2 MCC; Y j 2 MCDg. Certainty measure a of S is defined as
aðSÞ ¼ 1

m

Xm

i¼1

1

Ni

XNi

j¼1

jX i \ Y jj
jX ij

; ð6Þ
where N i is the number of decision classes induced by the maximal consistent block X i in the incomplete deci-
sion table.

In essence, the measure denotes the average value of the certainty measures of the decision-rules induced by
each of maximal consistent blocks in an incomplete decision table. Note that the certainty measure of any
decision rule is not equal to zero.

Theorem 2 (Extremum). Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZij j Zij : desðX iÞ !
desðY jÞ;X i 2 MCC; Y j 2 MCDg.

(1) For any rule Zij 2 RULE, if lðZijÞ ¼ 1, then the measure a achieves its maximum value 1.

(2) If m ¼ 1 and n ¼j U j, then the measure a achieves its minimum value 1
jU j.
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Proof. The results are straightforward and the proof is omitted. h

Remark. In fact, a decision table S ¼ ðU ;C [ DÞ is consistent if and only if every decision rule from S is cer-
tain, i.e., its certainty measure of each of these decision rules is equal to one. So, (1) of Theorem 2 shows that
the measure a achieves its maximum value 1 when S is consistent. When we want to distinguish any two
objects of U without any condition information, (2) of Theorem 2 shows that a achieves its minimum value
1
jU j.

In the following example, we show how the measure a overcomes the limitation of the extended measure
aCðU=DÞ.

Example 6 (Continued from Example 5). Let S1 ¼ ðU ; fa2g [ dÞ and S2 ¼ ðU ; fa2; a4g [ dÞ. Computing the
measure a, we have that
aðS1Þ ¼
1

m

Xm

i¼1

1

N i

XNi

j¼1

jX i \ Y jj
jX ij

¼ 1

2

1

3
� 3

5
þ 1

5
þ 1

5

� �
þ 1

3
� 3

5
þ 1

5
þ 1

5

� �� �
¼ 1

3
;

aðS2Þ ¼
1

m

Xm

i¼1

1

N i

XNi

j¼1

jX i \ Y jj
jX ij

¼ 1

2

1

2
� 2

3
þ 1

3

� �
þ 1

2
� 2

3
þ 1

3

� �� �
¼ 1

2
:

Therefore, aðS1Þ ¼ 1
3
< 1

2
¼ aðS2Þ, i.e., aðS2Þ > aðS1Þ.

Example 6 indicates that unlike the extended approximation accuracy aCðU=DÞ, the measure a can be used
to measure the certainty of a decision-rule set when aCðU=DÞ ¼ 0, i.e., the lower approximation of each deci-
sion class in the decision partition is equal to an empty set.

Remark. From the formula (3), it follows that aCðU=DÞ ¼ 0 if
S

Y i2U=DaprCðY iÞ ¼£. In fact, in a broader
sense, aprCðY iÞ ¼£ does not imply that the certainty of a decision rule concerning Y i is equal to zero. So the
measure a is much better than the extension of the approximation accuracy for measuring the certainty of a
decision-rule set when an incomplete decision table is strictly and conversely consistent.

Corollary 1. Let S ¼ ðU ;C [ DÞ be an incomplete decision table. If S is consistent, then aðSÞ ¼ 1.

Proof. It is straightforward from Definition 5 and (1) of Theorem 2.
In the following, we discuss the monotonicity of the measure a in a conversely consistent decision table. h

Theorem 3. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision

tables. If MCC1
¼ MCC2

and MCD2
�0MCD1

, then aðS1Þ > aðS2Þ.

Proof. From MC1 ¼ MC2 and the converse consistencies of S1 and S2, it follows that there exist Y q 2 MCD1

and X p1 ;X p2 ; . . . ;X pt 2 MCC1
(t P 1) such that Y q � X pl (l 6 t). Since MCD2

�0MCD1
, there exist

Y 1
q; Y

2
q; . . . ; Y s

q 2 MCD2
(s > 1) such that Y q ¼

Ss
k¼1Y k

q. In other words, the rule Zplq (l 6 t) in S1 can be decom-
posed into a family of rules Z1

plq; Z
2
plq; . . . ; Zs

plq in S2. It is clear that jZpl qj ¼
Ps

k¼1jZk
plqj (l 6 t).

Since S1 and S2 are all conversely consistent, one can see that the maximal consistent blocks of Y q is the
same as those of Y k

q (k 6 s), i.e., X p1 ;X p2 ; . . . ;X pt 2 MCC1
(t P 1). So X pl \ Y q ¼ Y q and X pl \ Y k

q ¼ Y k
q (l 6 t),

i.e., j X pl \ Y q j¼j Y q j and j X pl \ Y k
q j¼j Y k

q j (l 6 t). Therefore, one can get that
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aðS1Þ ¼
1

m

Xm

i¼1

1

Ni

XNi

j¼1

jX i \ Y jj
jX ij

¼ 1

m

Xm

i¼1

1

Ni

XNi

j¼1

jY jj
jX ij
¼ 1

m

Xm

i¼1;i6¼p

1

N i

XNi

j¼1

jY jj
jX ij
þ 1

N p

XNp

j¼1

jY jj
jX pj

 !

¼ 1

m

Xm

i¼1;i6¼p

1

Ni

XNi

j¼1

jY jj
jX ij
þ 1

Np

XNp

j¼1

j
Ss
k¼1

Y k
j j

jX pj

0
BB@

1
CCA ¼ 1

m

Xm

i¼1;i6¼p

1

N i

XNi

j¼1

jY jj
jX ij
þ 1

N p

XNp

j¼1

Xs

k¼1

jY k
j j
jX pj

 !

>
1

m

Xm

i¼1;i 6¼p

1

N i

XNi

j¼1

jY jj
jX ij
þ 1

N p þ s
 1

XNp

j¼1

Xs

k¼1

jX p \ Y k
j j

jX pj

 !
¼ aðS2Þ;
that is aðS1Þ > aðS2Þ. This completes the proof. h

Theorem 3 states that the certainty measure a of a conversely consistent incomplete decision table decreases
with its decision classes becoming finer.

The following theorem shows the monotonicity of a with respect to the condition part of an incomplete
decision table.

Theorem 4. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision

tables. If MCD1
¼ MCD2

and MCC2
�0MCC1

, then aðS1Þ < aðS2Þ.

Proof. From MCC2
�0MCC1

, there exists X p 2 MCC1
and an integer s > 1 such that X p ¼

Ss
l¼1X l

p, where
X l

p 2 MCC2
. That is to say, X 1

p;X
2
p; . . . ;X s

p constitute a cover on the maximal consistent block X p. Noticing that
both S1 and S2 are conversely consistent, we have that X p � Y q and X l

p � Y q (Y q 2 MCD1
), i.e.,

j X p \ Y q j¼j Y q j and jX l
p \ Y qj ¼ jY qj (Y q 2 MCD1

). Hence, one can get that
aðS1Þ ¼
1

m

Xm

i¼1

1

Ni

XNi

j¼1

jX i \ Y jj
jX ij

¼ 1

m

Xm

i¼1

1

Ni

XNi

j¼1

jY jj
jX ij
¼ 1

m

Xm

i¼1;i6¼p

1

N i

XNi

j¼1

jY jj
jX ij
þ 1

N p

XNp

j¼1

jY jj
jX pj

 !

¼ 1

m

Xm

i¼1;i6¼p

1

Ni

XNi

j¼1

jY jj
jX ij
þ 1

Np

XNp

j¼1

jY jj

j
Ss
k¼1

X k
pj

0
BB@

1
CCA <

1

mþ s
 1

Xm

i¼1;i6¼p

1

N i

XNi

j¼1

jY jj
jX ij
þ
Xs

k¼1

1

N k
p

XNk
p

j¼1

jY jj
jX k

pj

0
@

1
A

¼ aðS2Þ;
i.e., aðS1Þ < aðS2Þ. This completes the proof. h

Theorem 4 states that the certainty measure a of a conversely consistent incomplete decision table increases
with its maximal consistent blocks in the condition part becoming finer.

In the following, through experimental analyses, we illustrate the validity of the measure a for evaluating
the decision performance of a decision-rule set extracted from a general incomplete decision table. In order to
show the advantage of the measure a over the extended measure aCðU=DÞ, we have downloaded three public
data sets with practical applications from UCI Repository of machine learning databases [58], which are
described in Table 2. All condition attributes and decision attributes in these three data sets are discrete.

Here, we compare the certainty measure a with the approximation accuracy aCðDÞ on these three practical
data sets. The comparisons of values of two measures with the numbers of features in these three data sets are
shown in Tables 3–5 and Figs. 1–3.
2
ets description

ets Samples Condition features Decision classes

n-large 307 35 19
oom 8124 22 2
y 12960 8 5



Table 3
aCðDÞ and a with different numbers of features in the data set soybean-large

Measure Features

1 3 6 9 12 15 18 20 25 30 35

aCðDÞ 0.0000 0.0000 0.0000 0.0000 0.0251 0.2067 0.2091 0.2105 0.2121 0.2121 0.2121
a 0.0945 0.2605 0.4279 0.4850 0.5411 0.7637 0.7663 0.7677 0.7709 0.7715 0.7715

Table 4
aCðDÞ and a with different numbers of features in the data set mushroom

Measure Features

1 3 5 7 9 11 13 15 17 19 22

aCðDÞ 0.0000 0.0000 0.2399 0.4728 0.5386 0.9445 0.9931 0.9951 0.9961 0.9980 1.0000
a 0.5000 0.5000 0.7500 0.9412 0.9684 0.9909 0.9982 0.9986 0.9991 0.9996 1.0000

Table 5
aCðDÞ and a with different numbers of features in the data set nursery

Measure Features

1 2 3 4 5 6 7 8

aCðDÞ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
a 0.2611 0.3278 0.3319 0.3358 0.4096 0.4295 0.4530 1.0000
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Fig. 1. Variation of the certainty measure a and the approximation accuracy with the number of features (data set soybean-large).
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It can be seen from Tables 3–5 that the value of the certainty measure a is not smaller than that of the
approximation accuracy aCðDÞ for the same number of selected features, and this value increases as the
number of selected features becomes bigger in the same data set. The measure a and the extended approxima-
tion accuracy will achieve the same value 1 if the incomplete decision table becomes consistent after adding a
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Fig. 2. Variation of the certainty measure a and the approximation accuracy with the number of features (data set mushroom).
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Fig. 3. Variation of the certainty measure a and the approximation accuracy with the number of features (data set nursery).
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number of selected features. However, from Fig. 1, it is easy to see that the values of the extended approxi-
mation accuracy are equal to zero when the number of features falls in between 1 and 9. In this situation,
the lower approximation of the target decision equals an empty set in the incomplete decision table. Hence,
the extension of approximation accuracy cannot be used to effectively characterize the certainty of the incom-
plete decision table when the value of approximation accuracy equals zero. But, for the same situation, as the
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number of features varies from 1 to 9, the value of the certainty measure a changes from 0.0945 to 0.4850. It
shows that unlike the extended approximation accuracy, the certainty measure a of the incomplete decision
table with more features is higher than that of the incomplete decision table with fewer features. Thus, the
measure a is much better than the extended approximation accuracy for this inconsistent incomplete decision
table. One can draw the same conclusion from Figs. 2 and 3. In other words, when aCðDÞ ¼ 0 in Figs. 1–3, the
measure a is still valid for evaluating the certainty of the set of decision rules obtained by using these selected
features. Therefore, the measure a may be better than the extended approximation accuracy for evaluating the
certainty of an incomplete decision table.

Based on the above analyses, we can conclude that if S is consistent, the evaluation ability of the measure a
is the same as that of the accuracy measure aCðDÞ and that if S is inconsistent, the evaluation ability of the
measure a is much higher than that of the extended accuracy measure aCðDÞ.

Now we investigate how to measure the consistency of a decision-rule set extracted from an incomplete
decision table.

At first, we discuss the consistency of the decision-rules induced by a maximal consistent block X in the
condition part of a given incomplete decision table.

Let S ¼ ðU ;C [ DÞ be an incomplete decision table, X 2 MCC a maximal consistent block and
MCD ¼ U=D ¼ f½u�D : u 2 Ug. For an object u 2 U , a membership function of u in X is denoted as
dX ðuÞ ¼
jX \ ½u�Dj
jX j ;
where dX ðuÞ (0 6 dX ðuÞ 6 1) represents a fuzzy concept. In fact, if dX ðuÞ ¼ 1, then X can be said to be consis-
tent with respect to ½u�D. In other words, if X is a consistent set with respect to ½u�D, then one has X � ½u�D.
Given this function, one can generate a fuzzy set F D

X ¼ fðu; dX ðuÞÞ j u 2 Ug on the universe U.

Definition 6. Let S ¼ ðU ;C [ DÞ be an incomplete decision table, X 2 MCC a maximal consistent block and
MCD ¼ U=D ¼ f½u�D : u 2 Ug. Inconsistency measure of X is defined as
EðF D
X Þ ¼

XjU j
i¼1

dX ðuiÞð1
 dX ðuiÞÞ; ð7Þ
where dX ðuiÞ is the membership function of ui 2 U in X.

The class of all fuzzy (crisp, respectively) sets of U is denoted by F ðUÞ (P ðUÞ, respectively). For A 2 F ðUÞ
and u 2 U , dAðuÞ is the degree of u in A. If A 2 P ðUÞ, then Að�Þ expresses the characteristic function of A.
Denote by a 8a 2 ½0; 1�, the constant fuzzy set with its membership function given by aðuÞ ¼ a 8u 2 U .

Definition 7 [25]. A real function e : F ðUÞ ! ½0; 1� is referred to as an entropy on F ðUÞ if it satisfies the
following conditions:

(1) eðAÞ ¼ 0 iff A 2 P ðUÞ;
(2) eðAÞ ¼ maxA2F ðUÞeðAÞ iff A ¼ 0:5;
(3) for any A;B 2 F ðUÞ, if dBðuÞP dAðuÞ for dAðuÞP 1

2
or if dBðuÞ 6 dAðuÞ for dAðuÞ 6 1

2
, then eðAÞP eðBÞ;

and
(4) eðAÞ ¼ eðAcÞ 8A 2 F ðUÞ.
Theorem 5. The inconsistency measure E is an entropy on F ðUÞ.

Proof. By Definition 7, we have that:

(1) If X 2 P ðUÞ, then, for all ui 2 U , either dX ðuiÞ ¼ 0 or dX ðuiÞ ¼ 1. Therefore, EðX Þ ¼ 0. On the other
hand, let EðX Þ ¼ 0, then, for all ui 2 U , dX ðuiÞð1
 dX ðuiÞÞ ¼ 0. It follows that either dX ðuiÞ ¼ 0 or
dX ðuiÞ ¼ 1, i.e., X is a crisp set.
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(2) Since 0 6 dX ðuÞ 6 1, we have that maxX2F ðUÞðdX ðuÞð1
 dX ðuÞÞÞ ¼ ðdX 0
ðuÞð1
 dX 0

ðuÞÞÞ ¼ 1
4
, where

X 0 2 F ðUÞ, and dX ðuÞ ¼ 1
2

for any u 2 U . Hence, Eð0:5Þ ¼ maxX2F ðUÞEðX Þ.
(3) Let X ; Y 2 F ðUÞ. If dX ðuiÞP 1

2
and dY ðuiÞP dX ðuiÞ for all ui 2 U , then
EðX Þ ¼
XjU j
i¼1

dX ðuiÞð1
 dX ðuiÞÞ ¼
XjU j
i¼1

ð
ðdX ðuiÞ 
 0:5Þ2 þ 0:25Þ ¼ jU j
4


XjU j
i¼1

ðdX ðuiÞ 
 0:5Þ2

P
jU j
4


XjU j
i¼1

ðdY ðuiÞ 
 0:5Þ2 ¼ EðY Þ:

If dX ðuiÞ 6 1
2

and dY ðuiÞ 6 dX ðuiÞ for all ui 2 U , similar to the above proof, we have EðX ÞP EðY Þ.

(4) 8X 2 F ðUÞ, since d
X ðuiÞ ¼ 1
 dX ðuiÞ, it follows that for all ui 2 U , d
X ðuiÞð1
 d
X ðuiÞÞ ¼
ð1
 dX ðuiÞÞdX ðuiÞ. Therefore, EðX Þ ¼ Eð
 X Þ.

Summarizing (1)–(4) above, we conclude that the inconsistency measure E is an entropy on F ðUÞ. This
completes the proof. h

Theorem 6. The inconsistency measure of a consistent set is 0.

Proof. Let S ¼ ðU ;C [ DÞ be an incomplete decision table, X 2 MCC a maximal consistent block and
MCD ¼ U=D ¼ f½u�D : u 2 Ug. If X is a consistent set, then, for any u 2 X , there exists a decision class ½u�D
such that X � ½u�D. So dX ðuÞ ¼ jX\½u�DjjX j ¼

jX j
jX j ¼ 1. For any u 2 U 
 X , we have ½u�D \ X ¼£ and

dX ðuÞ ¼ jX\½u�DjjX j ¼
j£j
jX j ¼ 0. Therefore, dX ðuiÞð1
 dX ðuiÞÞ ¼ 0 8ui 2 U , i.e., EðF D

X Þ ¼ 0. Thus, the inconsistency
measure of a consistent set is 0. This completes the proof. h

Based on the above analyses, we propose a new measure b for measuring the consistency of a set of deci-
sion-rules extracted from an incomplete decision table, which is given in the following definition.

Definition 8. Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZij j Zij : desðX iÞ !
desðY jÞ;X i 2 MCC; Y j 2 MCDg. Consistency measure b of S is defined as
bðSÞ ¼ 1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

; ð8Þ
where Ni is the number of decision-rules determined by the maximal consistent block X i and lðZijÞ is the cer-
tainty measure of the rule Zij.

To evaluate the consistency of an incomplete decision table, b computes the average value of the consis-
tency measures for all the maximal consistent blocks in the condition part of the incomplete decision table.

Theorem 7 (Extremum). Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼
fZij j Zij : desðX iÞ ! desðY jÞ;X i 2 MCC; Y j 2 MCDg.

(1) For every Zij 2 RULE, if lðZijÞ ¼ 1, then the measure b achieves its maximum value 1, and

(2) for every Zij 2 RULE, if lðZijÞ ¼ 1
2
, then the measure b achieves its minimum value 0.
Proof. The results are straightforward and the proof is omitted. h

In the following example, we show how the measure b overcomes the limitation of the extended measure
cCðDÞ.

Example 7 (Continued from Example 5). Let S1 ¼ ðU ; fa2g [ dÞ and S2 ¼ ðU ; fa2; a4g [ dÞ. Computing the
measure b, we have that
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bðS1Þ ¼
1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 1

2
� 1
 104

125

� �
þ 1
 80

125

� �� �
¼ 33

125
;

bðS2Þ ¼
1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 1

2
� 1
 8

9

� �
þ 1
 8

9

� �� �
¼ 1

9
:

Therefore, bðS1Þ ¼ 33
125
> 1

9
¼ bðS2Þ.

Remark. Unlike the consistency degree cCðDÞ, the measure b can be used to measure the consistency of
a decision-rule set when cCðDÞ ¼ 0, i.e., the lower approximation of each of the decision classes in
the decision part is equal to an empty set. From formula (5), it follows that cCðDÞ ¼ 0 ifS

Y i2MCD
aprCðY iÞ ¼£. In fact, in a broader sense, aprCðY iÞ ¼£ does not imply that the certainty of

a rule concerning Y i is equal to zero. So, the measure b is much better than the extended measure
cCðDÞ for evaluating the consistency of a decision-rule set when an incomplete decision table is strictly
and conversely consistent.

Corollary 2. Let S ¼ ðU ;C [ DÞ be an incomplete decision table. If S is consistent, then bðSÞ ¼ 1.

Proof. It is straightforward from Definition 8 and (1) of Theorem 7.

The monotonicity of the measure b on conversely consistent incomplete decision tables can be found in the
following Theorems 8 and 9.

Theorem 8. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision

tables. If MCC1
¼ MCC2

and MCD2
�0MCD1

, then bðS1Þ < bðS2Þ when 8lðZijÞ 6 1
2, and bðS1Þ > bðS2Þ when

8lðZijÞP 1
2.

Proof. Since MCC1
¼ MCC2

and the converse consistencies of S1 and S2, hence, for any Y 2 MCD1
, there exists

X 2 MCC1
such that Y � X . From MCD2

�0MCD1
, there exist Y 1

q; Y
2
q; . . . ; Y s

q 2 MCD2
ðs > 1Þ such that

Y q ¼
Ss

k¼1Y k
q, where Y q 2 MCD1

with Y q � X p, X p 2 MCC1
. In other words, the rule Zpq in S1 can be decom-

posed into a family of rules Z1
pq; Z

2
pq; . . . ; Zs

pq in S2. It is clear that jZpqj ¼
Ps

k¼1jZk
pqj, where
jZpqj ¼
jX p \ Y qj
jX pj

¼ jY qj
jX pj

; jZk
pqj ¼

jX p \ Y k
qj

jX pj
¼
jY k

qj
jX pj

; k 6 s:
Let dDðZilÞ ¼ jX i\½xl�Dj
jX i j (xl 2 X i), where ½xl�D is the decision class of xl induced by D. Then, we know that if

xl 2 X i \ Y j, it holds that dDðZilÞ ¼ lðZijÞ. Thus, one can obtain that
bðSÞ ¼ 1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 1

m

Xm

i¼1

1
 4

jX ij
XjX ij

l¼1

dDðZilÞð1
 dDðZilÞÞ
" #

¼ 1

m

Xm

i¼1

4

jX ij
XjX i j

l¼1

dDðZilÞ 

1

2

� �2

:
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Therefore, when 8lðZijÞ 6 1
2
, we have that
bðS1Þ ¼
1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 1

m

Xm

i¼1

4

jX ij
XjX ij

l¼1

dD1
ðZilÞ 


1

2

� �2

¼ 1

m

Xm

i¼1;i6¼p

4

jX ij
XjX ij

l¼1

dD1
ðZilÞ 


1

2

� �2

þ 4

jX pj
XjX p j

l¼1

dD1
ðZplÞ 


1

2

� �2
 !

<
1

m

Xm

i¼1;i6¼p

4

jX ij
XjX ij

l¼1

dD2
ðZilÞ 


1

2

� �2

þ 4

jX pj
XjX p j

l¼1

dD2
ðZplÞ 


1

2

� �2
 !

¼ 1

m

Xm

i¼1

4

jX ij
XjX ij

l¼1

dD2
ðZilÞ 


1

2

� �2

¼ bðS2Þ:
Similar to the above, one can show that bðS1Þ > bðS2Þ when 8lðZijÞP 1
2
. This completes the proof. h

Theorem 8 states that the consistency measure b of a conversely consistent incomplete decision table
increases with its decision classes becoming finer when 8lðZijÞ 6 1

2
, and decreases with its decision classes

becoming finer when 8lðZijÞP 1
2
.

Theorem 9. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision

tables. If MCD1
¼ MCD2

and MCC2
�0MCC1

, then bðS1Þ > bðS2Þ when 8lðZijÞ 6 1
2, and bðS1Þ < bðS2Þ when

8lðZijÞP 1
2.

Proof. Let dCðZilÞ ¼ jX i\½xl�Dj
jX ij (xl 2 X i;X i 2 U=C), where ½xl�D is the decision class of xl induced by D. Then, we

know that if xl 2 X i \ Y j, it holds that dCðZilÞ ¼ lðZijÞ.
From MCC2

�0MCC1
, there exist X p 2 MCC1

and an integer s > 1 such that X p ¼
Ss

k¼1X k
p, where X k

p 2 MCC2
.

Clearly, we have X k
p � X p for every X k

p 2 MCC2
. Hence, jX k

pj < jX pj. From the converse consistencies of S1 and
S2, it follows that
lðZpjÞ ¼
jX p \ Y jj
jX pj

¼ jY jj
jX pj

<
jY jj
jX k

pj
¼
jX k

p \ Y jj
jX k

pj
¼ lðZk

pjÞ; k ¼ f1; 2; . . . ; sg:
That is dC1
ðZilÞ < dC2

ðZilÞ.
Thus, when 8lðZijÞ 6 1

2, we get that
bðS1Þ ¼
1

m

Xm

i¼1

1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 1

m

Xm

i¼1

4

jX ij
XjX ij

l¼1

dC1
ðZilÞ 


1

2

� �2

¼ 1

m

Xm

i¼1;i6¼p

4

jX ij
XjX ij

l¼1

dC1
ðZilÞ 


1

2

� �2

þ 4

jX pj
XjX p j

l¼1

dC1
ðZplÞ 


1

2

� �2
 !

>
1

mþ s
 1

Xm

i¼1;i6¼p

4

jX ij
XjX i j

l¼1

dC2
ðZilÞ 


1

2

� �2

þ 4

jX pj
XjX p j

l¼1

dC2
ðZplÞ 


1

2

� �2
 !

¼ 1

mþ s
 1

Xm

i¼1;i6¼p

4

jX ij
XjX ij

l¼1

dC2
ðZilÞ 


1

2

� �2

þ 4

jX pj
Xs

k¼1

XjX k
p j

l¼1

dC2
ðZplÞ 


1

2

� �2
0
@

1
A ¼ bðS2Þ;
that is bðS1Þ < bðS2Þ.
Similarly, one can prove that bðS1Þ < bðS2Þ when 8lðZijÞP 1

2. This completes the proof. h

Theorem 9 states that the consistency measure b of a conversely consistent incomplete decision table
decreases with its maximal consistent blocks in the condition part becoming finer when 8lðZijÞ 6 1

2
, and

increases with its maximal consistent blocks in the condition part becoming finer when 8lðZijÞP 1
2
.
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For general incomplete decision tables, to illustrate the differences between the consistency measure b and
the consistency degree cCðDÞ, the three practical data sets in Table 2 will be used again. The comparisons of
values of the two measures with the numbers of features in these three data sets are shown in Tables 6–8, and
Figs. 4–6.

From Tables 6–8, it can be seen that the value of the consistency measure b is not smaller than that of the
extended consistency degree cCðDÞ for the same number of selected features, and this value increases as the
number of selected features becomes bigger in the same data set. In particular, if the incomplete decision table
becomes consistent after adding a number of selected features, the measure b and the extended consistency
degree will have the same value 1.

Whereas, from Fig. 4, it is easy to see that the values of the consistency degree equal 0 when the number of
features falls in between 1 and 9. In this situation, the lower approximation of the target decision in the incom-
plete decision table equals an empty set. Hence, the extension of consistency degree cannot be used to effec-
tively characterize the consistency of the incomplete decision table when the value of the consistency degree
equals zero. But, for the same situation, as the number of features varies from 1 to 9, the value of the consis-
tency measure b changes within the interval [0.0181, 0.4737]. It shows that unlike the extended consistency
degree, the consistency measure b is still valid for evaluating the consistency of the incomplete decision table
when the lower approximation of the target decision is an empty set. Therefore, the measure b is much better
than the extended consistency degree for this inconsistent incomplete decision table. Obviously, one can draw
the same conclusion from Figs. 7 and 8. In other words, the measure b is still valid for evaluating the consis-
tency of a set of decision rules obtained by using these selected features when the value of the consistency
degree cCðDÞ is equal to zero. Given this advantage, we may conclude that the measure b is much better than
the extended consistency degree for evaluating the consistency of an incomplete decision table.

Based on the above discussion, we can draw conclusions that if S is consistent, the evaluation ability of the
measure b is the same as that of the extended consistency degree cCðDÞ and that if S is inconsistent, the eval-
uation ability of the measure b is much higher than that of the extended consistency degree cCðDÞ.

In the following, we define a new measure c for measuring the support degree of an incomplete decision
table.
Table 6
cCðDÞ and b with different numbers of features in the data set soybean-large

Measure Features

1 3 6 9 12 15 18 20 25 30 35

cCðDÞ 0.0000 0.0000 0.0000 0.0000 0.1238 0.6678 0.6743 0.6840 0.6840 0.6840 0.6840
b 0.4737 0.2414 0.0765 0.0181 0.1003 0.5414 0.5465 0.5431 0.5263 0.5275 0.5275

Table 7
cCðDÞ and b with different numbers of features in the data set mushroom

Measure Features

1 3 5 7 9 11 13 15 17 19 22

cCðDÞ 0.0000 0.0000 0.3870 0.6421 0.7001 0.9714 0.9966 0.9975 0.9980 0.9990 1.0000
b 0.2734 0.6587 0.7518 0.9449 0.9737 0.9857 0.9971 0.9974 0.9984 0.9991 1.0000

Table 8
cCðDÞ and b with different numbers of features in the data set nursery

Measure Features

1 2 3 4 5 6 7 8

cCðDÞ 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
b 0.13777 0.11119 0.11122 0.11126 0.11120 0.11111 0.11111 1.00000
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Fig. 4. Variation of the consistency measure b and the consistency degree with the number of features (data set soybean-large).
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Fig. 5. Variation of the consistency measure b and the consistency degree with the number of features (data set mushroom).
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Definition 9. Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZij j Zij : desðX iÞ !
desðY jÞ;X i 2 MCC; Y j 2 MCDg. Support measure c of S is defined as
cðSÞ ¼
Xn

j¼1

jY jj
N jjU j

XNj

k¼1

jX k \ Y jj
jU j ; ð9Þ
where Nj is the number of maximal consistent blocks in the condition part with respect to Y j.
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Fig. 6. Variation of the consistency measure b and the consistency degree with the number of features (data set nursery).
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Fig. 7. Variation of the support measure c with the number of features (data set soybean-large).
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The measure c is given by the weighted average value of the support measures of the decision rules with Y j

extracted from an incomplete decision table.

Theorem 10 (Extremum). Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZijjZij :
desðX iÞ ! desðY jÞ;X i 2 MCC; Y j 2 MCDg.

(1) If X i ¼ U and Y j ¼ U , then the measure c achieves its maximum value 1, and
(2) if j X i \ Y j j¼ 1 for any i; j, then the measure c achieves its minimum value 1

jU j.
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Proof. The results are straightforward and the proof is omitted. h

Example 8 (Continued from Example 5). By computing the measure c, it follows that
cðS1Þ ¼
X3

j¼1

jY jj
NjjU j

XNj

k¼1

jX k \ Y jj
jU j

¼ 4

2� 6

3

6
þ 3

6

� �
þ 1

2� 6

1

6
þ 1

6

� �
þ 1

2� 6

1

6
þ 1

6

� �
¼ 7

18
;

cðS2Þ ¼
X3

j¼1

jY jj
NjjU j

XNj

k¼1

jX k \ Y jj
jU j

¼ 4

2� 6

2

6
þ 2

6

� �
þ 1

1� 6
� 1

3
þ 1

1� 6
� 1

3
¼ 1

3
:

Hence, cðS1Þ ¼ 7
18
> 6

18
¼ 1

3
¼ cðS2Þ, i.e., cðS1Þ > cðS2Þ.

Theorem 11. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two consistent incomplete decision tables. If

MCC1
�0MCC2

and MCD1
¼ MCD2

, then cðS1Þ < cðS2Þ.

Proof. Since both S1 and S2 are all consistent, from MCC1
�0MCC2

, we have X p � Y q and X p ¼
Ss

l¼1X l
p, where

X p 2 MCC2
, Y q 2 MCD2

, and X l
p 2 MCC1

. In other words, the rule Zpq in S2 can be decomposed into a family of
rules Z1

pq;Z
2
pq; . . . ; Zs

pq in S1. Therefore,
cðS2Þ ¼
Xn

j¼1

jY jj
N jjU j

XNj

k¼1

jX k \ Y jj
jU j ¼

Xn

j¼1

jY jj
jU j

1

N j

XNj

k¼1

jX kj
jU j ¼

Xn

j¼1;j 6¼q

jY jj
jU j

1

N j

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

N q

XNq

k¼1

jX kj
jU j

¼
Xn

j¼1;j 6¼q

jY jj
jU j

1

N j

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

Nq

XNq

k¼1;k 6¼p

jX kj
jU j þ

jX pj
jU j

 !
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>
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

N q þ s
 1

XNq

k¼1;k 6¼p

jX kj
jU j þ

Xs

l¼1

jX l
pj
jU j

 !

¼
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

N q þ s
 1

XNqþs
1

k¼1

jX kj
jU j ¼ cðS1Þ;
that is cðS1Þ < cðS2Þ.
This completes the proof. h

Theorem 11 shows that the support measure c of an incomplete decision table decreases with the maximal
consistent blocks in its condition part becoming finer.

Theorem 12. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision

tables. If MCD1
¼ MCD2

, then cðS1Þ ¼ cðS2Þ.

Proof. From the converse consistencies of S1 and S2, one has that X iðS1Þ \ Y jðS1Þ ¼ Y jðS1Þ and
X iðS2Þ \ Y jðS2Þ ¼ Y jðS2Þ, where X iðS1Þ 2 MCC1

; Y jðS1Þ 2 MCD1
, X iðS2Þ 2 MCC2

and Y jðS2Þ 2 MCD2
. Since

MCD1
¼ MCD2

, thus Y jðS1Þ ¼ Y jðS2Þ for Y jðS1Þ 2 MCD1
and Y jðS2Þ 2 MCD2

. Hence, one can obtain that
cðS1Þ ¼
Xn

j¼1

jY jðS1Þj
NjjU j

XNj

k¼1

jX kðS1Þ \ Y jðS1Þj
jU j ¼

Xn

j¼1

jY jðS1Þj
N jjU j

XNj

k¼1

jY jðS1Þj
jU j ¼

Xn

j¼1

jY jðS2Þj
NjjU j

XNj

k¼1

jY jðS2Þj
jU j

¼
Xn

j¼1

jY jðS2Þj
NjjU j

XNj

k¼1

jX kðS2Þ \ Y jðS2Þj
jU j ¼ cðS2Þ:
This completes the proof. h

Theorem 13. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two conversely consistent incomplete decision
tables. If MCC1

¼ MCC2
and MCD1

�0MCD2
, then cðS1Þ < cðS2Þ.

Proof. Since S1 and S2 are all conversely consistent, from MCD1
�0MCD2

, we have that Y q � X p and
Y q ¼

Ss
l¼1Y l

q (s > 1Þ, where X p 2 MCC2
, Y q 2 MCD2

and Y l
q 2 MCD1

. In other words, the rule Zpq in S2 can
be decomposed into a family of rules Z1

pq; Z
2
pq; . . . ; Zs

pq in S1. Therefore,
cðS2Þ ¼
Xn

j¼1

jY jj
NjjU j

XNj

k¼1

jX k \ Y jj
jU j ¼

Xn

j¼1

jY jj
jU j

1

Nj

XNj

k¼1

jY jj
jU j ¼

Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

N q

XNq

k¼1

jY qj
jU j

¼
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY qj
jU j

1

Nq

XNq

k¼1

jY qj
jU j ¼

Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY qj2

jU j2

¼
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

ðjY 1
qj þ jY 2

qj þ � � � þ jY s
qjÞ

2

jU j2

>
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

jY 1
qj

2 þ jY 2
qj

2 þ � � � þ jY s
qj

2

jU j2

¼
Xn

j¼1;j 6¼q

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j þ

Xs

l¼1

jY l
qj
jU j

1

N l
q

XNl
q

k¼1

jY l
qj
jU j ¼

Xnþs
1

j¼1

jY jj
jU j

1

Nj

XNj

k¼1

jX kj
jU j ¼ cðS1Þ;
that is cðS1Þ < cðS2Þ. This completes the proof. h

Theorem 13 states that the support measure c of an incomplete decision table decreases with its decision
classes becoming finer.



Table 9
c with different numbers of features in the data set soybean-large

Measure Features

1 3 6 9 12 15 18 20 25 30 35

c 0.0199 0.0102 0.0043 0.0036 0.0035 0.0035 0.0035 0.0035 0.0033 0.0033 0.0033

Table 10
c with different numbers of features in the data set mushroom

Measure Features

1 3 4 7 9 11 13 15 17 19 22

c 0.2503 0.1001 0.0556 0.0263 0.0099 0.0026 0.0009 0.0007 0.0004 0.0004 0.0002

Table 11
c with different numbers of features in the data set nursery

Measure Features

1 2 3 4 5 6 7 8

c 0.1059 0.0245 0.0061 0.0015 0.0006 0.0003 0.0001 0.00007

396 Y. Qian et al. / Data & Knowledge Engineering 65 (2008) 373–400
Finally, we investigate the variation of the values of the support measure c with the numbers of features in
the three practical data sets in Table 2. The values of the measure with the numbers of features in these three
data sets are shown in Tables 9–11 and Figs. 7–9.

From these tables and figures, one can see that the value of the support measure c decreases with the num-
ber of condition features becoming bigger in the same data set. Note that one may extract more decision rules
through adding the number of condition features in general. In fact, the bigger the number of decision rules is,
the smaller the value of the support measure is in the same data set. Therefore, the measure c is able to effec-
tively evaluate the support of all decision-rules extracted from a given decision table.
1 2 3 4 5 6 7 8
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Fig. 9. Variation of the support measure c with the number of features (data set nursery).
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It is deserved to point out that the values of the three new measures (a, b and c), in some sense, are depen-
dent on the number of missing information in the condition part of an incomplete decision table, i.e., the scale
of the cover induced by the maximal consistent blocks in the condition part. In the following, we introduce
another measure # to measure the scale of the cover in the condition part of an incomplete decision table.

Definition 10. Let S ¼ ðU ;C [ DÞ be an incomplete decision table and RULE ¼ fZij j Zij : desðX iÞ !
desðY jÞ;X i 2 MCC; Y j 2 MCDg. Cover measure # of S is defined as
#ðSÞ ¼ 1

jU j
Xm

i¼1

jX ij
jU j ; ð10Þ
where 1
jU j 6 #ðSÞ 6 1.

The # is a measure for the scale of the cover of the universe determined by the maximal consistent blocks in
the condition part of an incomplete decision table.

Example 9 (Continued from Example 2). By computing the measure #, it follows that
MCP ¼ ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg

and
#ðSÞ ¼ 1

jU j
Xm

i¼1

jX ij
jU j ¼

1

6

1

6
þ 2

6
þ 1

6
þ 2

6
þ 2

6

� �
¼ 2

9
:

Theorem 14 (Minimum). Let S ¼ ðU ;C [ DÞ be a complete decision table, then the measure # achieves its min-
imum value 1

jU j.

Proof. Let MCC ¼ fX 1;X 2; . . . ;X mg. If S ¼ ðU ;C [ DÞ be a complete decision table, we have the partition
U=C ¼ MCC ¼ fX 1;X 2; . . . ;X mg. Thus,

Sm
i¼1X i ¼ U and X i \ X j ¼£ (i 6¼ j), i; j 6 m, i.e.,

Pm
i¼1jX ij ¼ jU j.

Hence, we have that #ðSÞ ¼ 1
jU j
Pm

i¼1
jX ij
jU j ¼ 1

jU j
jU j
jU j ¼ 1

jU j. This completes the proof. h

Corollary 3. The measure # achieves its maximum value 1 if and only if j U j¼ 1.

In this case, maxð#ðSÞÞ ¼ minð#ðSÞÞ ¼ 1.

Corollary 4. Let S1 ¼ ðU ;C1 [ D1Þ and S2 ¼ ðU ;C2 [ D2Þ be two incomplete decision tables. If C1 � C2, then

#ðS1ÞP #ðS2Þ.

Proof. It is straightforward.
Since the measure # is very simple, its experimental analysis is omitted in this paper. h

Remark. As we know, the maximal consistent blocks MCC in the condition part can be degenerated into the
equivalence classes U=C if S ¼ ðU ;C [ DÞ is a complete decision table, and the maximal consistent block
X 2 MCC can be degenerated into the equivalence class. Hence, these four new measures (a, b, c and #)
can also be used to measure the decision performance of a decision-rule set extracted from a complete decision
table if X 2 MCC is regarded as an equivalence class of U=C in the formulae 6, 8, 9 and 10. The evaluation
measures proposed in this paper may be helpful for determining which of rule-extracting methods is preferred
for a particular application about extracting decision rules from incomplete decision tables.
6. Conclusions

In rough set theory, several classical measures for evaluating a decision rule or a decision table, such as the
certainty measure, support measure and coverage measure of a decision rule and the approximation accuracy
and consistent degree of a decision table, can be extended for evaluating the decision performance of a deci-
sion rule (set) extracted from an incomplete decision table. However, these extensions are not effective for eval-
uating the decision performance of a decision-rule set. In this paper, the limitations of these extensions have
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been exemplified on incomplete decision tables. To overcome these limitations, incomplete decision tables
have been classified into three types according to their consistencies and four new and more effective measures
(a, b, c and #) have been introduced for evaluating the certainty, consistency, support and cover of a decision-
rule set extracted from an incomplete decision table, respectively. It has been analyzed how each of these four
new measures depends on the condition granulation and decision granulation of each of the three types of
incomplete decision tables. The experimental analyses on three practical incomplete decision tables show that
the three new measures (a, b, c) are adequate for evaluating the decision performance of a decision-rule set
extracted from an incomplete decision table in rough set theory. These four measures may be helpful for deter-
mining which of rule-extracting approaches is preferred for a practical decision problem in the context of
incomplete decision tables. Another important fact we would like to point out is that the measures proposed
in this paper are natural generalizations of the performance evaluation measures for complete decision tables.
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