
Pattern Recognition 71 (2017) 375–386 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Fast density clustering strategies based on the k -means algorithm 

Liang Bai a , b , c , ∗, Xueqi Cheng 

b , Jiye Liang 

a , Huawei Shen 

b , Yike Guo 

c 

a School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, 030 0 06, China 
b Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China 
c Department of Computing, Imperial College London, SW7, London, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 21 September 2016 

Revised 26 April 2017 

Accepted 16 June 2017 

Available online 17 June 2017 

Keywords: 

Cluster analysis 

Density-based clustering 

Acceleration mechanism 

Approximate algorithm 

k -means 

a b s t r a c t 

Clustering by fast search and find of density peaks (CFSFDP) is a state-of-the-art density-based clustering 

algorithm that can effectively find clusters with arbitrary shapes. However, it requires to calculate the 

distances between all the points in a data set to determine the density and separation of each point. 

Consequently, its computational cost is extremely high in the case of large-scale data sets. In this study, 

we investigate the application of the k -means algorithm, which is a fast clustering technique, to en- 

hance the scalability of the CFSFDP algorithm while maintaining its clustering results as far as possible. 

Toward this end, we propose two strategies. First, based on concept approximation, an acceleration algo- 

rithm (CFSFDP+A) involving fewer distance calculations is proposed to obtain the same clustering results 

as those of the original algorithm. Second, to further expand the scalability of the original algorithm, 

an approximate algorithm (CFSFDP+DE) based on exemplar clustering is proposed to rapidly obtain ap- 

proximate clustering results of the original algorithm. Finally, experiments are conducted to illustrate the 

effectiveness and scalability of the proposed algorithms on several synthetic and real data sets. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cluster analysis is a statistical multivariate analysis technique

nvolving pattern recognition based on unsupervised learning. It

as extensive applications in various domains, including financial

raud, medical diagnosis, image processing, information retrieval,

nd bioinformatics [1] . Clustering is the process of grouping a set

f points into clusters such that the points in the same cluster have

igh similarity but are significantly dissimilar from the points in

ther clusters. 

Various types of clustering algorithms have been proposed and

eveloped in the literature (e.g., [2,3] and the references therein).

n general, these algorithms are categorized into four types: parti-

ional, hierarchical, density-based, and grid-based clustering. Rep-

esentative algorithms can be found in [4–17] . The advantages of

ensity-based clustering algorithms over other types of clustering

lgorithms are that they can find clusters with arbitrary shapes

nd they do not require the number of clusters as input. How-

ver, their disadvantage is that they involve high computational

osts. Representative algorithms include density-based spatial clus-
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ering of applications with noise (DBSCAN) [12] , ordering points to

dentify the clustering structure (OPTICS) [13] , mean-shift cluster-

ng (MSC) [18,19] , and clustering by fast search and find of density

eaks (CFSFDP) [20] . The CFSFDP algorithm, which was published

n [ Science, 2014 ], is based on cluster centers. It needs to manu-

lly determine the number of clusters and select several points as

luster centers to represent the clusters according to the density

nd separation of each point. In the algorithm, a cluster is repre-

ented by a cluster center with higher local density and separa-

ion from other cluster centers, and it is surrounded by neighbors

ith lower local density. After the cluster centers have been ob-

ained, each remaining point is assigned to the same cluster as its

earest neighbor with higher density. The CFSFDP algorithm de-

ermines the membership of a point to a cluster by considering

ot only the connectivity but also the separation of points. Thus,

ts performance is robust with respect to the radius of a neigh-

orhood, compared to other density-based algorithms. However, as

ith other density-based algorithms, it requires to calculate the

istances between all the points in a data set to determine the

ensities of the points and separations between the points. Con-

equently, its computational cost is extremely high in the case of

arge-scale data sets. 

Many techniques have been proposed to reduce the unneces-

ary computations of distances and enhance the efficiency of clus-

ering algorithms as follows. (1) Spatial index structure : An index

tructure, such as KD-tree [21] , R 

∗-tree [22] , or X-tree [23] , may
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be applied to a data set to efficiently find the neighbors of a point

on the basis of a distance measure. However, the computational

complexity of this solution increases exponentially with the data

dimensions. As a general rule, if a data set has n points and m di-

mensions, n should be considerably greater than 2 m , which can en-

hance the search efficiency using index structures. Otherwise, the

distances between most of the points will need to be computed

in the search process. (2) Grid-based clustering : The density-based

clustering algorithm DENCLUE [14] only maintains information

about grid cells that actually contain data points, and it manages

these cells in a tree-based access structure. It is significantly faster

than other algorithms for high-dimensional data sets. The STING

algorithm [15] uses grid-based clustering to enhance the efficiency

of DBSCAN. However, the grid-based technique only obtains an ap-

proximate result compared to the original algorithms and is effi-

cient for dealing with low-dimensional data sets. As the number of

dimensions increases, the number of grids increases exponentially,

resulting in high computational costs. (3) Hybrid clustering : Sev-

eral algorithms, such as BRIDGE [24] , l-DBSCAN [25] , and rough-

DBSCAN [26] , integrate the k -means [4] and DBSCAN algorithms

to cluster large-scale data sets. These algorithms first find suitable

prototypes from the large-scale data set and then apply the cluster-

ing method using only the prototypes. Nanda et al. [27] proposed

a modified DBSCAN algorithm that involves a new merging crite-

rion of preliminary clusters and uses correlation coefficients to re-

duce the computational complexity of DBSCAN. (4) Parallel cluster-

ing : Parallel techniques are used to enhance the clustering speed of

the original algorithms. For example, some scholars have proposed

parallel density-based clustering algorithms using the MapReduce

technique [28] , such as MR-DBSCAN [29] and DBCURE-MR [30] .

Chen et al. [31] proposed a parallel-computing solution for spectral

clustering [17] . Despite their theoretical and practical advantages,

the above-mentioned techniques cannot be directly applied to the

CFSFDP algorithm, because each clustering algorithm has its own

clustering criterion and searching strategy. Recently, several schol-

ars have developed some improved CFSFDP algorithms [32–34] .

For example, Wu et al. [32] proposed a density- and grid-based

clustering (DGB) algorithm to improve the clustering speed of the

CFSFDP algorithm. However, the DGB algorithm is only suitable for

dealing with two-dimensional data. Zhang et al. [33] proposed a

distributed CFSFDP algorithm based on the MapReduce technique.

Gao et al. [34] proposed an improved CFSFDP algorithm that con-

siders how to enhance the clustering accuracy of the original algo-

rithm. This algorithm involves additional computational costs com-

pared to CFSFDP. Although these algorithms improve the perfor-

mance of the CFSFDP algorithm, they do not fully consider how to

reduce redundant computations and accelerate the CFSFDP algo-

rithm. 

Therefore, in this paper, we use the k -means algorithm to en-

hance the scalability of the CFSFDP algorithm. The k -means algo-

rithm [4] is well known for its efficiency in clustering large-scale

data sets. However, it is not suitable for determining non-spherical

clusters. We propose two strategies to integrate the advantages of

the CFSFDP and k -means algorithms in order to rapidly discover

any clusters with any shape. The first strategy is to design an accel-

eration mechanism based on concept approximation. In this mech-

anism, we use the estimation of distances to construct approxi-

mation spaces that are required for computing the densities and

separations of points. This can significantly reduce the calculation

of distances. The accelerated CFSFDP algorithm (i.e., CFSFDP+A) re-

quires a shorter computational time and fewer distance calcula-

tions while providing the same clustering results. The second strat-

egy is to design an approximate algorithm (i.e., CFSFDP+DE) of the

CFSFDP algorithm on the basis of exemplar clustering in order to

further expand the scalability of the original algorithm. This algo-

rithm can rapidly obtain approximate clustering results of the orig-
nal algorithm. We analyze the precision loss of the approximate

lgorithm experimentally. 

The remainder of this paper is organized as follows.

ection 2 reviews the CFSFDP and k -means algorithms.

ection 3 presents the accelerated CFSFDP algorithm (CFSFDP+A).

ection 4 presents the approximate algorithm (CFSFDP+DE).

ection 5 illustrates the effectiveness and efficiency of the pro-

osed algorithms on several data sets. Finally, Section 6 concludes

he paper. 

. Preliminaries 

The CFSFDP algorithm was proposed by Alex Rodriguez and

lessandro Laio [20] . It is based on the assumptions that cluster

enters are surrounded by neighbors with lower local density and

hat they are at relatively large distances from points with higher

ocal density. For each data point x i , we need to compute two

uantities: its local density ρ( x i ) and its separation δ( x i ). Let d be

 distance measure that is assumed to satisfy the triangular in-

quality, let B (x i ) = { x j | d(x i , x j ) < d c , x j ∈ X } be the neighborhood

f point x i , and let d c be the radius of the neighborhood. The den-

ity and separation measures are defined as 

(x i ) = | B (x i ) | , (1)

nd 

(x i ) = 

⎧ ⎨ 

⎩ 

min 

ρ(x j ) >ρ(x i ) 
d(x i , x j ) 

max 
x j ∈ X 

d(x i , x j ) , otherwise. 
(2)

he local density measure ρ of a point is used to represent the

umber of points in its neighborhood. The separation measure δ
f a point is used to evaluate its isolation from other points having

igher density. The smaller the value of δ is, the greater is the pos-

ibility that the point is assigned to the same cluster as its nearest

eighbor with higher density. The algorithm first manually selects

everal points with high δ and relatively high ρ as the cluster cen-

ers. After the cluster centers are found, each remaining point is

ssigned to the same cluster as its nearest neighbor with higher

ensity. If some points have relatively high δ and low ρ , they are

onsidered as clusters composed of a single point, namely, out-

iers. The cluster assignment is performed in a single step. Further

etails regarding the clustering process can be found in [20] . Al-

hough the algorithm can be used to effectively and simply find

lusters with arbitrary shapes, it needs to compute the distances

etween all the points to determine the densities and separations

f the points. Thus, the time complexity of the algorithm is O ( n 2 )

n terms of the number of distance calculations. However, in the

ase of large-scale data sets, the computational cost is extremely

igh. Therefore, how to enhance the scalability of the algorithm is

 critical issue. 

The k -means algorithm [4] is one of the most efficient cluster-

ng techniques, which begins with an initial set of cluster centers

nd iteratively refines this set so as to decrease the sum of squared

rrors. It has attracted considerable interest in the literature. The

 -means algorithm minimizes the objective function F as follows: 

 (S , V ) = 

k m ∑ 

l=1 

∑ 

x i ∈ S l 
d(x i , v l ) , 

here S = { S 1 , S 2 , · · · , S k m } is a partition of X and S l ⊂ X , S l ∩ S q =
 , 

⋃ k m 
l=1 

S l = X , for 1 ≤ l � = q ≤ k m 

, V = { v l } k m l=1 
, and v l is the l th

enter of S l . The optimal minimum value of F is normally obtained

y an alternative optimization method. It relates to two updated

quations for S and V . The updated equations are expressed as fol-

ows. Given V, S is updated by 

 i ∈ S l , i f l = arg 
k m 

min 

l=1 
d(x i , v l ) , 
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Fig. 1. Approximate description of B l ( x i ). 
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or 1 ≤ i ≤ N , 1 ≤ l ≤ k m 

. Given S, V is updated by 

 l = 

∑ 

x i ∈ S l x i 

| S l | , 

or 1 ≤ l ≤ k m 

. The time complexity of the k -means algorithm is

 ( nk m 

t ), where t is the number of iterations. The algorithm only

eeds to compute the distances between points and centers, and

ts cost is very low compared to the cost of computing the dis-

ances between all the points. The performance of the k -means al-

orithm is affected by many factors. For example, the algorithm

s very sensitive to the initial cluster centers. Different initial se-

ections often lead to different clustering results. Moreover, the

 -means algorithm tends to discover spherical clusters with rela-

ively uniform sizes [35] . However, it is not suitable for other data

istributions. 

Therefore, we wish to integrate the advantages of the k -means

nd CFSFDP algorithms to rapidly find clusters with any shape. The

FSFDP algorithm searches the global space and compute the dis-

ances between all the points to determine δ and ρ . However, a

luster tends to exist in a local space, which can provide a smaller

earch range than the global space. Furthermore, to obtain an ex-

ct or approximate clustering result of the CFSFDP algorithm, we

eed not compute the distances between all the points. There-

ore, in this paper, we first use the k -means algorithm to initially

artition a given data set X into k m 

subsets, which can provide

he local space of each point and the distances between points

nd centers. We investigate how to enhance the scalability of the

FSFDP algorithm by using the local spaces instead of the global

pace and the distances between points and centers instead of

he distances between all the points. The initial partition is re-

uired to not produce an “exact” clustering result but rapidly ob-

ain k m 

subsets such that data points close to each other in the

eometrical space are likely to be placed in the same subset. Thus,

e propose that the k -means algorithm be applied with k m 

ran-

omly selected initial centers to produce an initial partition. Here,

 m 

should be larger than the number of clusters k . The larger the

alue of k m 

, the closer are the points in the same subsets in the

eometrical space. However, if k m 

is too large, the pre-processing

ost will be high. Therefore, k m 

should be considerably smaller

han n . 

. Accelerated CFSFDP algorithm 

In this section, we discuss how to rapidly obtain the “exact”

lustering results of the CFSFDP algorithm by using the approxi-

ation description. The CFSFDP algorithm needs to compute the

ensity ρ( x i ) and the separation δ( x i ) of each x i in X , in order to

elect the cluster centers and assign points to the clusters. This is

 crucial step. For ρ( x i ), the CFSFDP algorithm needs to identify

he neighborhood B ( x i ). For δ( x i ), it needs to find the point y i be-

ause δ(x i ) = d(x i , y i ) , where y i = arg min ρ(x j ) >ρ(x i ) , x j ∈ X d(x i , x j ) .

e need to calculate the distance between each point x j in X

nd x i in order to obtain the neighborhood B ( x i ) and the point y i .

he entire process requires around 2 n 2 distance calculations and is

ence very time-consuming when n is extremely large. Therefore,

here are two key issues in terms of enhancing the efficiency of

he CFSFDP algorithm: 

• How to reduce the distance calculations while computing

the ρvalues of each point . 
• How to reduce the distance calculations while computing

the δvalues of each point . 

Given an initial partition S by the k -means algorithm, let

 l (x i ) = { x j | d(x i , x j ) < d c , x j ∈ S l } be a set including the points in
 l that belong to B ( x i ). Then, we can rewrite ρ( x i ) and B ( x i ) as 

(x i ) = 

k m ∑ 

l=1 

| B l (x i ) | 

nd 

 (x i ) = 

k m ⋃ 

l=1 

B l (x i ) . 

o determine the points in S l that belong to B l ( x i ), we do not di-

ectly compute the distance between x i in S h and each x j in S l .

onsidering the triangle inequalities 

d(x i , v l ) − d(x j , v l ) 
∣∣ ≤ d(x i , x j ) ≤ d(x i , v l ) + d(x j , v l ) 

nd 

d(x i , v h ) − d(x j , v h ) 
∣∣ ≤ d(x i , x j ) ≤ d(x i , v h ) + d(x j , v h ) , 

e can estimate d ( x i , x j ) as follows. 

max { ∣∣d(x i , v l ) − d(x j , v l ) 
∣∣, ∣∣d(x i , v h ) − d(x j , v h ) 

∣∣} ≤ d(x i , x j ) 

≤ min { d(x i , v l ) + d(x j , v l ) , d(x i , v h ) + d(x j , v h ) } . 
Base on the bounds, the following inequality rules are obtained

o reduce several unnecessary operations when constructing B ( x i ): 

a) If 
∣∣d(x i , v l ) − d(x j , v l ) 

∣∣ ≥ d c or 
∣∣d(x i , v h ) − d(x j , v h ) 

∣∣ ≥ d c and x j 
∈ S l , the point x j does not belong to B l ( x i ). 

b) If d(x i , v l ) + d(x j , v l ) < d c or d(x i , v h ) + d(x j , v h ) < d c and x j ∈
S l , the point x j belongs to B l ( x i ). 

c) If d(x i , v l ) − r l ≥ d c , where r l = max x ∈ S l d(x , c l ) is the radius of

S l , no point in S l belongs to B l ( x i ). 

d) If d(x i , v l ) + r l < d c , where r l = max x ∈ S l d(x , c l ) , all the points

in S l belong to B l ( x i ). 

Similar to the rough set theory [36] , these rules are used to

uild the upper and lower approximations for each B l ( x i ), namely,

 l (x i ) and B l ( x i ), which are described as follows. 

B l (x i ) = { x j | 
∣∣d(x i , v l ) − d(x j , v l ) 

∣∣ < d c ∧ 

∣∣d(x j , v h ) 

−d(x i , v h ) | < d c , x j ∈ S l } 
nd 

B l (x i ) = { x j | d(x i , v l ) + d(x j , v l ) < d c ∨ d(x j , v h ) 

+ d(x i , v h ) < d c , x j ∈ S l } . 
e use these two sets to approximately describe B l ( x i ) (see Fig. 1 ).

 l ( x i ) denotes a set including the points that belong to B l ( x i ),

hile B l (x i ) denotes a set including the points that may belong

o B l ( x i ). Further, S l − B l (x i ) denotes a set including the points that

o not belong to B l ( x i ). These sets have the following relation 

 l (x i ) ⊆ B l (x i ) ⊆ B l (x i ) . 

ased on the above relation, an approximate boundary of B l ( x i ) can

e obtained, which is defined as follows: 

n l (x i ) = B l (x i ) − B l (x i ) . 
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According to the approximate description, we can rewrite B l ( x i ) as

follows: 

B l (x i ) = B l (x i ) ∪ { x j | d(x i , x j ) < d c , x j ∈ Bn l (x i ) } . 
When computing the exact B l ( x i ), we make the following observa-

tions: (1) the points in S l − B l (x i ) can be directly rejected to con-

struct B l ( x i ); (2) the points in B l ( x i ) can be directly accepted to

construct B l ( x i ); and (3) Bn l ( x i ) is an uncertain region. We need

to compute d ( x i , x j ) for each x j in Bn l ( x i ) to determine whether x j
belongs to B l ( x i ). This indicates that a smaller | Bn l ( x i )| value cor-

responds to a smaller number of distances that are required to be

computed. Therefore, a large number of unnecessary distance cal-

culations can be reduced by 
⋃ k m 

l=1 
B (x i ) and 

⋃ k m 
l=1 

B (x i ) for 1 ≤ l ≤
k m 

while computing the exact ρ( x i ). 

After computing ρ( x i ) for 1 ≤ i ≤ n , we discuss how to rapidly

compute δ( x i ). According to the definition of δ( x i ), we need to find

its nearest neighbor y i with higher density from the search space.

The searching cost of y i depends on the size and construction cost

of the search space. Thus, we will try to rapidly construct a very

small space including y i to reduce the searching cost. First, we de-

fine a search space including y i as follows: 

G (x i , d m 

) = { x j | ρ(x i ) < ρ(x j ) ∧ d(x i , x j ) ≤ d m 

, x j ∈ X } , 
where d m 

is the distance between x i and some point with higher

density; it controls the size of G ( x i , d m 

). If we rapidly construct

G ( x i , d m 

) with a smaller size, the computational time of y i is re-

duced. Similar to computing B ( x i ), the upper and lower approxi-

mations are constructed for each G l ( x i , d m 

), namely, G l (x i , d m 

) and

G l ( x i , d m 

), which are described as follows. 

G l (x i , d m 

) = { x j | 
∣∣d(x i , v l ) − d(x j , v l ) 

∣∣ < d m 

∧ 

∣∣d(x j , v h ) − d(x i , v h ) 
∣∣ < d m 

∧ ρ(x i ) < ρ(x j ) , x j ∈ S l } 
and 

G l (x i , d m 

) = { x j | (d(x i , v l ) + d(x j , v l ) < d m 

∨ d(x j , v h ) + d(x i , v h ) < d m 

) 
∧ ρ(x i ) < ρ(x j ) , x j ∈ S l } . 

G l ( x i , d m 

) denotes a set including the points that belong to G l ( x i ,

d m 

), while G l (x i , d m 

) denotes a set including the points that may

belong to G l ( x i , d m 

). The approximate boundary of G l ( x i , d m 

) is

given as follows: 

Gn l (x i , d m 

) = G l (x i , d m 

) − G l (x i , d m 

) . 

According to the approximate description, we can compute G l ( x i ,

d m 

) by the following relation 

G l (x i , d m 

) = G l (x i , d m 

) ∪ { x j | d(x i , x j ) < d m 

, 

x j ∈ Gn l (x i , d m 

) } . 
While computing δ( x i ), we can directly reject the points in

S l − G l (x i , d m 

) and search the region G l (x i , d m 

) for y i . However,

G l (x i , d m 

) is a large region. Therefore, we need to further reduce

the size of the search region. We know that if 

min { d(x i , v l ) + d(y , v l ) , d(x i , v h ) + d(y , v h ) } < 

max {| d(x i , v l ) − d(z , v l ) | , | d(x i , v h ) − d(z , v h ) |} , 
then d ( x i , y ) < d ( x i , z ). Thus, we define the following two sets: 

D l (x i , d m 

) = { y | min { d(x i , v l ) + d(y , v l ) , d(x i , v h ) + d(y , v h ) } 
< max {| d(x i , v l ) − d(z , v l ) | , | d(x i , v h ) − d(z , v h ) |} 
∨ max {| d(x i , v l ) − d(z , v l ) | , | d(x i , v h ) − d(z , v h ) |} 
≮ min { d(x i , v l ) + d(y , v l ) , d(x i , v h ) + d(y , v h ) } , 
∀ y , z ∈ G l (x i , d m 

) } 
nd 

D l (x i , d m 

) = { y | min { d(x i , v l ) + d(y , v l ) , d(x i , v h ) + d(y , v h ) } 
< max {| d(x i , v l ) − d(z , v l ) | , | d(x i , v h ) − d(z , v h ) |} 
∨ max {| d(x i , v l ) − d(z , v l ) | , | d(x i , v h ) − d(z , v h ) |} 
≮ min { d(x i , v l ) + d(y , v l ) , d(x i , v h ) + d(y , v h ) } , 
∀ y , z ∈ G l (x i , d m 

) } . 
ccording to the definition, we know that 

 l (x i , d m 

) ⊆ D l (x i , d m 

) ⊆ G l (x i , d m 

) . 

ecause 

d(x i , y ) < d(x i , z ) , ∀ y ∈ D l (x i , d m 

) , 

∀ z ∈ G l (x i , d m 

) − D l (x i , d m 

) 

nd 

d(x i , y ) < d(x i , z ) , ∀ y ∈ D l (x i , d m 

) , 

∀ z ∈ G l (x i , d m 

) − D l (x i , d m 

) , 

e can conclude that 

 i ∈ 

k m ⋃ 

l=1 

D l (x i , d m 

) 

nd 

(x i , y i ) ≤ min 

y ∈ ⋃ k m 
l=1 

D (x i ,d m ) 

d(x i , y ) . 

The above-mentioned expressions represent the contributions

f D l (x i , d m 

) and D l ( x i , d m 

) to the search for y i . We can find

 i in D l (x i , d m 

) , whose size is smaller than that of G l (x i , d m 

) . D

 

( x i , d m 

) can be used to update the d m 

value. We know that the

ize of G l ( x i , d m 

) depends on d m 

. If d m 1 
< d m 2 

, then G l (x i , d m 1 
) ⊆

 l (x i , d m 2 
) , G l (x i , d m 1 

) ⊆ G l (x i , d m 2 
) , and G l (x i , d m 1 

) ⊆ G l (x i , d m 2 
) .

hus, we will constantly update the d m 

value in the process of

nding y i in D l (x i , d m 

) . Before searching for it, if D l ( x i , d m 

) � = ∅ ,
e update 

 m 

= min 

y ∈ D l (x i ,d m ) 
min { d(x i , c l ) + d(y , c l ) , d(x i , c h ) + d(y , c h ) } . 

n the search process, if we find a point whose distance from x i 
s less than d m 

, we update d m 

with this distance. Thus, we can

ontinuously reduce the d m 

value and the size of the search space.

The accelerated CFSFDP algorithm is called CFSFDP+A, and it is

escribed in Algorithm 1 . The selection of k m 

initial cluster centers

oes not affect the clustering result of the CFSFDP+A algorithm but

ffects its efficiency. As the k m 

value increases, most of the points

n each subset partitioned by the k -means algorithm are more ad-

acent to each other in a local geometrical space. 

Space complexity: In the CFSFDP+A algorithm, we need to save

 partition vector P c = [ p 1 , p 2 , · · · , p n ] , where p i = l if the point x i
elongs to S l , and the distance matrix D = [ d(x i , v l )] n ×k m . This pro-

edure requires O ( nk m 

) space. Given that k m 

� n, nk m 

� n 2 . 

Time complexity: First, we apply the k -means algorithm to par-

ition the data set into k m 

subsets, which requires O ( nk m 

t ) distance

alculations, where t is the number of iterations. In this procedure,

he center v l of each subset S l (1 ≤ l ≤ k m 

) and the distances be-

ween each point x i (1 ≤ i ≤ n ) and all the centers can be ob-

ained. In the assignment of points to the clusters, O (nn 1 + nn 2 )

istance calculations are required, where n 1 ( � n ) is the average

umber of distance calculations in computing the densities of all

he points and n 2 ( � n ) is the average number of distance calcu-

ations in computing the separations of all the points. Therefore,

he proposed algorithm requires O (nk m 

t + nn 1 + nn 2 ) distance cal-

ulations. Given that the computational complexity of the original

lgorithm is O ( n 2 ) in terms of the number of distance calculations,

e may conclude that the proposed algorithm has lower computa-

ional complexity. 
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Algorithm 1: CFSFDP+A algorithm. 

Input : X , d c , k m 

Output : A clustering result 

Obtain an initial partition S by k -means; 

Save V and D = [ d(x i , v l )] n ×k m ; 

for i = 1 : n do 

F (x i ) = arg (x i ) // It will be used to save the name of the 

point that x i follows; 

for i = 1 : n do 

for l = 1 : k m 

do 

Compute Bn l (x i ) and B l (x i ) ; 

ρ(x i ) = ρ(x i ) + | B l (x i ) | ; 
for each z i ∈ Bn l (x i ) do 

Compute d(x i , z i ) ; 

if d(x i , z i ) < d c then 

ρ(x i ) = ρ(x i ) + 1 ; 

for i = 1 : n do 

Randomly select z i where ρ(z i ) > ρ(x i ) ; 

Set d m 

= min { d(x i , c r ) + d(z i , c r ) , d(x i , c h ) + d(z i , c h ) } , 
z i ∈ c r , x i ∈ c h ; 

for l = 1 : k m 

do 

Compute D l (x i , d m 

) and D l (x i , d m 

) ; 

if D l (x i , d m 

) � = Ø then 

Update d m 

; 

for each z i ∈ D l (x i , d m 

) do 

if min { d(x i , c l ) + d(z i , c l ) , d(x i , c h ) + d(z i , c h ) } ≤ d m 

then 

Compute d(x i , z i ) ; 

if d(x i , z i ) < d m 

then 

d m 

= d(x i , z i ) ; 

F (x i ) = arg (z i ) ; 

δ(x i ) = d m 

; 

Determine the number of clusters k ; 

Select a set of cluster centers including the first k points with 

higher ρ and δ; 

Assign each remaining point x i to the same cluster as its 

nearest neighbor with higher density; 

4
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Fig. 2. Density-connectivity between exemplars. 
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. Approximate CFSFDP algorithm 

Although the CFSFDP+A algorithm reduces the computational

ost of the original algorithm, it still involves a large number of

istance calculations in the case of a large-scale data set. To fur-

her enhance the scalability of the original algorithm, we propose

n approximate CFSFDP algorithm based on exemplar clustering. In

his algorithm, the centers V obtained by the k -means algorithm

re selected as exemplars to replace all the points. The key issue is

ow to simulate the clustering result of the CFSFDP algorithm by

nly computing the densities and separations of these exemplars. 

We use the density measure ρ of the original algorithm to eval-

ate the density of an exemplar. The separation measure δ of an

xemplar is different from that in the original algorithm; hence,

t needs to be redefined. The original algorithm assumes that a

oint x i may be assigned to the same cluster as its nearest point

ith higher local density. Thus, the algorithm uses their distance

o represent the separation. However, there may be several points

etween any two exemplars. Therefore, before evaluating the sepa-

ation of an exemplar, we need to consider the density connection

etween two exemplars (see Fig. 2 ). The density connection is an
mportant factor that is used to determine whether the two ex-

mplars represent the same cluster. We assume that only density-

onnected exemplars maybe in the same cluster. The density con-

ection can be defined as follows: 

efinition 1. For any two exemplars v i and v j , if they are within

he neighborhoods of each other, i.e., d ( v i , v j ) < d c , they are as-

umed to be directly density-connected. 

efinition 2. For any two exemplars v i and v j , if d c ≤ d ( v i , v h )

 2 d c and the density of their midpoint 
v i + v j 

2 is no less than

heir minimum density, they are assumed to be indirectly density-

onnected. 

Definition 1 is an assumption of the approximate algorithm

ith regard to the density connection. Here, d c denotes the er-

or tolerance of the density connection. For any two exemplars, if

heir distance is less than d c , they are density-connected by de-

ault. Otherwise, we need to evaluate their connection, according

o Definition 2 . For two exemplars, if their distance is in the in-

ernal [ d c , 2 d c ), their neighborhoods or borders are overlapped. In

his case, we introduce the midpoint between the two exemplars

s a latent exemplar. The midpoint and each exemplar are directly

ensity-connected. To judge whether they are density-connected,

e need to consider the density of their midpoint. In the origi-

al algorithm, a cluster is defined to have a center with higher

ocal density and separation, and it is surrounded by neighbors

ith lower local density. This implies that the density of points

ecreases from the center to the borders in a cluster. If the two

xemplars whose midpoint has lower density than that of the ex-

mplars are assumed to represent the same cluster, the assumption

oes not fit the definition of a cluster in the original algorithm.

herefore, we require that if two exemplars are indirectly density-

onnected, the density of their midpoint should be no less than

heir minimum density. Therefore, we present a formal description

f the density connection as follows. 

(v i , v j ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

′ cn 

′ , i f d(v i , v j ) < d c , 
′ icn 

′ , i f d c ≤ d(v i , v j ) < d c 

∧ ρ( 
v i + v j 

2 

) ≥ min (ρ(v i ) , ρ(v i )) , 

′ non 

′ , otherwise, 
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Fig. 3. Assignation of a point. 
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where ′ cn ′ denotes direct connection, ′ icn ′ denotes indirect connec-

tion, and 

′ non ′ denotes non-connection. Here, while computing the

density of the midpoint between two exemplars, we need not di-

rectly compute the distances between the points and the midpoint,

owing to the triangle median theorem: 

d(x q , 
v i + v j 

2 

) = 

√ 

1 

2 

d 2 (x q , v i ) + 

1 

2 

d 2 (x q , v j ) −
1 

4 

d 2 (v i , v j ) . 

On the basis of the above-mentioned definitions, for an exem-

plar, we will use the distance between it and its nearest exemplar

with higher density and density connection to represent its sepa-

ration. Therefore, the separation measure is defined as follows: 

δ(v i ) = 

⎧ ⎨ 

⎩ 

min 

ρ(v j ) >ρ(v i ) ∧ ζ (v i , v j ) � = ′ non ′ 
d(v i , v j ) , 

max 
v j ∈ v 

d(v i , v j ) , otherwise. 
(3)

After the exemplars are organized, we will assign the points to

clusters by their minimum distance with exemplars. For a point, if

the distance between it and its nearest exemplar is less than 2 d c , it

is in the neighborhood of the border point that the exemplar rep-

resents. Thus, it is assigned to the cluster that the exemplar repre-

sents. Otherwise, the point is assumed as noise (see Fig. 3 ). 

The density-exemplar algorithm (CFSFDP+DE) is described in

Algorithm 2 . The random selection of k m 

initial cluster centers

Algorithm 2: CFSFDP+DE algorithm. 

Input : X , d c , k m 

Output : A clustering result 

Obtain an initial partition S by k -means with the radius 

constraint; 

Save V and D = [ d(x i , v l )] n ×k m ; 

for i = 1 : n do 

F (v l ) = arg (v l ) // It will be used to save the name of the 

exemplar that v l follows; 

Compute ρ(v l ) for each exemplar v l ; 

Compute δ(v l ) and determine F (v l ) for each exemplar v l ; 

Determine the number of clusters k ; 

Select the first k exemplars with higher ρ and δ as cluster 

centers; 

Assign each remaining v l to the same cluster as its nearest 

exemplar with higher density and density connection; 

for i = 1 : n do 

Compute v l = arg min v l ∈ v d(x i , v l ) ; 

if d(x i , v l ) < 2 d c then 

Assign x i to the cluster that v l represents; 
b  
oes not affect the clustering efficiency of the algorithm but affects

ts clustering effectiveness. 

The space complexity of the algorithm is the same as that

f the CFSFDP+A algorithm. The time complexity is O (nk m 

t + k 2 m 

) .

ince k m 

� n , the CFSFDP+DE algorithm offers greater scalability

n clustering large-scale data sets than the CFSFDP and CFSFDP+A

lgorithms. 

. Experimental analysis 

.1. Experimental environment 

In this section, we verify the effectiveness and efficiency of

he proposed algorithms on several synthetic and real data sets

 Table 1 ) that were downloaded from [37,38] . Figs. 4 and 5 show

he cluster distribution of these synthetic two-dimensional data

ets. 

The experiments were conducted on an Intel i7-4710MQ com-

uter with 16G RAM and MATLAB 2012b. In the experiments, we

sed the maximum possible number of clusters to set k m 

for

FSFDP+A and CFSFDP+DE. In the literature [39,40] , many schol-

rs have indicated that there are few guidelines for setting k m 

; a

ule of thumb used in many studies is k m 

≤ √ 

n . In [41] , the au-

hors have provided a theoretical explanation for this rule. Thus,

e set k m 

= � √ 

n � . For the CFSFDP, CFSFDP+A, and CFSFDP+DE al-

orithms, we selected the first k points or exemplars with higher

ensity and separation as the cluster centers, where k was set by

onsidering the number of classes in the data set. 

.2. Clustering effectiveness 

In the effectiveness analysis, we compared the clustering per-

ormance of the DBSCAN, OPTICS, CFSFDP, DGB, CFSFDP+A, and

FSFDP+DE algorithms on several data sets. We considered four va-

idity measures [42,43] , namely, accuracy (AC), precision (PE), ad-

usted rand index (ARI) and normalized mutual information (NMI),

o evaluate the clustering effectiveness of the algorithms. Let X

e a data set, let C = { C 1 , C 2 , · · · , C k } be a clustering result of X ,

et P = { P 1 , P 2 , · · · , P k } be a partition of the original classes in X ,

et n ij be the number of common points of groups C i and P j :

 i j = | C i ∩ P j | , let b i be the number of points in C i , and let d j be

he number of points in P j . The validity measures are defined as 

C = 

1 

n 

k ∑ 

i =1 

k 
max 

j=1 
n i j , 

 E = 

1 

k 

k ∑ 

i =1 

k 
max 

j=1 
n i j 

b j 
, 

RI = 

∑ 

i j 

(
n i j 

2 

)
− [ 

∑ 

i 

(
b i 
2 

)∑ 

j 

(
d j 
2 

)
] / 

(
n 
2 

)
1 
2 

[ 
∑ 

i 

(
b i 
2 

)
+ 

∑ 

j 

(
d j 
2 

)
] − [ 

∑ 

i 

(
b i 
2 

)∑ 

j 

(
d j 
2 

)
] / 

(
n 
2 

) , 

MI = 

2 

∑ k 
i =1 

∑ k 
j=1 

n i j 

n 
log 

n i j n 

b i d j ∑ k 
i =1 − b i 

n 
log b i 

n 
+ 

∑ k 
j=1 − d j 

n 
log 

d j 
n 

. 

he DBSCAN, OPTICS, CFSFDP, CFSFDP+A, and CFSFDP+DE al-

orithms are required to input the parameter d c . We esti-

ated the d c value using d̄ = 

1 
n 

∑ n 
i =1 d(x i , = x ) , where = x =

 n 
j=1 

x j 
n , and we used the Euclidean distance as d . However,

hese algorithms may need different d c values. Thus, we tested

ach of these algorithms with 10 different d c values, i.e., d c =
 ̄, d̄ / 2 , d̄ / 3 , d̄ / 4 , d̄ / 5 , d̄ / 6 , d̄ / 7 , d̄ / 8 , d̄ / 9 , d̄ / 10 , and we selected the

est clustering result for comparison. The DGB algorithm requires
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Table 1 

Description of data sets. 

Type Data set Points Clusters Dimensions 

Curve 2,0 0 0 2 2 

Synthetic two- Aggregation 788 7 2 

dimensional data Flame 240 2 2 

S1 5,0 0 0 15 2 

Synthetic high- DIM1 1024 16 32/64/128/256/512/1024 

dimensional data DIM2 20,0 0 0 4 32/64/128/256/512/1024 

UCI data Statlog 6435 7 36 

Handwritten Digits 5,620 10 64 

Shuttle 58,0 0 0 7 9 

KDD-CUP’99 1,048,576 3 40 

Fig. 4. Distributions of four synthetic data: (a) Curve. (b) Aggregation. (c) Flame. (d) S1. 
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everal parameters. According to the suggestion of the authors, we

et the number of grids to 22, the grid length to 1.1, and the best

utoff factor from the interval [0.1, 0.5]. Because the DGB algorithm

an only cluster two-dimensional data, we compared the proposed

lgorithms with it on such data sets. 

Tables 2 and 3 summarize the clustering accuracies of these al-

orithms on the synthetic two-dimensional and UCI data sets in

erms of the indices AC, PE, ARI, and NMI. According to these re-

ults, we can see that (1) CFSFDP is superior to DBSCAN and OP-

ICS on most of the tested data sets; (2) the clustering results of

FSFDP+A are the same as those of CFSFDP; (3) although the clus-

ering results of CFSFDP+DE are affected by different initial cluster

enters, its average clustering results are close to those of CFSFDP;

t  

o  
4) DGB loses its clustering accuracy to some extent compared to

FSFDP. 

.3. Clustering efficiency 

Firstly, we tested the clustering speeds of DBSCAN, OPTICS, and

FSFDP with the KD-Tree accelerating index structure. Further-

ore, we compared their clustering efficiency with that of the pro-

osed algorithms CFSFDP+A and CFSFDP+DE. We considered two

ndices, i.e., the running time (s) and number of distance calcula-

ions, to evaluate the clustering efficiency of different algorithms.

ote that for a large-scale data set, some algorithms cannot ob-

ain the clustering results within an acceptable time. Therefore, in

ur experiments, if the running time of an algorithm was longer



382 L. Bai et al. / Pattern Recognition 71 (2017) 375–386 

Fig. 5. (a) Two-dimensional distribution of the DIM1 data. (b) Two-dimensional distribution of the DIM2 data. 

Table 2 

Clustering effectiveness of algorithms on synthetic two-dimensional data 

sets. 

Data set Algorithm AC PE ARI NMI 

Curve DBSCAN 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

OPTICS 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

CFSFDP 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

CGB 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

CFSFDP + A 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 

CFSFDP + DE 0.9985 0.9985 0.9940 0.9911 

Aggregation DBSCAN 0.8274 0.8899 0.8089 0.8894 

OPTICS 0.8274 0.8899 0.8089 0.8894 

CFSFDP 0.9937 0.9880 0.9876 0.9823 

CGB 0.9898 0.9571 0.9706 0.9643 

CFSFDP + A 0.9937 0.9880 0.9876 0.9823 

CFSFDP + DE 0.9894 0.9863 0.9664 0.9767 

Flame DBSCAN 0.6458 0.8214 0.0128 0.0242 

OPTICS 0.6458 0.8214 0.0128 0.0242 

CFSFDP 0.9917 0.9935 0.9666 0.9355 

CGB 0.9833 0.9342 0.9120 0.8241 

CFSFDP + A 0.9917 0.9935 0.9666 0.9355 

CFSFDP + DE 0.9204 0.9403 0.7514 0.7369 

S1 DBSCAN 0.9350 0.9429 0.8846 0.9167 

OPTICS 0.9350 0.9429 0.8846 0.9167 

CFSFDP 0.9928 0.9930 0.9846 0.9851 

CGB 0.9524 0.9439 0.9186 0.9336 

CFSFDP + A 0.9928 0.9930 0.9846 0.9851 

CFSFDP + DE 0.9610 0.9760 0.9486 0.9751 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Clustering effectiveness of algorithms on UCI data sets. 

Data set Algorithm AC PE ARI NMI 

Statlog DBSCAN 0.4437 0.8769 0.1463 0.3327 

OPTICS 0.4437 0.8769 0.1463 0.3327 

CFSFDP 0.7616 0.8233 0.5749 0.6202 

CFSFDP + A 0.7616 0.8233 0.5749 0.6202 

CFSFDP + DE 0.7476 0.7732 0.5736 0.6033 

Digits DBSCAN 0.7141 0.8934 0.5052 0.7163 

OPTICS 0.7141 0.8934 0.5052 0.7163 

CFSFDP 0.8041 0.8688 0.7584 0.8645 

CFSFDP + A 0.8041 0.8688 0.7584 0.8645 

CFSFDP + DE 0.7946 0.8505 0.7429 0.8569 

Shuttle DBSCAN 0.9992 0.9506 0.9677 0.8917 

OPTICS 0.9992 0.9506 0.9677 0.8917 

CFSFDP 0.9999 0.9995 0.9998 0.9985 

CFSFDP + A 0.9999 0.9995 0.9998 0.9985 

CFSFDP + DE 0.9692 0.9702 0.9692 0.9599 

KDD-CUP’99 DBSCAN 0.9918 0.9869 0.5487 0.5662 

OPTICS 0.9921 0.9882 0.5739 0.5822 

CFSFDP 0.9885 0.9925 0.7140 0.7365 

CFSFDP + A 0.9885 0.9925 0.7140 0.7365 

CFSFDP + DE 0.9868 0.9913 0.7112 0.7327 
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than 24 h, we terminated it and set the values of the two indices

as ‘NA’. Further, we used the built-in function KD-Tree in MATLAB

to accelerate the DBSCAN, OPTICS, and CFSFDP algorithms. Thus,

we could not count their numbers of distance calculations. We set

the index values of these algorithms as ‘NA’. The selection of k m 

initial cluster centers affects the efficiency of the CFSFDP+A algo-

rithm and the effectiveness of the CFSFDP+DE algorithm. Therefore,

we randomly produced 20 sets of k m 

initial cluster centers for each

data set and computed their average values for each of the above-

mentioned indices. 

Tables 4 and 5 list the clustering times and the numbers of

computed distances for different algorithms on the given data

sets. According to these results, we can see that (1) the improve-

ment in the efficiency of some algorithms owing to the KD-Tree

index structure is not obvious, because the index structure in-

volves additional computational costs and is not suitable for high-

dimensional data; (2) the clustering speed of DGB is lower than

that of CFSFDP+A on the tested data sets, except S1; (3) CFSFDP+A

can reduce a number of distance calculations while retaining the
ame clustering results as CFSFDP; and (4) CFSFDP+DE is the most

fficient algorithm. 

Furthermore, we tested CFSFDP, CFSFDP+KD, DBSCAN+KD, OP-

ICS+KD, CFSFDP+A, and CFSFDP+DE on the KDD-CUP’99 data set.

ig. 6 shows the clustering speeds of different algorithms on the

DD-CUP’99 data set with different numbers of points (no more

han 10,0 0 0). According to the figure, we can see that the effi-

iency of the proposed algorithms increases with the number of

oints. Tables 6 and 7 summarize the clustering efficiency of dif-

erent algorithms on the KDD-CUP’99 data set with different num-

ers of points (no less than 10 0,0 0 0). We can see that only the

roposed algorithms can deal with the data set including more

han 10 0,0 0 0 points within an acceptable time. Moreover, when

he number of points reaches 80 0,0 0 0, only the CFSFDP+A algo-

ithm is applicable. 

Finally, to show the effect of the number of dimensions on

he efficiency of the proposed algorithms, we tested the scalability

ith different numbers of dimensions (32, 64, 128, 256, 512, and

024) on the two synthetic data sets DIM1 and DIM2. The DIM1

ata set has been used in [44] . The two-dimensional distributions

f these data are shown in Fig. 5 . DIM1 with different dimensions

ncludes the same points (n = 1024) and Gaussian clusters (k =
6). Similarly, DIM2 with different dimensions includes the same
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Table 4 

Clustering efficiency of algorithms on synthetic two- 

dimensional data sets. 

Data set Algorithm # of Distances Seconds 

Curve CFSFDP 3,998,0 0 0 0.3510 

CFSFDP + KD NA 0.5170 

DBSCAN + KD NA 1.0150 

OPTICS + KD NA 2.3450 

DGB NA 0.3320 

CFSFDP + A 887,664 0.2090 

CFSFDP + DE 715,916 0.0240 

Aggregation CFSFDP 620,156 0.0650 

CFSFDP + KD NA 0.1590 

DBSCAN + KD NA 0.2440 

OPTICS + KD NA 0.6790 

DGB NA 0.0630 

CFSFDP + A 150,481 0.0480 

CFSFDP + DE 88,634 0.0200 

Flame CFSFDP 57,360 0.0040 

CFSFDP + KD NA 0.0400 

DBSCAN + KD NA 0.0810 

OPTICS + KD NA 0.2490 

DGB NA 0.0150 

CFSFDP + A 22,344 0.0080 

CFSFDP + DE 14,505 0.0040 

S1 CFSFDP 24,995,0 0 0 2.1440 

CFSFDP + KD NA 2.2460 

DBSCAN + KD NA 3.3070 

OPTICS + KD NA 5.3550 

CFSFDP + KD NA 2.2460 

DGB NA 0.2300 

CFSFDP + A 2,624,762 1.1650 

CFSFDP + DE 1,402,415 0.0470 

Table 5 

Clustering efficiency of algorithms on UCI data sets. 

Data set Algorithm # of Distances Seconds 

Statlog CFSFDP 41,402,790 27.9840 

CFSFDP + KD NA 24.9990 

DBSCAN + KD NA 7.8180 

OPTICS + KD NA 15.5670 

CFSFDP + A 8,517,991 4.9670 

CFSFDP + DE 2,062,360 0.2890 

Digits CFSFDP 31,578,780 64.5790 

CFSFDP + KD NA 64.4760 

DBSCAN + KD NA 18.8570 

OPTICS + KD NA 45.6120 

CFSFDP + A 14,601,750 33.9130 

CFSFDP + DE 1,666,221 0.3800 

Shuttle CFSFDP 3,363,90 0,0 0 0 1,045.50 0 0 

CFSFDP + KD NA 1,0 0 0.50 0 0 

DBSCAN + KD NA 451.6100 

OPTICS + KD NA 1,181.60 0 0 

CFSFDP + A 205,107,293 371.3650 

CFSFDP + DE 55,708,680 2.1050 

Fig. 6. Computational times for different numbers of points on the KDD-CUP’99 

data set. 
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Table 6 

Clustering time (s) of algorithms on the KDD-CUP’99 data set.

Algorithm n = 10 0,0 0 0 n = 30 0,0 0 0 n = 50 0,0 

CFSFDP 11,342.02 NA NA 

CFSFDP + KD 13,791.22 NA NA 

DBSCAN + KD 5,962.23 NA NA 

OPTICS + KD 6,482.13 NA NA 

CFSFDP + A 1,425.31 12,946.14 38,373.85 

CFSFDP + DE 9.09 37.66 99.44 
oints (n = 20,0 0 0) and Gaussian clusters (k = 4). Fig. 7 (a) shows

hat the CFSFDP+A and CFSFDP+DE algorithms exhibit better scala-

ility with increasing dimensions, compared with the original algo-

ithm. However, only a slight difference is observed in the efficien-

ies of the two proposed algorithms on the DIM1 data set, because

t only includes 1024 points. Fig. 7 (b) shows that the CFSFDP+DE

lgorithm is obviously faster than the CFSFDP+A algorithm on the

ata set including 20,0 0 0 points. Thus, the experimental results

ndicate that the efficiency of the CFSFDP+DE algorithm increases

ith the size of the data set. 

. Conclusions 

In this paper, we proposed two new algorithms based on the k -

eans algorithm in order to enhance the scalability of the CFSFDP

lgorithm. The first algorithm is the CFSFDP+A algorithm, which

ses an acceleration mechanism based on concept approxima-

ion. The CFSFDP+A algorithm can rapidly obtain the same cluster-

ng results as the original algorithm. The second algorithm is the

ensity-exemplar clustering algorithm (CFSFDP+DE), which uses 

xemplar clustering to obtain approximate clustering results of the

riginal algorithm. The CFSFDP+DE algorithm can rapidly cluster

 large-scale data set while ensuring only a slight loss in pre-

ision. We tested the two proposed algorithms on several syn-

hetic and real data sets. The experimental results showed that

he CFSFDP+A algorithm requires a shorter computational time and

ewer distance calculations while retaining the same clustering re-

ults as the original algorithm, and the CFSFDP+DE algorithm can

btain the approximate clustering results in the shortest time and

ith the fewest distance calculations, compared to the CFSFDP and

FSFDP+A algorithms. 
 

0 0 n = 70 0,0 0 0 n = 90 0,0 0 0 n = 1,040,0 0 0 

NA NA NA 

NA NA NA 

NA NA NA 

NA NA NA 

70,190.53 NA NA 

217.13 337.72 495.26 
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Table 7 

Number of distance calculation of algorithms on the KDD-CUP’99 data set. 

Algorithm n = 10 0,0 0 0 n = 30 0,0 0 0 n = 50 0,0 0 0 n = 70 0,0 0 0 n = 90 0,0 0 0 n = 1,040,0 0 0 

CFSFDP 9,999,90 0,0 0 0 NA NA NA NA NA 

CFSFDP + KD NA NA NA NA NA NA 

DBSCAN + KD NA NA NA NA NA NA 

OPTICS + KD NA NA NA NA NA NA 

CFSFDP + A 631,269,045 4,819,950,480 12,450,461,789 23,890,0 0 0,051 NA NA 

CFSFDP + DE 158,049,770 820,649,331 1,767,749,571 2,926,349,030 4,266,448,878 5,299,318,671 

Fig. 7. (a) Computational times for different numbers of dimensions on the DIM1 data. (b) Computational times for different numbers of dimensions on the DIM2 data. 
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