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APPLICATIONS OF INCLUSION DEGREE IN ROUGH
SET THEORY

JIYE LIANG, ZHONGZHI SHI AND DEYU LI

Abstract. Rough set theory is a relatively new mathematical tool
for use in computer applications in circumstances which are charac-
terized by vagueness and uncertainty. In this paper, applications of
inclusion degree in rough set theory are discussed, the relationships
among inclusion degree, measures on rough set theory and some gen-
eralized rough set models are established. These results will be very
helpful for people to understand the essence of rough set theory, and
can be regarded as the uniformly theoretical foundation of measures
defined in rough set theory. Copyright c©2002 Yang’s Scientific Re-
search Institute, LLC. All rights reserved.

1. Introduction

Rough set theory, introduced by Z. Pawlak (see [1,2]), has often proved
to be an excellent mathematical tool for the analysis of a vague descrip-
tion of objects. The adjective vague, referring to the quality of information,
means inconsistency or ambiguity which follows from information granu-
lation in a knowledge system. The rough sets philosophy is based on the
assumption that with every object of the universe there is associated a cer-
tain amount of information (data, knowledge) expressed by means of some
attributes used for object description. Objects having the same description
are indiscernible with respect to the available information. The indiscerni-
bility relation modelling the indiscernibility of objects thus constitutes a
mathematical basis of rough set theory; it induces a partition of the uni-
verse into blocks of indiscernible objects, called elementary sets, that can
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be used to build knowledge about a real or abstract world. The use of the
indiscernibility relation results in information granulation.

Any subset X of the universe may be expressed in terms of these blocks
either precisely (as a union of elementary sets) or approximately only. In the
latter case, the subset X may be characterized by two ordinary sets, called
lower and upper approximations. A rough set is defined by means of these
two approximations. The lower approximation of X is composed of all the
elementary sets included in X (whose elements, therefore, certainly belong
to X), while the upper approximation of X consists of all the elementary
sets which have a non-empty intersection with X (whose elements, therefore,
may belong to X). Obviously, the difference between the upper and lower
approximations constitutes the boundary region of the rough set, whose
elements can not be characterized with certainty as belonging or not to X,
using the available information. The information about objects from the
boundary region is, therefore, inconsistent or ambiguous. The cardinality
of the boundary region states, moreover, to what extent it is possible to
express X in exact terms, on the basis of the available information. For
this reason, this cardinality may be used as a measure of vagueness of the
information about X.

Rough set theory has many interesting applications. It is turning out
to be methodologically significant to artificial intelligence and cognitive
science, especially in the representation of and reasoning with vague and
/or imprecise knowledge, machine learning, knowledge acquisition, decision
analysis, knowledge discovery from databases, expert systems and pattern
recognition (see[2, 7-11]). It seems of particular importance to decision sup-
port systems and data mining. The main advantage of rough set theory
is that it does not need any preliminary or additional information about
data, i.e., like probability in statistics, basic probability assignment in the
Dempster-Shafer evidence theory, grade of membership, or the value of pos-
sibility in fuzzy set theory (see[3]). The theory is also proving to be of
substantial importance in many areas of applications (see[2,7,8]).

In this paper, we discuss mainly applications of inclusion degree in rough
set theory. The relationships between inclusion degree and each of various
measures in rough set theory, such as degree of rough belonging, accuracy
and quality of approximation of classification, dependency and importance
of attributes, and accuracy and coverage of a decision rule, are established.
The fact that the variable precision rough set model can also be redefined
by using the concept of inclusion degree is pointed out in Section 9. These
results will be very helpful for people to understand the essence of rough
set theory, and can be regarded as the uniformly theoretical foundation of
measures which are defined in rough set theory.



APPLICATIONS OF INCLUSION DEGREE IN ROUGH SET THEORY 69

2. Inclusion Degree

An approximate mereological calculus called rough mereology (i.e., the-
ory of rough inclusions) has been proposed as a formal treatment of the
hierarchy of relations of being a part in a degree (see [12-14]). The degree
of inclusion is a particular case of inclusion in a degree (rough inclusion)
basic for rough mereology. The concept of inclusion degree based on par-
tially ordered relation was proposed in [15] for approximate reasoning. By
a slight adjustment of this concept, we introduce a definition of inclusion
degree into rough set data analysis.

A partial order on a set L is a binary relation ¹ with the following
properties:

x ¹ x (Reflexive),
x ¹ y and y ¹ x imply x = y (Antisymmetric), and
x ¹ y and y ¹ z imply x ¹ z (Transitive).

Definition 1. Let (L,¹) be a partially ordered set. If, for any a, b ∈ L,
there is a real number D(b/a) with the following properties:

(1) 0 ≤ D(b/a) ≤ 1,
(2) a ¹ b implies D(b/a) = 1,
(3) a ¹ b ¹ c implies D(a/c) ≤ D(a/b), and
(4) a ¹ b implies D(a/c) ≤ D(b/c) for ∀c ∈ L,

then D is called an inclusion degree on (L,¹).

In Definition 1, (1) is normalization for inclusion degree; (2) states the
property of consistency between inclusion degree and standard inclusion;
and (3) and (4) state the property of monotonicity of inclusion degree.

Inclusion degree is practically a measure on partially ordered relation,
but it has more important applications than partially ordered relation.

Example 1. Let U be a finite set, F = {X| X ⊆ U}, and ⊆ is a partially
ordered relation on F . For ∀X, Y ∈ F , we define

(1) D0(Y/X) =

{
|Y ∩X|
|X| , if X 6= ∅,
1, if X = ∅,

where |X| denotes the cardinality of X.
It is easy to see that D0 is an inclusion degree on (F,⊆). In [12], D0 is

regarded as a particular case of rough inclusions.
Example 2. Let U be a finite set, G denote the set of all partitions on U ,
X = {X1, X2, · · · , Xn} ∈ G and Z = {Z1, Z2, · · · , Zm} ∈ G. A partially
ordered relation ¹ on G is defined as

X ¹ Z if and only if, for ∀Xi ∈ X, there exists Zj ∈ Z such that Xi ⊆ Zj .
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Let D0 be an inclusion degree on (F,⊆), where F = {X| X ⊆ U}. For
∀X, Z ∈ G, define

(2) D1(Z/X) =
n∧

i=1

m∨

j=1

D0(Zj/Xi),

then D1 is an inclusion degree on (G,¹).
In fact, we have
(1) From 0 ≤ D0(Zj/Xi) ≤ 1, it follows that 0 ≤ D1(Z/X) ≤ 1.
(2) Let X = {X1, X2, · · · , Xn} ∈ G , Z = {Z1, Z2, · · · , Zm} ∈ G and

X ¹ Z. For every Xi ∈ X there exists a Zj ∈ Z such that Xi ⊆ Zj , i.e.,
m∨

j=1

D0(Zj/Xi) = 1, hence D1(Z/X) = 1. (3) Let X = {X1, X2, · · · , Xn} ∈
G, Z = {Z1, Z2, · · · , Zm} ∈ G, Y = {Y1, Y2, · · · , Yl} ∈ G and X ¹ Z ¹ Y .
Then, for every Xi ∈ X, there exist Zj ∈ Z and Yp ∈ Y such that Xi ⊆
Zj ⊆ Yp. Since D0 is an inclusion degree on (F,⊆), we have that

D0(Xi/Yp) ≤ D0(Xi/Zj).

Hence
D1(X/Y ) ≤ D1(X/Z).

(4) Let X = {X1, X2, · · · , Xn} ∈ G, Z = {Z1, Z2, · · · , Zm} ∈ G and
X ¹ Z. Let Y = {Y1, Y2, · · · , Yl} ∈ G. For arbitrary Xi ∈ X, Zj ∈ Z and
Yp ∈ Y satisfying Xi ⊆ Zj , since D0 is an inclusion degree on (F,⊆), we
have

D0(Xi/Yp) ≤ D0(Zj/Yp).

Hence
D1(X/Y ) ≤ D1(Z/Y ).

By Definition 1, D1 is an inclusion degree on (G,¹).
Rough inclusions and inclusion degree have some common characteristics

on measure, but rough inclusions is more appropriate for reasoning about
complex structures, inclusion degree is more appropriate for measure on
partially ordered relations.

3. Basic Concepts of Rough Set Theory

Formally, an information system is an ordered quadruple S = (U,A, V, f),
where:

U is a non-empty finite set of objects;
A is a non-empty finite set of attributes;
V is the union of attribute domains, i.e., V =

⋃
Va for every a ∈ A,

where Va denotes the domain of the attribute a;
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f : U × A → V is an information function which associates an unique
value of each attribute with every object belonging to U , i.e., ∀a ∈ A and
x ∈ U , f(x, a) ∈ Va.

Each subset of attributes P ⊆ A determines a binary indiscernibility
relation IND(P ) as follows

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)}.
Obviously IND(P ) is an equivalence relation on the set U and

IND(P ) =
⋂

a∈P

IND({a}).

The relation IND(P ), P ⊆ A, constitutes a partition of U , which we
will denote by U/IND(P ). Any element from U/IND(P ) will be called an
equivalence class. Let [x]IND(P ) denote the equivalence class of the relation
IND(P ) containing the element x.

Let P ⊆ A and X ⊆ U . Then P−lower and P−upper approximation of
X is defined respectively as follows:

PX =
⋃
{E| E ∈ U/IND(P ), E ⊆ X}

and
PX =

⋃
{E| E ∈ U/IND(P ), E ∩X 6= ∅}.

The set BNP (X) = PX − PX will be called the P−boundary region of
X. The set NEG(P )(X) = U−PX will be called the P− negative region of
X. The set PX is the set of all elements of U , which can be with classified
certainty as elements of X with respect to the values of attributes from P ;
the set PX consists of those elements of U which can be possibly defined as
elements of X with respect to the values of attributes from P ; and BNP (X)
is the set of elements which can be classified neither in X nor in U −X on
the basis of the values of attributes from P . Finally, NEGP (X) is the set
of elements which certainly do not belong in X with respect to the values
of attributes from P .

For P ⊆ A and X ⊆ U , the P−lower approximation of X, the P−upper
approximation of X , the P−boundary of X, and the P− negative region
of X can be expressed by inclusion degree as follows:

PX =
⋃
{E| E ∈ U/IND(P ), D0(X/E) = 1},

PX =
⋃
{E| E ∈ U/IND(P ), D0(X/E) > 0},

BNP (X) =
⋃
{E| E ∈ U/IND(P ), 0 < D0(X/E) < 1},

and
NEGP (X) =

⋃
{E| E ∈ U/IND(P ), D0(X/E) = 0}.
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4. Inclusion Degree and Accuracy Measure of Rough Set,
Degree of Rough Belonging

Let S = (U,A, V, f) be an information system, P ⊆ A, and X ⊆ U . The
accuracy measure of rough set X with respect to P (see[1]) is defined as

(3) αP (X) =
|PX|
|PX| ,

where X 6= ∅.
It is easy to show that

αP (X) =
|PX ∩ PX|
|PX| = D0(PX/PX).

The degree of rough belonging of x ∈ X about X with respect to P
(see[1]) is defined as

(4) µP
X(x) =

|X ∩ [x]IND(P )|
|[x]IND(P )|

.

It follows obviously that

µP
X(x) = D0(X/[x]IND(P )).

Hence, αP (X) and µP
X(x) can be reduced to inclusion degree.

5. Inclusion Degree and Accuracy of Approximation of
Classification, Quality of Approximation of Classification

Let S = (U,A, V, f) be an information system, and P ⊆ A. Let Y =
{Y1, Y2, · · · , Yn} be a classification, or partition, of U . The origin of this
classification is independent from attributes contained in P . Subsets Yi, i =
1, 2, · · · , n, are classes of classification Y . By P−lower and P−upper ap-
proximation of Y in S we mean sets PY = {PY1, PY2, · · · , PYn} and
PY = {PY1, PY2, · · · , PYn}, respectively. The coefficient

(5) dP (Y ) =

n∑
i=1

|PYi|
n∑

i=1

|PYi|

is called the accuracy of approximation of classification Y by the set of
attributes P (see[1]), or in short, accuracy of classification. It expresses
the possible correct decisions when the classified objects possess the set of
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attributes P .
The coefficient

(6) γP (Y ) =

n∑
i=1

|PYi|
|U |

is called the quality of approximation of classification Y by the set of at-
tributes P (see[1]), or in short, quality of classification. It expresses the
percentage of objects which can be correctly classified into class Y employ-
ing the set of attributes P .

Let Y = {Y1, Y2, · · · , Yn} be a classification, or partition, of U . Let F =
{{F1, F2, · · · , Fn}| Fi ⊆ Yi, i = 1, 2, · · · , n}, X = {X1, X2, · · · , Xn} ∈ F
and Z = {Z1, Z2, · · · , Zn} ∈ F .

A partially ordered relation ¹ on F is defined as follows:

X ¹ Z if and only if Xi ⊆ Zi, i = 1, 2, · · · , n.

For ∀X, Z ∈ F , define

(7) D2(X/Z) =
|(

n⋃
i=1

Xi) ∩ (
n⋃

i=1

Zi)|

|
n⋃

i=1

Zi|
.

It can be easily shown that D2 is an inclusion degree on (F,¹).
Since dP (Y ) = D2(PY/PY ) and γP (Y ) = D2(PY/Y ), dP (Y ) and γP (Y )

can be reduced to inclusion degree.

6. Inclusion Degree and Measure of Dependency of Attributes

An information system S = (U,A, V, f) can be seen as a decision table
assuming that A = C ∪ D and C ∩ D = ∅, where C is called the set of
condition attributes, and D is called the set of decision attributes. Let
P ⊆ C and Q ⊆ D. The measure of dependency between P and Q (see[1])
is defined as

(8) γ(P, Q) =
|POSP (Q)|

|U | ,

where POSP (Q) =
⋃{PY | Y ∈ U/IND(Q)}.

Let G denote the set of all partitions on U , X = {X1, X2, · · · , Xn} ∈ G
and Z = {Z1, Z2, · · · , Zm} ∈ G. A partially ordered relation ¹ on G is
defined as follows:

X ¹ Z if and only if, for ∀Xi ∈ X, there exists Zj ∈ Z such that Xi ⊆ Zj .
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For ∀X, Z ∈ G, define

(9) D3(Z/X) =

| ⋃
Zj∈Z

(
⋃

Xi⊆Zj

Xi)|

|U | .

Then D3 is an inclusion degree on (G,¹) (see[18]).
Since γ(P, Q) = D3((U/IND(Q))/(U/IND(P ))), γ(P, Q) can be re-

duced to inclusion degree, i.e., the degree of including of partition U/IND(Q)
to partition U/IND(P ).

Remark. Let P → Q denote functional dependency between P and Q.
Then P → Q if and only if D3((U/IND(Q))/(U/IND(P ))) = 1.

7. Inclusion Degree and Measure of Importance of Attributes

Let S = (U,A, V, f) be a decision table with A = C ∪D and C ∩D = ∅,
where C is the set of condition attributes and D is the set of decision
attributes.

The measure of importance of condition attributes C ′ ⊆ C with respect
to decision attributes D is defined as follows(see[1]):

(10) γ(C, D)− γ(C − C ′, D).

In particular, when C ′ = {c}, γ(C,D)− γ(C − {c}, D) is the measure of
importance of attribute c ⊆ C with respect to D.

Since

γ(C, D)− γ(C − C ′, D) = D3((U/IND(D))/(U/IND(C)))
−D3((U/IND(D))/(U/IND(C − C ′))),

γ(C, D)− γ(C −C ′, D) can be reduced to computation of inclusion degree.
Let D∗ denote a inclusion degree D1 or D3 on (G,¹). A new measure of

importance of an attribute can be resulted in from D∗ as follows.
Let S = (U,A, V, f) be an information system. Given an attribute a ∈ A,

the importance of attribute a in A is defined as

sigA−{a}(a) = 1−D∗((U/IND(A))/(U/IND(A− {a}))).

Remark. Let S = (U,A, V, f) be an information system. An attribute a
in A is a core attribute if and only if sigA−{a}(a) > 0.

Let S = (U,A, V, f) be a decision table with A = C ∪D and C ∩D = ∅.
Given an attribute a ∈ C, the importance of attribute a in C with respect
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to D is defined as

sigC−{a}(a) = 1−D∗((U/IND(D))/(U/IND(C − {a})))
/D∗((U/IND(D))/(U/IND(C))).

Remark. Let S = (U,A, V, f) be a decision table with A = C ∪ D and
C ∩D = ∅. An attribute a in C with respect to D is a core attribute if and
only if sigC−{a}(a) > 0.

8. Inclusion Degree and Accuracy and Coverage of Decision
Rule

Let S = (U,A, V, f) be a decision table with A = C ∪D and C ∩D = ∅,
where C is the set of condition attributes and D is the set of decision
attributes.

Let U/IND(C) = {X1, X2, · · · , Xn} and U/IND(D) = {Y1, Y2, · · · , Ym}
denote the partitions on U induced respectively by the equivalence rela-
tions IND(C) and IND(D). The expression rij : DesC(Xi) → DesD(Yj)
is called a (C, D)− decision rule in S if Xi ∩ Yj 6= ∅, where DesC(Xi)
and DesD(Yj) are unique descriptions of the classes Xi and Yj respectively
(i = 1, 2, · · · , n; j = 1, 2, · · · ,m). The set of decision rules {rij} for each
decision class Yj (j = 1, 2, · · · ,m) can be defined as

{rij} = {DesC(Xi) → DesD(Yj)| Yj ∩Xi 6= ∅, i = 1, 2, · · · , n}.

A decision rule rij is deterministic if and only if Yj ∩ Xi = Xi, and rij is
non-deterministic otherwise.

The accuracy and the coverage of a decision rule rij (see [17]) are defined
respectively as

(11) αXi(Yj) =
|Yj ∩Xi|
|Xi| , κXi(Yj) =

|Yj ∩Xi|
|Yj | .

It is notable that αXi(Yj) measures the degree of sufficiency of the propo-
sition DesC(Xi) → DesD(Yj), while κXi(Yj) measures the degree of its
necessity. It can be easily shown that

αXi(Yj) = D0(Yj/Xi), κXi(Yj) = D0(Xi/Yj).

This means that both αXi(Yj) and κXi(Yj) can be reduced to inclusion
degree.
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9. Inclusion Degree and the Variable Precision Rough Set
Model

Let X and Y be non-empty subsets of a finite universe U . The measure
c(X, Y ) of the relative degree of misclassification of the set X with respect
to set Y (see [16]) is defined as

(12) c(X, Y ) =

{
1− |Y ∩X|

|X| , if |X| > 0,

0, if |X| = 0.

It can be easily shown that

c(X, Y ) = 1−D0(Y/X) = D0((U − Y )/X).

This means that c(X, Y ) can be reduced to inclusion degree.
Let 0 ≤ β < 0.5. Then c(X, Y ) ≤ β if and only if D0(Y/X) ≥ 1 − β.

Thus, the variable precision rough set model (see [16]) can be expressed by
inclusion degree as follows.

Let X ⊆ U and R be an equivalence relation on U . The β−lower ap-
proximation of the set X is defined as

RβX =
⋃
{E ∈ U/IND(R)| D0(X/E) ≥ 1− β},

and the β−upper approximation of the set X is defined as

RβX =
⋃
{E ∈ U/IND(R)| D0(X/E) > β}.

Consequently, the β−boundary region of X is given by

BNRβX =
⋃
{E ∈ U/IND(R)| β < D0(X/E) < 1− β}.

The β−negative region of X is defined as the complement of the β−upper
approximation with respect to U , i.e.,

NEGRβX =
⋃
{E ∈ U/IND(R)| D0(X/E) ≤ β}.

The generalized variable precision rough set model can also be expressed
by inclusion degree below.

Let 0 ≤ l < u ≤ 1. For any subset X ⊆ U , the u− lower approximation
of the set X is defined as

RuX =
⋃
{E ∈ U/IND(R)| D0(X/E) ≥ u},

and the l− upper approximation of the set X is defined as

RlX =
⋃
{E ∈ U/IND(R)| D0(X/E) > l}.

The (l, u)− boundary region of X is given by

BNRl,uX =
⋃
{E ∈ U/IND(R)| l < D0(X/E) < u}.
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The l−negative region of X is defined as

NEGRlX =
⋃
{E ∈ U/IND(R)| D0(X/E) ≤ l}.

10. Conclusions

Rough set theory is an important mathematical tool to deal with vague-
ness and uncertainty in knowledge systems. In this paper, we discuss mainly
applications of inclusion degree in rough set theory, establish the relation-
ships between the inclusion degree and each of various measures in rough
set theory, such as degree of rough belonging, accuracy and quality of ap-
proximation of classification, dependency and importance of attributes, and
accuracy and coverage of a decision rule and so on. The variable precision
rough set model and the generalized variable precision rough set model is
redefined by using the concept of inclusion degree. These results will be very
helpful for people to understand the essence of rough set theory, and can
be regarded as the uniformly theoretical foundation of the measures which
are defined in rough set theory. The concept of inclusion degree will play a
significant role in further research on rough set theory.
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