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In recent years, the rough set (RS) method has been in common use for remote-
sensing classification, which provides one of the techniques of information
extraction for Digital Earth. The discretization of remotely sensed data is an
important data preprocessing approach in classical RS-based remote-sensing
classification. Appropriate discretization methods can improve the adaptability of
the classification rules and increase the accuracy of the remote-sensing
classification. To assess the performance of discretization methods this article
adopts three indicators, which are the compression capability indicator (CCI),
consistency indicator (CI), and number of the cut points (NCP). An appropriate
discretization method for the RS-based classification of a given remotely sensed
image can be found by comparing the values of the three indicators and the
classification accuracies of the discretized remotely sensed images obtained with
the different discretization methods. To investigate the effectiveness of our
method, this article applies three discretization methods of the Entropy/MDL,
Naive, and SemiNaive to a TM image and three indicators for these discretization
methods are then calculated. After comparing the three indicators and the
classification accuracies of the discretized remotely sensed images, it has been
found that the SemiNaive method significantly reduces large quantities of data
and also keeps satisfactory classification accuracy.

Keywords: remote sensing; classification; rough set; discretization; image
processing; data mining

1. Introduction

Digital Earth originally proposed by Gore (1998) is an information expression of the

real Earth and is a new way of understanding the Earth in the twenty-first century

(Guo et al. 2009). It is mainly composed of the following five phases: data extraction,

information extraction, knowledge extraction, modeling, and decision making (Chen

and van Genderen 2008). Remote-sensing technology provides a strong technical

support for the phase of data extraction, while information extraction techniques,

such as image classification, geo-statistical analysis, and data mining can extract

relevant information from these huge data archives and data bases. In recent years,

rough set (RS) theory, proposed by Pawlak (1982, 1991), has already been used in

geographical fields, such as spatial analysis, information extraction, and uncertainty
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analysis and geo-knowledge discovery (Ahlqvist et al. 2000, Bittner 2001, Bittner and

Stell 2001, Ahlqvist et al. 2003, Berger 2004, Wang et al. 2004, Beaubouef et al. 2007,

Ge et al. 2009, Bai et al. 2010). Especially, some applications focus on remotely

sensed data preprocessing and on the RS-based classification (Pal and Mitra 2002,

Wu 2004, Ouyang and Ma 2006, Li et al. 2007, Leung et al. 2007, Li et al. 2008, Xiao

and Zhang 2008). For example, Wu (2004), in research on remote-sensing

classification using RS method, investigated data preprocessing, classifier designing,
and classification evaluation. Leung et al. (2007) used RS to extract classification

rules of remotely sensed data. The experimental results demonstrate that it can

effectively discover in remotely sensed data the optimal spectral bands and optimal

rule set for a classification task. Lei et al. (2008) used discrete RS to extract the

texture information rules of remotely sensed image and added in its classification.

The overall accuracy of classification with texture information extracted by discrete

RS is higher than the overall accuracy of classification with texture information

extracted by principal components analysis (PCA).

In addition to apply RS to the above studies, RS can also be integrated with other

methods, such as support vector machines, neural network, and fractal to improve

the accuracy of classification of remote sensing (Wu 2001, Liu et al. 2004, Ma and

Hasi 2005, Zhang et al. 2005, Das et al. 2006, Zhan et al. 2007). This is particularly

attractive because it combines the advantages of RS and other methods in data

mining to improve the accuracy of classification of remote sensing. Commonly, the

gray values of spectral bands for an 8-bit gray image are within 0�255, therefore, the
gray values are considered as continuous (numerical). The term ‘continuous’ is used

to indicate both real- and integer-valued attributes. However, the RS theory assumes

that all attributes are nominal, so continuous-valued attributes must be discretized

(Fayyad and Irani 1992). Discretization of attributes is an important data

preprocessing approach in machine learning, particularly for the classification

problem. Empirical results have shown that the quality of classification methods

depends on the discretization method used in the preprocessing step (Nguye 1998).

In past decades, discretization of attributes has received significant attention and

many discretization methods have been developed, such as 1RD (Holte 1993), C4.5

(Quinlan 1993), Entropy/MDL (Fayyad and Irani 1992, 1993, Dougherty 1995),

Naive (Øhrn 1999), and SemiNaive (Øhrn 1999). In the rule extraction of remote-

sensing information based on classical RS, the discretization of remote-sensing data

plays an important role. Reasonable discretization method can reduce the data size

of remote sensing and improve its quality. The rules extracted with RS after

reasonable discretization are then more understandable and concise. However, in the

current applications of the discretization methods, few discussions on the selection

and comparison of different discretization methods are given in the information
extraction from remotely sensed images (Duan et al. 2007, Zhang et al. 2008).

This article investigates the differences between different discretization methods

and uses three indicators, which are data compression capability indicator (CCI),

consistency indicator (CI), and number of the cut points (NCP) to assess the

efficiencies of these methods for the given data (Yue 2006). The impact of different

discretization methods on classification accuracies is then implemented. The result

shows that these three indicators integrating with the analysis of their influences on

the classification accuracy can help the user determine the choice of discretization

method for remote-sensing classification.
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2. Discretization of attributes

The value of attributes mainly consists of nominal (categorical) or continuous

(numerical). The nominal value mainly contains string and enum, while continuous

value mainly contains integer numbers and float numbers (Wang 2001). For example,

the color attribute value of remotely sensed images is nominal, which can be

expressed by enum, such as red, green, and blue. The gray value of pixels is

continuous, which is integer. To adapt to intelligence method used in the image
procession of remote sensing, the continuous values of the remote sensing should be

discretized into nominal values. Sometimes, the nominal values will be discretized

further to acquire more abstract discretization values. In general, discretization is a

process of searching for partition of attribute domains into intervals and unifying the

values over each interval (Nguyen 1998). Hence discretization can be defined as a

problem of searching for a suitable set of cuts (i.e. boundary points of intervals) on

attribute domains (Nguyen 1998). According to different criteria, the discretization

methods can be roughly classified into global/local, supervised/unsupervised, and
static/dynamic. The commonly used discretization methods include supervised and

unsupervised. The supervised discretization methods use the decision class informa-

tion in setting cut points, so the discretization result can provide effective help for

further classification. And the commonly used supervised methods include 1RD,

Entropy/MDL, Naive, and SemiNaive (Dougherty 1995, Øhrn 1999). The unsu-

pervised discretization methods do not consider the decision class information in

setting cut points and they mainly contain Equal Interval and Width. In this article,

Entropy/MDL, Naive, and SemiNaive are taken and compared by using these three
indicators to exemplify the effect of discretization on the remote-sensing classifica-

tion result. The three discretization methods used will be introduced as follows.

2.1. Discretization methods of continuous attributes

2.1.1. Entropy/MDL method

Entropy/MDL method (Fayyad and Irani 1992, 1993, Dougherty et al. 1995) uses

the class information entropy of candidate partitions to select bin boundaries for

discretization. For a set of instances S, Let there be k classes C1,. . ., Ck. Let P(Ci, S)

be the proportion of instances in S that have class Ci. The class entropy of S is

defined as:

Ent ðSÞ ¼ �
Xk

i¼1

PðCi; SÞ logðPðCi; SÞÞ: (1)

Given a set of instances S, a feature A, and a partition boundary T, the class

information entropy of the partition induced by T, denoted E(A, T; S) is given by:

EðA; T ; SÞ ¼ jS1j
jSj

EntðS1Þ þ
jS2j
jSj

Ent ðS2Þ; (2)

where jSj is the number of instances in the set S, S1ƒS and S2�S�S1.

For a given feature A, the boundary Tmin which minimizes the entropy function

over all possible partition boundaries is selected as a binary discretization boundary.

This method can then be applied recursively to both of the partitions induced by
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Tmin until the stopping condition minimal description length principle defined by

Fayyad and Irani is achieved, thus creating multiple intervals on the feature A.

Recursive partitioning within a set of values S stops iff

Gain ðA; T ; SÞBlog2 ðN � 1Þ
N

þ D ðA; T ; SÞ
N

; (3)

where N is the number of instances in the set S,

Gain ðA; T ; S Þ ¼ Ent ðSÞ � E ðA; T ; SÞ; (4)

D ðA; T ; SÞ ¼ log2 ð3
k � 2Þ � ½k � EntðSÞ � k1 � EntðS1Þ � k2 � EntðS2Þ	; (5)

and ki is the number of class labels represented in the set Si. Since the partitions

along each branch of the recursive discretization are evaluated independently using

this criteria, some areas in the continuous spaces will be partitioned very finely

whereas others (which have relatively low entropy) will be partitioned coarsely.

2.1.2. Naive method

The value for each condition attribute ‘a’ is sorted in Naive method (Øhrn 1999).

And then, the instances in the universe are scanned. For two adjacent instances xi

and xj in the universe, the average value of the two instances is set the value of the cut
point, when a(xi)"a(xi) and d(xi)"d(xi) (which means that the values and class

types are different for the two instances). Naive method doesn’t need any extra

parameters and sets cut point between two instances which have a different attribute

value and decision value, regarding the cut point is very important. But it does not

consider the indiscernibility among instances. Consequently, many important cut

points will be ignored, which should be chosen for keeping the indiscernibility

unchanged, having great contribution for classification. At the same time, the cut

point will have a large distinction when the attribute values of the instances are
sorted according to different order. Naive increases the cut points step-by-step and

usually gets a large set of cut points.

2.1.3. SemiNaive method

SemiNaive method is similar to naive method, but has more logic to handle the case

where value-neighboring instances belong to different decision classes (Øhrn 1999).

The set of cut points found by SemiNaive method is a subset of the cut points found

by naive method. SemiNaive method scans the cut points found by naive method

and decides which cut points are needed further. It is supposed that c is a cut point of

attribute a. Also, xi and xj are two neighbor values of cut c, and Di and Dj are the

dominant decision value set. Di corresponds to the equivalence class containing Di

while Dj corresponds to the equivalence class containing xj. The cut point c is deleted
from the set of the cut points found by naive method when Di⁄Dj or Dj⁄Di,

otherwise c is considered as an important cut point in the set of the cut points.

SemiNaive method is considered as the optimization of the naive method due to

reducing some redundant cut points. However, compared with Naive method,

SemiNaive method might cause more inconsistent data.
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2.2. Indicators for assessing the discretization method

The purpose of discretization is a process of grouping the values of the attributes in

intervals in such away that the knowledge content or the discernibility is not lost (Roy and

Pal 2003). Discretization of the attributes can reduce the redundant data of the data base

and then achieve the purpose of data compression. In order to find an appropriate

discretization method for classical RS-based remote-sensing classification, in this article,

three indicators of CCI, CI, and NCP are adopted to evaluate discretization methods for
classical rough set-based remote-sensing classification. Yue (2006) used these indicators to

compare the different discretization methods and the experimental results have shown that

these indicators are effective in analyzing the difference between discretization methods.

Therefore, these three indicators are used in this article to evaluate the discretization

method for remote-sensing classification. By comparing the values of these three indicators

and the classification accuracies of the discretized remotely sensed images with the

different discretization methods, the appropriate discretization method will be acquired.

The spectral bands of Landsat TM image are used to exemplify the method. First, the
spectral bands of the Region of Interest (ROI) are discretized with different discretization

methods and the cut points of all spectral bands are then acquired. Three indicators,

which are defined as follows, are calculated.

Let ABand_1, ABand_2, ABand_3, ABand_4, ABand_5, ABand_6, ABand_7 denote the seven

bands and Dclass denote the class for ROI image. In RS theory, ABand_1, ABand_2,

ABand_3, ABand_4, ABand_5, ABand_6, ABand_7 are called condition attributes and Dclass

is called decision attribute.

Let A�fflABand_j

A(i) �fflABand_j(i)

¼ ABand 1ðiÞ fflABand 2ðiÞ fflABand 3ðiÞ fflABand 4ðiÞ
fflABand 5ðiÞ fflABand 6ðiÞ fflABand 7ðiÞ i¼ 1; . . . ; n; j¼ 1; . . . ; 7

where n is the number of pixels within ROI, ABand_j(i) denotes the spectral bands

values of pixel i in band_j and Dclass(i) denotes the class value of pixel i. For a set S,

jSj is the number of instances in the set.

2.2.1. Compression capability indicator (CCI)

CCI ¼ 1� j AfflDclassðiÞji ¼ 1; 2; . . . ; nf gd j
j AfflDclassðiÞji ¼ 1; 2; . . . ; nf gj

(6)

In formula (6), d denotes that the set which is derived from the discretized ROI

Image. Discretization will bring about a reduction of the data size and loss of

information, but it can generate useful knowledge or rules from the large quantity of

data. The CCI reflects the data processing ability of different discretization methods.

2.2.2. Consistent indicator (CI)

CI ¼ 1� fAfflDclassðiÞji ¼ 1; . . . ; nj gdI j
fAfflDclassðiÞji ¼ 1; . . . ; nj gd j

(7)
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In formula (7), dI denotes that the set which is derived from the discretized ROI

image and objects of the set are inconsistent. If two objects in the set have the same

A(i) values, but the Dclass(i) values are different, the two objects are called

inconsistent objects. The consistent indicator can reflect the degree of the loss of
category information owing to the discretization method.

2.2.3. Number of the cut points (NCP)

The NCP of all spectral bands is calculated when different discretization methods are

used to discrete each spectral band. Discretization of the spectral bands is a process
of searching for partition of spectral bands domains into intervals. For example, for a

band of TM image, the gray values are within 16�142. Suppose 25.5, 70.5, and 125.5

are all the cut points of the band, the band is divided into four intervals [16, 25], [26,

70], [71, 125], and [126, 142]. The gray values in the same intervals are regarded as

indiscernibility and usually designated the same value. The NCP is an important

feature of discretization method.

3. Experimental study

These three indicators defined in Section 2.2 will be exemplified to evaluate the

discretization method used in remote-sensing classification. The impact of different

discretization methods on the classification of remotely sensed images is then

analyzed. After the analysis of these three indicators and the impact of different

discretization methods on the classification, the appropriate discretization method is
acquired. The flow chart of this experiment is shown in Figure 1. The Entropy/MDL,

Naive, and SemiNaive methods are used in this example.

3.1. Data description

A Landsat TM image of the Yellow River Delta in China on 28 August 1999 is used
to substantiate the conceptual discussion and demonstrate the application of the

above-discussed method. A verification data obtained by fusing PANchromatic

(PAN) band of Systeme Probatoire d’Observation de la Tarre (SPOT) two images

acquired on 16th October 2002 and Enhanced Thematic Mapper (ETM) on 9 August

2001 is applied to test the analytical result. The spatial resolution of this verification

image is 10 m. The TM image size is 515�515 pixels and the resolution is 30 m

except that the spatial resolution of band six is 120 m. The size of verification data is

1545�1161 pixels. Figure 2 is the 4, 3, 2-band pseudo-color composition image.
There are 26,639 pixels selected as the ROI from the study area by using a

random-sampling scheme according to prior knowledge and each pixel has seven

different spectral values and a class value. The ROI image is shown in Figure 3.

3.2. Discretization of the Region of Interest (ROI) and study area

The spectral bands of the ROI are discretized with Entropy/MDL, Naive, and

SemiNaive methods and the cut points of all spectral bands are then acquired. The

cut points acquired are sorted and the values of each pixel of the ROI are divided

into several intervals for each spectral band. With these sorted cut points, the whole
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image is discretized. The values of the pixels in each interval are then set to the same

value. The pixels with values in the same interval are indiscernibility and their values

are designated as the average value in that interval in this article. The pseudo-color

composition images of the study area discretized with different discretization

methods are shown in Figure 4.

CCI, CI, and NCP of the ROI with different discretization methods are

calculated and shown in Tables 1 and 2. In Table 1, the values of fields of original
data, discretization data, and inconsistent data are obtained by removing the

repeating items. For example, if the values of condition attributes and decision

attributes of pixel i and pixel j are completely identical, these two items are counted

into one item.

3.3. Results

After comparing the CCI, CI, and NCP of different discretization methods, the

impact of the three discretization methods on the classification result of remotely
sensed images will be analyzed. Here, the original and discretized remotely sensed

images with Entropy/MDL, Naive, and SemiNaive discretization methods are

classified with RS. Also, the results with classical RS classifier are then compared

with the result with maximum likelihood classifier (MLC) method. The chosen

Region of interest (ROI)

Discretized ROI

Remote sensing images

Discretized remote-sensing
images

Classification of discretized
remote-sensing images

Discretization

User accuracy/producer
accuracy/overall accuracy

kappa coefficient

CI,CCI and NCP

Assessment and selection of discretization methods

Cut points

Figure 1. The flow chart of the experiment.
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supervised classifier MLC is one of the most popular tools for classification in

remotely sensed images processing and discussed much in the literature. The MLC

and RS classification results are shown in Figure 5.

Figure 2. Landsat TM pseudo-color composition image (RGB 4, 3, 2) of the study area

acquired on 28 August 1999.

Figure 3. Sample data collected by using stratified random sampling scheme.
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To validate the accuracy of RS classification results of original and discretized

remotely sensed images with different discretization methods, this article presents a

group of error matrices. The reference data are selected according to prior knowledge

of the same area from the SPOT image with resolution 2.5 m random sampling

scheme is used. The sample unit is a single pixel in the SPOT image, representing a

10�10 m2 area of the ground data. According to Edwards et al. (1998), at least

n ¼ u2
1�a=2=d2p� ð1� pÞ samples are requested to be chosen, where n is the minimal

number of samples required, a is a parameter determining the confidence level, u is a

Figure 4. Pseudo-color composition image of the study area discretized by Entropy/MDL,

Naive, and SemiNaive methods.
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value corresponding to a in the Gaussian distribution, d is the desired precision, and

p is the estimated accuracy of the classification result. When a �0.05, u�1.96, and

p�0.5, there should be at least 384 samples. Here 1000 samples comprising 22
samples for water, 290 samples for agriculture_1, 202 samples for agriculture_2, 121

samples for urban, 18 samples for bottomland, and 347 samples for bareground are

collected. The confusion matrixes, classification accuracy and kappa coefficients are

acquired. The confusion matrixes of MLC and RS classification results are shown in

Table 3, respectively. The producer’ accuracy, user’ accuracy, overall accuracy, and

kappa coefficients of MLC and RS classification results are shown in Table 4.

To analyze the effect of different discretization methods on the RS classification

results more clearly, the comparison of the producer’ accuracy, user’ accuracy,
overall accuracy, and kappa coefficients are depicted in Figure 6.

4. Discussion

It can be seen from Figure 4 that the discretized remotely sensed image with Naive

method is most similar to the original image, having least loss of the value

information of the spectral bands. The discretized remotely sensed images obtained

by the SemiNaive and Entropy/MDL methods look different to the original image.

The differences between discretized and original images intuitively show the spectral

information with different discretization methods. The comparison of the CCI, CI,
and NCP for different discretization methods are shown in Tables 1 and 2. From

Tables 1 and 2, it can be seen that the CI of the SemiNaive method is lower than the

other two discretization methods, while the CI of Naive method is the highest. As to

the CCI of the SemiNaive is the highest while that of Naive is the lowest. As to NCP,

it has the same change means as that of CCI. Furthermore, although the CI of Naive

method is the highest, its CCI is relatively low. It means the Naive method can not

significantly reduce the amount of data on the database and improve the efficacy of

RS classification. Relatively, the SemiNaive method can compress the data size
better, but the CI is relatively lower.

The confusion matrixes of the MLC and RS classification results of the original

and discretized images with the Entropy/MDL, Naive, and SemiNaive methods are

Table 1. Data compression situation and consistent situation of the ROI with Entropy/

MDL, Naive, and SemiNaive methods.

Discretization method Original data Discretization data Inconsistent data CCI (%) CI (%)

Entropy/MDL 26065 12243 505 53.03 95.88

Naive 26065 25700 4 1.40 99.98

SemiNaive 26065 1278 497 95.10 61.12

Table 2. Number of cut points of the ROI.

Discretization method Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 NCP

Entropy/MDL 13 5 24 53 62 14 47 218

Naive 34 23 51 71 92 18 70 359

SemiNaive 5 5 5 8 13 4 8 48
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Figure 5. MLC classification results and RS classification results from original and

discretized remotely sensed images with Entropy/MDL, Naive, and SemiNaive methods.
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shown in Table 3. The producer’s accuracy, user’s accuracy, overall accuracy, and

kappa coefficients acquired from the confusion matrixes are shown in Table 4. The

relationship between producer’s accuracy, user’s accuracy, overall accuracy, kappa

coefficients, and different discretization methods, is clearly shown in Figure 6a�d.

From Figure 6a, it shows that the producer’s accuracy of the water, agriculture_1 and

bottomland is the highest for RS classification with the Entropy/MDL method. Only

Table 3. Confusion matrixes for MLC classification result and RS classification result of

original and discretized classified remotely sensed images with Entropy/MDL, Naive, and

SemiNaive methods.

Reference data

Classified date WT AG1 AG2 UB BT BR Column Sum

MLC WT 18 0 0 0 1 2 21

AG1 0 215 16 0 0 45 276

AG2 0 38 174 0 0 22 234

UB 0 0 1 88 0 6 95

BT 0 0 0 0 16 0 16

BR 4 37 11 33 1 272 358

Row sum 22 290 202 121 18 347 1000

RS WT 16 0 0 0 2 1 19

AG1 2 230 21 0 0 90 343

AG2 0 37 174 0 0 24 235

UB 0 0 1 81 2 9 93

BT 0 0 0 0 14 0 14

BR 4 23 6 40 0 223 296

Row sum 22 290 202 121 18 347 1000

Entropy/MDL�RS WT 20 0 0 0 0 2 22

AG1 1 232 24 0 1 96 372

AG2 0 39 173 0 0 26 238

UB 0 0 0 0 17 0 17

BT 1 18 3 38 0 189 249

BR 0 1 1 0 0 6 8

Row sum 22 290 202 121 18 347 1000

Naive�RS WT 17 0 0 0 3 1 21

AG1 2 230 21 0 0 90 343

AG2 0 37 174 0 0 24 235

UB 0 0 1 81 2 10 94

BT 0 0 0 0 14 0 14

BR 3 23 6 40 0 222 294

Row sum 22 290 202 121 18 347 1000

SemiNaive�RS WT 18 0 0 0 0 3 21

AG1 2 222 32 0 0 78 334

AG2 0 45 157 0 0 46 248

UB 0 0 1 87 0 14 102

BT 0 0 0 0 16 0 16

BR 2 23 12 34 2 206 279

Row sum 22 290 202 121 18 347 1000

Note: WT, water; AG1, agriculture_1; AG2, agriculture_2; UB, urban; BT, bottomland; BR, baregroud.
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the producer’s accuracy in the terrains of bareground is the highest for MLC

classification. The producer’s accuracy in agriculture_1 is the lowest for MLC

classification. Figure 6b and c were also analyzed and showed that the user’s
accuracy and kappa of water, agriculture_2, bottomland and bareground are very

close for RS classification compared with MLC classification, although they are

lower than MLC classification in agriculture_1 and urban lands.

From Figure 6d, it can be seen that the overall accuracies of RS classification

with different discretization methods are lower than MLC classification. The overall

accuracies of RS classification with different discretization methods are very close.

Although the overall accuracies are very close, the CCI of the SemiNaive method is

much higher than the CCI of the Entropy/MDL and Naive methods. It shows that
the data capability of the SemiNaive is much greater than the Entropy/MDL and

Naive methods. The discretized remotely sensed images with the SemiNaive method

still have relatively higher overall accuracy, while reducing the large quantity of

remotely sensed data. Although the accuracy of RS classification with SemiNaive

method is lower than the other two discretization methods, SemiNaive method

reduces large quantity of image data, and improves the efficacy of the classification.

5. Conclusion and future works

In this article, the CCI, CI, and NCP are used to evaluate the discretization method

which is the indispensable procedure of classical RS-based classification for a given

Table 4. Producer’ accuracy, user’ accuracy, overall accuracy and kappa coefficients of MLC

classification result and RS classification results of original and discretized remotely sensed

images with Entropy/MDL, Naive, and SemiNaive methods.

Indicators WT AG2 AG3 UB BT BR

MLC Producer’ accuracy (%) 81.81 74.14 86.13 72.3 88.89 78.39

User’ accuracy (%) 85.71 77.90 74.36 92.63 100.00 75.98

Kappa 0.85 0.69 0.68 0.92 1.00 0.63

Overall accuracy �78.30% Kappa �0.705

RS Producer’ accuracy (%) 72.73 79.31 86.14 66.94 77.78 64.27

User’ accuracy (%) 84.21 67.06 74.04 87.10 100.00 75.34

Kappa 0.84 0.54 0.67 0.85 1.00 0.62

Overall accuracy �73.08% Kappa �0.65

Entropy/MDL�RS Producer’ accuracy (%) 90.91 80.00 85.64 68.60 94.44 54.47

User’ accuracy (%) 90.91 62.37 72.69 88.30 100.00 75.90

Kappa 0.91 0.47 0.66 0.87 1.00 0.63

Overall accuracy �71.40% Kappa �0.62

Naive�RS Producer’ accuracy (%) 77.27 79.31 86.14 66.94 72.22 63.98

User’ accuracy (%) 80.95 67.06 74.04 86.17 100 75.51

Kappa 0.81 0.54 0.67 0.84 1.00 0.63

Overall accuracy �73.70% Kappa �0.64

SemiNaive�RS Producer’ accuracy (%) 81.82 76.55 77.72 71.09 88.89 59.37

User’ accuracy (%) 85.71 66.47 63.31 85.29 100 73.84

Kappa 0.85 0.53 0.54 0.83 1.00 0.60

Overall accuracy �70.60% Kappa �0.60

Note: WT, water; AG1, agriculture_1; AG2, agriculture_2; UB, urban; BT, bottomland; BR, baregroud.
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Figure 6. Assessment accuracies of RS classification results for original and discretized remotely sensed images with different discretization methods;

(a) the producer’ accuracy of each category; (b) the user’ accuracy of each category; (c) the overall accuracy; (d) the kappa coefficients of each category.
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remotely sensed image. The impact of different discretization methods on remote-

sensing classification results was then analyzed. From the experimental results, it can

be seen that the CCI of the SemiNaive method is much higher than the CCI of the

Entropy/MDL and Naive methods. Although the CI of the SemiNaive is lower than

the CI of Entropy/MDL and Naive methods, the overall accuracy of RS classification

with SemiNaive method is very close to the overall accuracy of RS classification with

Entropy/MDL and Naive methods, and the accuracy of MLC classification. At the

same time, the NCP of the SemiNaive is lower than that of the other two methods. Also,

the SemiNaive method reduces the spectral band values at magnitude level and greatly

improved the efficacy of RS classification. There are still some problems about the

discretization methods used in the remote-sensing classification: (1) most discretiza-
tion methods discretize each attribute independently and the design of a discretization

method that discretizes all attributes simultaneously needs further study, (2) remotely

sensed data usually has its own features. For example, the values of the spectral bands

obey to normal distributions or have spatial correlations. Therefore, the design of a new

discretization method that can reflect those features is an important future research

topic. The accuracies of RS classification with Entropy/MDL, Naive, and SemiNaive

methods are lower than the accuracy of MLC classification in this article. It is because

the used discretization methods are traditional ones which do not consider the features

of remotely sensed images. In future work, we will study the discretization methods

considering the features of remotely sensed images and improve the RS classification

accuracy.
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