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Due to data sparseness and attribute redundancy in high-dimensional data, clusters of objects often

exist in subspaces rather than in the entire space. To effectively address this issue, this paper presents a

new optimization algorithm for clustering high-dimensional categorical data, which is an extension of

the k-modes clustering algorithm. In the proposed algorithm, a novel weighting technique for

categorical data is developed to calculate two weights for each attribute (or dimension) in each cluster

and use the weight values to identify the subsets of important attributes that categorize different

clusters. The convergence of the algorithm under an optimization framework is proved. The

performance and scalability of the algorithm is evaluated experimentally on both synthetic and real

data sets. The experimental studies show that the proposed algorithm is effective in clustering

categorical data sets and also scalable to large data sets owning to its linear time complexity with

respect to the number of data objects, attributes or clusters.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Cluster analysis is a branch in statistical multivariate analysis
and unsupervised machine learning, which has extensive applica-
tions in various domains, including financial fraud, medical
diagnosis, image processing, information retrieval, bioinformatics.
Clustering is a process of grouping a set of objects into clusters so
that the objects in the same cluster have high similarity but are
very dissimilar with objects in other clusters. Various types of
clustering methods have been developed in the literature (e.g.,
[1]). While clustering of numeric data is extensively studied,
recently increasing attention has been paid to clustering catego-
rical data [2–10], where records are made up of non-numerical
data, since this task is of great practical relevance in several fields
ranging from statistics to psychology.

There are a number of challenges in clustering categorical data.
First, the lack of an inherent order on the domains of the
individual attributes prevents the definition of a notion of
similarity, which catches resemblance between categorical data
objects. Clearly, this imposes difficulties at devising a suitable
clustering quality that are not encountered in the case of numeric
attributes, where, instead, object similarity naturally follows from
011 Published by Elsevier Ltd. All

@sxu.edu.cn (J. Liang),

Cao).
the geometric properties of the data. This means that the
techniques used in clustering numerical data are not applicable
to categorical data. Currently, several dissimilarity measures for
categorical data have been proposed in the literature, see, for
instance, [11]. Among them, the simple matching dissimilarity
measure [6] is widely used for its low computational burden.
Furthermore, categorical data are often high-dimensional such as
market-basket and Web usage data and so on. Records in such
data sets include a large number of attributes, typically with
Boolean values. Several emerging application settings require
clustering techniques that provide an effective and efficient
treatment of this kind of data, such as text analysis, bioinfor-
matics, e-commerce, astronomy, and the insurance industry
[12,13].

Unfortunately, conventional clustering techniques fall short
when clustering is performed in high-dimensional spaces [14].
For example, due to data sparseness or skewness, as well as
attribute irrelevancy or redundancy in high-dimensional data, as
the increase of the dimension cardinality, the dissimilarity
between a given object x and its nearest object will be close to
the dissimilarity between x and its farthest object. While the loss
of the dissimilarity discrimination in high dimensions, discover-
ing meaningful, separable clusters will be very challenging, if not
impossible. Moreover, an interesting cluster usually occurs in a
subspace defined by a subset of the initially selected attributes. To
find the cluster, it is important to identify the subset of attri-
butes. However, conventional clustering algorithms cannot select
rights reserved.
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attributes automatically because they treat all attributes equally
in the clustering process. A common approach to cope with the
curse of dimensionality for mining tasks is to reduce the data
dimensionality by using techniques of feature transformation and
feature selection [13]. The feature transformation techniques,
such as principal component analysis (PCA) and singular value
decomposition (SVD), summarize the data in a fewer set of
dimensions derived from the combinations of the original data
attributes. However, the transformed features/dimensions have
no intuitive meaning any more and thus the resulting clusters are
hard to interpret and analyze [15]. On the other hand, the feature
selection methods [16–19] reduce the data dimensionality by
trying to select the most relevant attributes from the original data
attributes. In such a way, only a particular subspace is selected to
discover clusters. However, in many real data sets, clusters may
be embedded in varying subspaces, and thus in the feature
selection approaches the information of data objects clustered
differently in varying subspaces is lost [15].

To tackle the above problem of clustering high-dimensional
data sets, several clustering techniques have been developed in
the literature, such as bi-clustering and subspace clustering. Bi-
clustering [20,21] is a methodology where rows and columns are
clustered simultaneously, as an alternative to dimensionality
reduction techniques. The bi-clustering algorithms measure not
only the dissimilarity between rows but also the dissimilarity
between columns. The applied dissimilarity measures are similar
to the simple matching measure. However, the bi-clustering
algorithms are mainly applied to cluster binary data. When these
algorithms are used to tackle categorical data [22], multiple
category attributes need be converted into binary attributes
(using 0 and 1 to represent either a category absent or present).
If it is used in data mining, these algorithms need to handle a
large number of binary attributes because data sets in data
mining often have categorical attributes with hundreds or thou-
sands of categories. This will inevitably increase both computa-
tional and space costs. This is also an important reason for
designing algorithms to directly cluster categorical data.

Subspace clustering is a very effective method for clustering
high-dimensional numerical or categorical data. Its goal is to
locate clusters in different subspaces of the same data set. In
general, a subspace cluster represents not only the cluster itself,
but also the subspace where the cluster is situated. The two main
categories of subspace clustering algorithms are hard subspace
clustering and soft subspace clustering. Hard subspace clustering
methods are for the clustering of high-dimensional data. This kind
of subspace clustering algorithm identifies exact subspaces for
different clusters. For numerical data, such methods include
CLIQUE [12], ENCLUS [23], MAFIA [24], PROCLUS [25], ORCLUS
[26], FINDIT [27], DOC [28], d-Clusters [29], HARP [30] and LDR
[31] and so on. A detailed review of hard subspace clustering
algorithms for numerical data can be found in [13]. Although
most of these approaches were defined for numerical data, some
recent studies [32–34] also consider hard subspace clustering for
categorical data. For example, Gan [32] proposed the SUBCAD
algorithm for subspace clustering high-dimensional categorical
data set which iteratively finds an approximation of the optimal
partition. However, the algorithm cannot guarantee that the value
of the objective function decreases strictly in the iterative process.
Zaki [33] presented the CLICKS algorithm which encodes a data
set into a weighted graph structure. This algorithm starts from the
observation that clusters correspond to dense maximal k-partite
cliques and proceeds by enumerating all maximal k-partite
cliques and checking their frequency. A crucial step is the
computation of strongly connected components, that is, pairs of
attribute values whose co-occurrence is above a specified thresh-
old. For large values of m (or, more generally, when the number of
attributes or the cardinality of each attribute is high), this is an
expensive task, which makes the approach inefficient. In addition,
the technique depends upon a set of parameters, whose tuning
can be problematic in practical applications.

While the exact subspaces are identified in hard subspace
clustering, a weight is assigned to each attribute in the clustering
process of soft subspace clustering to measure the contribution of
each attribute to the formation of a particular cluster. In the
clustering procedure, each attribute contributes differently to every
cluster. The subspaces of different clusters can be identified by the
values of weights after clustering. Soft subspace clustering can be
considered as an extension of the conventional attribute weighting
clustering [35–37] which employs a common weight vector for the
whole data set in the clustering procedure. However, it is also
distinct in that different weight vectors are assigned to different
clusters. From this perspective, soft subspace clustering may thus be
referred to as multiple attribute weighting clustering. Soft subspace
clustering has recently emerged as a hot research topic, and many
algorithms have been reported [38–45]. Among them, the k-means-
type attribute weighting methods are well known for their effi-
ciency in clustering large data sets. Their computational complexity
is linear with respect to either the number of data objects, attributes
or clusters. The representative methods include Chan’s weighting
method [38] and Jing’s weighting method [42] and so on. Chan used
a similar optimization problem for the fuzzy clustering proposed by
Bezdek [46] to automatically compute weights for all attributes in a
cluster. Jing computed weights for all attributes in a cluster by using
an optimization method based on maximal entropy which was
proposed by Miyamoto [47]. However, as regard to the convergence
of the maximal entropy optimization method, there are some
disputes in the academic circles [48,49]. A detailed review of these
soft subspace clustering algorithms for numerical data can be found
in [50].

Although these soft subspace clustering algorithms have been
developed and applied to different areas, the use of these algo-
rithms is only limited to numeric data. Huang [6,7] proposed the
k-modes algorithm which extends the k-means algorithm by
using a simple matching dissimilarity measure for categorical
objects instead of Euclidean distance measure, modes instead of
means for clusters, and a frequency-based method to update
modes in the clustering process to minimize the clustering
objective function. These extensions have removed the numeric-
only limitation of the k-means algorithm and enable the k-means
clustering process to be used to efficiently cluster large catego-
rical data sets from real world databases. Chan [38] presented a
soft subspace clustering algorithm which uses the k-modes
paradigm to deal with categorical data. However, the method
encounters some problems in handling categorical data. The
simple matching dissimilarity measure computes the distance
by comparing their categorical values in each attribute. If the two
categorical values are identical, then the difference is 0 and
otherwise 1. Due to the fact that 0 multiplied by any weight
value is still 0, these weighting methods will not work when the
comparative result is 0. Moreover, for different comparative
results of the two categorical values, the weight values should
be different. While the comparative result is 1, the corresponding
weight value should be inversely proportional to the dispersion in
the attribute of the cluster. In this case, the larger the weighting
value is, the larger the dissimilarity between the object and the
cluster center in the attribute is. Conversely, while the compara-
tive result is 0, the corresponding weight value should be
proportional to the dispersion in the attribute of the cluster.
In this case, the smaller the weighting value is, the larger
the similarity between the object and the cluster center in the
attribute is. Therefore, motivated by this idea, we extend the
k-modes algorithm to propose an optimal attribute weighting
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algorithm for high-dimensional categorical data. The major con-
tributions of this paper are as follows:
�
 A new weighted dissimilarity measure is proposed, which is
applied to the k-modes algorithm. The updating formulas of
the k-modes clustering algorithm with the new weighted
dissimilarity measure are derived. The convergence of the
algorithm under an optimization framework is proved.

�
 The new dissimilarity measure is integrated with Chan’s

weighted dissimilarity measure to form a mixed weighted
dissimilarity measure. Based on the mixed dissimilarity mea-
sure, a mixed attribute weighting algorithm is proposed to
cluster high-dimensional categorical data. The convergence of
the proposed algorithm under an optimization framework is
proved.

�
 The performance and scalability of the mixed attribute weight-

ing algorithm is investigated by using both synthetic and real
data sets.

The rest of this paper is organized as follows. A detailed review of
the k-modes algorithm and the weighting k-modes algorithm is
presented in Sections 2 and 3, respectively. In Section 4, a new
weighted dissimilarity measure is presented and analyzed. In
Section 5, a mixed attribute weighting algorithm is proposed.
Section 6 illustrates the performance and scalability of the proposed
algorithm. Finally, a concluding remark is given in Section 7.
2. The k-modes algorithm

As we know, the structural data are stored in a table, where
each row(tuple) represents facts about an object. A data table is
also called an information system in rough set theory [51–53].
Data in the real world usually contain categorical attributes [54].
More formally, a categorical data table is defined as a quadruple
IS¼ ðU,A,V ,f Þ, where:
(1)
 U ¼ fx1,x2, . . . ,xng is a nonempty set of n data points, called a
universe.
(2)
 A¼ fa1,a2, . . . ,amg is a nonempty set of m categorical
attributes. S
(3)
 V is the union of attribute domains, i.e., V ¼ m
j ¼ 1 Vaj

, where
Vaj
¼ fað1Þj ,að2Þj , . . . ,a

ðnjÞ

j g is the value domain of categorical
attribute aj and is finite and unordered, e.g., for any

1rprqrnj, either aðpÞj ¼ aðqÞj or aðpÞj aaðqÞj . Here, nj is the

number of categories of attribute aj for 1r jrm.

(4)
 f : R� A-V is an information function such that f ðxi,ajÞAVaj

for 1r irn and 1r jrm, where R¼ Va1
� Va2

� � � � � Vam and
UDR.
The k-modes algorithm uses the k-means paradigm to cluster
categorical data. The objective of clustering a set of n categorical
objects into k clusters is to find W and Z that minimize [7]

FðW ,ZÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

wlidðzl,xiÞ ð1Þ

subject to

wliAf0,1g, 1r lrk, 1r irn,Xk

l ¼ 1

wli ¼ 1, 1r irn,

0o
Xn

i ¼ 1

wlion, 1r lrk,

8>>>>>>><
>>>>>>>:

ð2Þ
where
�
 n is the number of objects in U, kðrnÞ is a known number of
clusters;

�
 W ¼ ½wli� is a k-by-n {0, 1} matrix, wli is a binary variable, and

indicates whether object xi belongs to the lth cluster, wli ¼ 1 if
xi belongs to the lth cluster and 0 otherwise;

�
 Z ¼ ½z1,z2, . . . ,zk� and zl ¼ ½f ðzl,a1Þ,f ðzl,a2Þ, . . . ,f ðzl,amÞ� is the lth

cluster center with categorical attributes a1,a2, . . . ,am;

�
 dðzl,xiÞ is a distance or dissimilarity measure between object xi

and the center zl of the lth cluster which is defined as

dðzl,xiÞ ¼
Xm

j ¼ 1

daj
ðzl,xiÞ, ð3Þ

where

daj
ðzl,xiÞ ¼

1, f ðzl,ajÞa f ðxi,ajÞ,

0, f ðzl,ajÞ ¼ f ðxi,ajÞ:

(
ð4Þ

The minimization of F in (1) with the constraints in (2) forms a
class of constrained nonlinear optimization problems whose

solutions are unknown. The usual method towards optimization
of F in (1) is to use partial optimization for Z and W. In this
method, we first fix Z and find necessary conditions on W to
minimize F. Then, we fix W and minimize F with respect to Z. The
above optimization problem can be solved by iteratively solving
the following two minimization problems:
1.
 Problem P1: Fix Z ¼ Ẑ , solve the reduced problem FðW ,ẐÞ;

2.
 Problem P2: Fix W ¼ Ŵ , solve the reduced problem FðŴ ,ZÞ.

Problem P1 is solved by

ŵ li ¼
1 if dðẑl,xiÞrdðẑh,xiÞ, 1rhrk,

0 otherwise

(
ð5Þ

for 1r irn, 1r lrk.
Problem P2 is solved by

f ðzl,ajÞ ¼ aðrÞj AVaj
ð6Þ

where

jfwlijf ðxi,ajÞ ¼ aðrÞj ,wli ¼ 1gjZ jfwlijf ðxi,ajÞ ¼ aðtÞj ,wli ¼ 1gj, 1rtrnj

ð7Þ

for 1r jrm. Here, jXj denotes the number of elements in the set
X, Vaj

¼ fað1Þj ,að2Þj , . . . ,a
ðnjÞ

j g, nj is the number of categories of attri-
bute aj for 1r jrm.

This process is formalized in the k-modes algorithm as follows
[7]:

Step 1. Choose an initial point set Zð1ÞDR. Determine W ð1Þ such
that FðW ,Zð1ÞÞ is minimized. Set t¼1.

Step 2. Determine Zðtþ1Þ such that FðW ðtÞ,Zðtþ1ÞÞ is minimized. If
FðW ðtÞ,Zðtþ1ÞÞ ¼ FðW ðtÞ,ZðtÞÞ, then stop; otherwise goto Step 3.

Step 3. Determine W ðtþ1Þ such that FðW ðtþ1Þ,Zðtþ1ÞÞ is mini-
mized. If FðW ðtþ1Þ,Zðtþ1ÞÞ ¼ FðW ðtÞ,Zðtþ1ÞÞ, then stop; otherwise set
t¼tþ1 and goto Step 2.

One of the drawback of the k-modes algorithm is that they
treat all attributes equally in deciding the cluster memberships of
objects in Theorem 1. This is undesirable in many applications
such as data mining where data often contain a large number of
sparse or redundancy attributes. A cluster in a given data set is
often confined to a subset of attributes rather than the entire
attribute set. Inclusion of other attributes can only obscure the
discovery of the cluster by a clustering algorithm.
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Fig. 1. An example of the frequency of each attribute value of its mode in a cluster,

where each bar corresponds to each attribute.
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3. The weighting k-modes algorithm

Chan [38] proposed a soft subspace clustering algorithm for
numerical and categorical data which extends the k-means
clustering process to automatically calculate a weight for each
attribute in each cluster. When the algorithm is used to deal with
categorical data, the algorithm is viewed as a weighting k-modes
algorithm (WKM). The objective function of WKM is defined as

F1ðW ,Z,LÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

Xm

j ¼ 1

wlil
b
ljdaj
ðzl,xiÞ ð8Þ

subject to the constraints in (2) and

lljA ½0,1�, 1r lrk, 1r jrm,Xm
j ¼ 1

llj ¼ 1, 1r lrk,

8>><
>>: ð9Þ

where L¼ ½llj� is a k-by-n [0, 1] matrix, llj is the weight for the jth
attribute in the lth cluster and bA ð1,þ1Þ is a parameter for
controlling attribute weight llj.

Similar to solving (1), the objective function (8) can be locally
minimized by iteratively solving the following three minimiza-
tion problems:
1.
 Problem P1: Fix Z ¼ Ẑ and L¼ L̂, solve the reduced problem
F1ðW ,Ẑ ,L̂Þ;
2.
 Problem P2: Fix W ¼ Ŵ and L¼ L̂, solve the reduced problem
F1ðŴ ,Z,L̂Þ;
3.
 Problem P3: Fix W ¼ Ŵ and Z ¼ Ẑ , solve the reduced problem
F1ðŴ ,Ẑ ,LÞ.

Problem P1 is solved by

ŵ li ¼
1 if

Xm
j ¼ 1

lbljdaj
ðẑl,xiÞr

Xm
j ¼ 1

lbljdaj
ðẑh,xiÞ, 1rhrk,

0 otherwise

8><
>: ð10Þ

for 1r irn, 1r lrk, and problem P2 is solved in (6) and (7). The
solution to problem P3 is given by

l̂ lj ¼

1

mi
if Dlj ¼ 0 and mi ¼ jft : Dltðẑl,xiÞ ¼ 0gj,

0 if Dlja0 but Dlt ¼ 0 for some t,

1

Pk
h ¼ 1

Dlj

Dlh

� �1=ðb�1Þ
if Dlja0 and Dlha0, 1rhrm

8>>>>>>>><
>>>>>>>>:

ð11Þ

for 1r jrm, 1r lrk, where

Dlj ¼
Xn

i ¼ 1

wlidaj
ðẑ l,xiÞ ð12Þ

for 1r jrm, 1r lrk.
The above procedure is formalized in the algorithm as follows

[38]:
Step 1: Choose an initial point set Zð1ÞDR and set Lð1Þ be a k-

by-m matrix with all the entries being equal to 1/m. Determine
W ð1Þ such that F1ðW ,Zð1Þ,Lð1ÞÞ is minimized. Set t¼1.

Step 2: Determine Zðtþ1Þ such that F1ðW
ðtÞ,Zðtþ1Þ,LðtÞÞ is mini-

mized. If F1ðW
ðtÞ,Zðtþ1Þ,LðtÞÞ ¼ F1ðW

ðtÞ,ZðtÞ,LðtÞÞ, then stop; other-
wise goto Step 3.

Step 3: Determine Lðtþ1Þ such that F1ðW
ðtÞ,Zðtþ1Þ,Lðtþ1Þ

Þ is
minimized. If F1ðW

ðtÞ,Zðtþ1Þ,Lðtþ1Þ
Þ ¼ F1ðW

ðtÞ,Zðtþ1Þ,LðtÞÞ, then stop;
otherwise goto Step 4.
Step 4: Determine W ðtþ1Þ such that FðW ðtþ1Þ,Zðtþ1Þ,Lðtþ1Þ
Þ is

minimized. If FðW ðtþ1Þ,Zðtþ1Þ,Lðtþ1Þ
Þ ¼ FðW ðtÞ,Zðtþ1Þ,Lðtþ1Þ

Þ, then
stop; otherwise set t¼tþ1 and goto Step 2.

In the algorithm, given a data partition, the principal for
attribute weighting is to assign a larger weight to an attribute
that has a smaller sum of the within cluster distances and a
smaller one to an attribute that has a larger sum of the within
cluster distances. This principal conforms to reality. In the
k-modes algorithm, a cluster is represented by ‘‘mode’’, which is
composed of the most frequent attribute value in each attribute
domain in this cluster. For an attribute, if the most frequent one of
its attribute values in the cluster is very low, the dispersion of the
objects from the mode in the attribute of the cluster is very large.
This also means that the mode in the attribute has very weak
representability in the cluster. Therefore, it is thought that the
smaller the sum of the within cluster distances in the attribute is,
the more important role the attribute plays in identifying the
cluster. For example, Fig. 1 shows the frequency of each attribute
value of its mode in a cluster. We see that the mode values in the
attributes a4, a5, a6 and a7 have higher frequencies than other
attributes. This indicates that the attributes a4, a5, a6 and a7 have
more representability than other attributes in the cluster. There-
fore, the attributes a4, a5, a6 and a7 are thought to be important
for identifying the cluster.

According to (3) and (4), we remark that the dissimilarity
between an object and a cluster center in a categorical attribute
only has two values, 0 and 1, which is different from numerical
attribute. When they have an identical value in the categorical
attribute, the dissimilarity is 0, otherwise 1. The weighted
dissimilarity measure between object xi and the center zl is
defined as follows:

dwðzl,xiÞ ¼
Xm
j ¼ 1

caj
ðzl,xiÞ, ð13Þ

where

caj
ðzl,xiÞ ¼

lblj , f ðzl,ajÞa f ðxi,ajÞ,

0, f ðzl,ajÞ ¼ f ðxi,ajÞ:

8<
: ð14Þ

We remark that the weight llj does not work while
f ðzl,ajÞ ¼ f ðxi,ajÞ. Let us consider the following example to



Table 1
An example data set.

Objects Attributes

a1 a2

x1 A A

x2 A A

x3 A B

x4 B C

x5 A D

The mode zl of the set A A

L. Bai et al. / Pattern Recognition 44 (2011) 2843–2861 2847
demonstrate the problem. The example data set in Table 1 is
described with two categorical attributes a1 and a2.

When the dissimilarity between the object x1 and the mode zl

is measured by using dwð:; :Þ, we find that ca1
ðzl,x1Þ ¼

ca2
ðzl,x1Þ ¼ 0. This means that dwð:; :Þ cannot discriminate the

weights of a1 and a2 which are treated equally in the above
situation. However, we can observe from (11) that the weight
value of an attribute in a cluster is inversely proportional to the
dispersion of the values from the center in the attribute of the
cluster. Since the dispersions are different in different attributes
of different clusters, the weight values for different clusters
are different. The high weight indicates a small dispersion in
the attribute of the cluster. Therefore, we can see that since the
frequency of the attribute value ‘A’ in a1 is higher than the
attribute value ‘A’ in a2, the dispersion in a1 is smaller than that
in a2, which means that a1 is more important to identify the
cluster than a2. However, if the value of the object in an attribute
is the same as the center of the cluster, their dissimilarity in the
attribute is 0, which makes the importance of attributes not
reflected. When we replace (4) with the following equation

d0aj
ðzl,xiÞ ¼

1, f ðzl,ajÞa f ðxi,ajÞ,

c, f ðzl,ajÞ ¼ f ðxi,ajÞ,

(
ð15Þ

where c is a constant, co1 and ca0, (15) removes the effect of 0
on the weights of attributes. Eq. (14) is changed as follows:

c0aj
ðzl,xiÞ ¼

lblj , f ðzl,ajÞa f ðxi,ajÞ,

lbljc, f ðzl,ajÞ ¼ f ðxi,ajÞ:

8<
: ð16Þ

Eq. (12) is also changed as

Dlj
0 ¼

Xn

i ¼ 1

wlidaj

0 ðzl,xiÞ ¼
Xn

i ¼ 1,f ðzl ,ajÞa f ðxi ,ajÞ

wliþc
Xn

i ¼ 1,f ðzl ,ajÞ ¼ f ðxi ,ajÞ

wli

¼ jclj�ð1�cÞjcljj ð17Þ

for 1r jrm, 1r lrk. Here, jclj is the number of objects in the lth
cluster, given by

jclj ¼ jfwlijwli ¼ 1,1r irngj, ð18Þ

and jcljj is the number of objects with category f ðzl,ajÞ of the jth
attribute in the lth cluster, given by

jcljj ¼ jfwlijf ðxi,ajÞ ¼ f ðẑl ,ajÞ, wli ¼ 1,1r irngj: ð19Þ

Let us consider the above example again. We find that the
method also has brought some new problems, which are
described as follows:
(1)
 c40. In this case, according to (11) and (17), we see that

D0lj40 and D0lj is inversely proportional to llj and jcljj. We

calculate c0a1
ðzl,x1Þ ¼ lbl1c and c0a2

ðzl,x1Þ ¼ lbl2c. By (11), we

know that lbl14lbl2. Therefore, we have c0a1
ðzl,x1Þ4c0a2

ðzl,x1Þ
which illustrates that the similarity between the object x1 and
the center zl in the attribute a1 is less than that in the
attribute a2. This conclusion is contradictory to the original
idea of attribute weighting.
(2)
 co0. In this case, we cannot guarantee that D0lj is always
positive, which means that llj in (11) might be negative for
some data objects. This conclusion is inconsistent with the
constraint conditions in (9).
From the above analysis, we think that a weighted dissim-
ilarity measure for categorical data should have the following
properties:
(1)
 if f ðxi,ahÞ ¼ f ðzl,ahÞ and f ðxi,ajÞa f ðzl,ajÞ, then the dissimilarity
between the object xi and the center zl in the attribute aj is not
less than that in the attribute ah.
(2)
 if jclhj4 jcljj, f ðxi,ahÞa f ðzl,ahÞ and f ðxi,ajÞa f ðzl,ajÞ, then the
dissimilarity between the object xi and the center zl in the
attribute ah is more than that in the attribute aj.
(3)
 if jclhj4 jcljj, f ðxi,ahÞ ¼ f ðzl,ahÞ and f ðxi,ajÞ ¼ f ðzl,ajÞ, then the
dissimilarity between the object xi and the center zl in the
attribute ah is less than that in the attribute aj.
To satisfy the above properties, we will propose a new
weighting method for categorical attributes. For categorical data,
while comparing an object xi with a center zl in an attribute aj,
there are two results, either f ðxi,ajÞ ¼ f ðzl,ajÞ or f ðxi,ajÞa f ðzl,ajÞ.
In the new method, we will assign different weights for the two
results, L and S, respectively. If f ðxi,ajÞa f ðzl,ajÞ, llj is used to
measure the dissimilarity between the object xi and the center zl

in the attribute aj. llj is proportional to jcljj. L can be computed by
using (11). If f ðxi,ajÞ ¼ f ðzl,ajÞ, slj is used to measure the dissim-
ilarity between the object xi and the center zl in the attribute aj. slj

is inversely proportional to jcljj. The computing method of S will
be introduced in the next section.
4. A new weighted dissimilarity measure

In this section, we present a new weighted dissimilarity
measure which is applied to the k-modes algorithm. Let S¼ ½slj�

be a k-by-n [0, 1] matrix, sljA ½0,1� be the weight for the jth
attribute in the lth cluster and bAð1,þ1Þ be a parameter for
controlling attribute weight slj. The objective function (1) is
modified as follows:

FnðW ,Z,SÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

wlidnðzl,xiÞ ð20Þ

subject to the constraints in (2) and

sljA ½0,1�, 1r lrk, 1r jrm,Xm

j ¼ 1

slj ¼ 1, 1r lrk:

8>><
>>: ð21Þ

The new weighted dissimilarity measure dnðzl,xiÞ is defined as
follows:

dnðzl,xÞ ¼
Xm
j ¼ 1

faj
ðzl,xiÞ, ð22Þ

where

faj
ðzl,xiÞ ¼

1, f ðzl,ajÞa f ðxi,ajÞ,

sblj , f ðzl,ajÞ ¼ f ðxi,ajÞ:

8<
: ð23Þ

According to the definition of fð�,�Þ, one can see that slj has an
effect when the value of an object xi in the jth attribute is equal to
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that of the center zl of the lth cluster, i.e., f ðxi,ajÞ ¼ f ðzl,ajÞ. The
larger slj is, the larger the dissimilarity between xi and zl in the
attribute aj is.

Similar to solving (8), we minimize (20) by iteratively solving
the following three minimization problems:
1.
 Problem P1: Fix Z ¼ Ẑ and S¼ Ŝ, solve the reduced problem
FnðW ,Ẑ ,ŜÞ;
2.
 Problem P2: Fix W ¼ Ŵ and S¼ Ŝ, solve the reduced problem
FnðŴ ,Z,ŜÞ;
3.
 Problem P3: Fix W ¼ Ŵ and Z ¼ Ẑ , solve the reduced problem
FnðŴ ,Ẑ ,SÞ.

Problem P1 is solved by

ŵ li ¼
1 if dnðẑl,xiÞrdnðẑh,xiÞ, 1rhrk,

0 otherwise

(
ð24Þ

for 1r lrk and 1r irn.
The solution to problem P2 is given in Theorem 1.

Theorem 1. Let U be a set of n categorical objects described by

categorical attributes a1,a2, . . . ,am and Vaj
¼ fað1Þj ,að2Þj , . . . ,a

ðnjÞ

j g,
where nj is the number of categories of attribute aj for 1r jrm.
Let the cluster centers zl be represented by ½f ðzl,a1Þ,
f ðzl,a2Þ, . . . ,f ðzl,amÞ� for 1r lrk. Then, the quantityPk

l ¼ 1

Pn
i ¼ 1 wlidnðzl,xiÞ is minimized iff f ðzl,ajÞ ¼ aðrÞj AVaj

where

jfwlijf ðxi,ajÞ ¼ aðrÞj ,wli ¼ 1gjZ jfwlijf ðxi,ajÞ ¼ aðtÞj ,wli ¼ 1gj, 1rtrnj

for 1r jrm.

Proof. For any given Ŵ and Ŝ, all the inner sums of the quantity

Xk

l ¼ 1

Xn

i ¼ 1

ŵ lidnðzl,xiÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

Xm
j ¼ 1

ŵ lifaj
ðzl,xiÞ

are nonnegative and independent. Minimizing the quantity is
equivalent to minimizing each inner sum. We write the l,j th
inner sum (1r lrk and 1r jrm) as

jl,j ¼
Xn

i ¼ 1

ŵ lifaj
ðzl,xiÞ:

When f ðzl,ajÞ ¼ aðtÞj , we have

jl,j ¼
Xn

i ¼ 1,f ðxi ,ajÞaaðtÞ
j

ŵ liþ ŝ lj

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li

¼
Xn

i ¼ 1

ŵli�
Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ liþ ŝ lj

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li

¼
Xn

i ¼ 1

ŵli�ð1�ŝ ljÞ
Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li:

When Ŵ and Ŝ are given,
Pn

i ¼ 1 ŵ li and ŝ lj are fixed. Since

1�ŝ ljZ0, it is clear that jl,j is minimized iff

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li ¼ jfŵ lijf ðxi,ajÞ ¼ aðtÞj ,ŵ li ¼ 1gj

is maximal for 1rtrnj. The result follows. &

Theorem 1 tells us that the cluster centers Z are updated in the
same manner as the original k-modes algorithm even when we
use a new weighted dissimilarity measure. It implies that com-
puting the minimizer Ẑ is independent of Ŝ.

Now, the key issue is how to compute S to solve problem P3.
Theorem 2 rigorously shows the updating formula of S.

Theorem 2. Let Ŵ and Ẑ be fixed and b41, FnðŴ ,Ẑ ,SÞ reaches a

local minimum only if S satisfies the following conditions:

ŝ lj ¼
1

Pm
h ¼ 1

jcljj

jclhj

� �1=ðb�1Þ
: ð25Þ

Proof. We rewrite problem P3 as

FnðŴ ,Ẑ ,SÞ ¼
Xk

l ¼ 1

Xm

j ¼ 1

Xn

i ¼ 1

wlifaj
ðzl,xiÞ

¼
Xk

l ¼ 1

Xm

j ¼ 1

½jclj�jcljj�þ
Xk

l ¼ 1

Xm

j ¼ 1

sblj jcljj,

where jclj and jcljj are constants for fixed Ŵ and Ẑ . This means
that minimizing FnðŴ ,Ẑ ,SÞ is equivalent to minimizing

Xk

l ¼ 1

Xm
j ¼ 1

sblj jcljj: ð26Þ

The Lagrangian multiplier technique is used to obtain the follow-
ing unconstrained minimization problem:

~PðS,aÞ ¼
Xk

l ¼ 1

Xm

j ¼ 1

sblj jcljj�
Xk

l ¼ 1

al

Xm

j ¼ 1

slj�1

0
@

1
A, ð27Þ

where a¼ ½a1,a2, . . . ,ak� is the vector containing the Lagrangian
multipliers. If ðŜ,âÞ is a minimizer of ~PðS,aÞ, the gradients in both
sets of variables must vanish. Thus,

@ ~PðS,aÞ
@slj

¼ bjcljjs
b�1
lj �al ¼ 0, 1r lrk, 1r jrm ð28Þ

and

@ ~PðS,aÞ
@al

¼
Xm

j ¼ 1

slj�1¼ 0, 1r lrk: ð29Þ

From (28) and (29), we obtain

ŝ li ¼
1

Pm
h ¼ 1

jcljj

jclhj

� �1=ðb�1Þ
: ð30Þ

This shows that (25) is the necessary conditions for the optimiza-
tion problem P3 to reach its minimum when W and Z are
fixed. &

According to Theorem 2, the dominant level of the mode
category is considered in the calculation of the dissimilarity
measure. The importance of an attribute in clustering is measured
by the frequencies of the mode category in the cluster. The larger
the jcljj is, the more representability the mode category has in the
cluster and the more important role the attribute aj plays in
identifying the cluster. We see that if jcljj4 jclhj, then sljoslh. This
means that when f ðx,ajÞ ¼ f ðzl,ajÞ and f ðx,ahÞ ¼ f ðzl,ahÞ, if the
frequency of f ðzl,ajÞ in the lth cluster is more than f ðzl,ahÞ, the
similarity between x and zl in the attribute aj is larger than that in
the attribute ah. Let us consider the example in Section 3 again.
Without loss of generality, we set b¼ 2. Using Theorem 2, we
obtain sl1 ¼

1
3 and sl2 ¼

2
3. Thus, fa1

ðzl,x1Þofa2
ðzl,x1Þ which fits

reality.
The convergence of the k-modes algorithm with the new

weighted dissimilarity measure is obtained as in Theorem 3.
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Theorem 3. The k-modes algorithm with the new weighted dissim-

ilarity measure converges to a local minimal solution in a finite

number of iterations.

Proof. We first note that there are only a finite number of
possible partitions W. We then show that each possible partition
W appears at most once by the algorithm. Assume that
W ðt1Þ ¼W ðt2Þ, where t1at2. We note that, given W ðtÞ, we can
compute the minimizer ZðtÞ which is independent of SðtÞ. For
W ðt1Þ and W ðt2Þ, we have the minimizers Zðt1Þ and Zðt2Þ, respectively.
Using W ðt1Þ and Zðt1Þ, and W ðt2Þ and Zðt2Þ, we can compute the
minimizers Sðt1Þ and Sðt2Þ, respectively, according to Theorem 2.
Although Zðt1Þ may be not equal to Zðt2Þ, jcðt1Þ

lj j ¼ jc
ðt2Þ

lj j for 1r jrm,
1r lrk. It is clear that Sðt1Þ ¼ Sðt2Þ. Therefore, we obtain

FnðW
ðt1Þ,Zðt1Þ,Sðt1ÞÞ ¼ FnðW

ðt2Þ,Zðt2Þ,Sðt2ÞÞ:

However, the sequence Fnð�, � ,�Þ generated by the algorithm is
strictly decreasing. Hence, the result follows. &

The result of Theorem 3 guarantees the convergence of the
k-modes algorithm with the new weighted dissimilarity measure.
5. The mixed attribute weighting algorithm

In this section, we integrate Chan’s attribute weighting
method [38] and the proposed weighting method in Section 4
to form a mixed attribute weighting k-modes algorithm (MWKM)
for high-dimensional categorical data. Let E¼ fL,Sg. The mixed
objective function is written as follows:

FeðW ,Z,EÞ ¼ F1ðW ,Z,LÞþFnðW ,Z,SÞþTv

Xk

l ¼ 1

Xm

j ¼ 1

lbljþTs

Xk

l ¼ 1

Xm

j ¼ 1

sblj

¼
Xk

l ¼ 1

Xn

i ¼ 1

wlideðzl,xiÞþTv

Xk

l ¼ 1

Xm
j ¼ 1

lbljþTs

Xk

l ¼ 1

Xm

j ¼ 1

sblj ð31Þ

subject to the same conditions as in (2), (9) and (21). The mixed
weighted dissimilarity measure deðzl,xiÞ is defined as follows:

deðzl,xÞ ¼
Xm
j ¼ 1

saj
ðzl,xiÞ, ð32Þ

where

saj
ðzl,xiÞ ¼

1þlblj , f ðzl,ajÞa f ðxi,ajÞ,

sblj , f ðzl,ajÞ ¼ f ðxi,ajÞ:

8<
: ð33Þ

deðzl,xÞ satisfies the three properties mentioned in Section 3. llj

is inversely proportional to the dispersion of the values from the
center in the attribute of the cluster. The high llj indicates a small
dispersion in the jth attribute of the cluster. Therefore, that
attribute is more important in identifying the cluster. However,
in contrast to llj, slj is proportional to the dispersion of the values
from the center in the attribute of the cluster. The high slj

indicates a large dispersion in the jth attribute of the cluster.
Therefore, this attribute is less important in identifying the
cluster.

In the objective function (31),
Pk

l ¼ 1

Pn
i ¼ 1 wlideðzl,xiÞ is the

sum of the within cluster dispersions that we want to minimize.
Tv
Pk

l ¼ 1

Pm
j ¼ 1 l

b
lj and Ts

Pk
l ¼ 1

Pm
j ¼ 1 sblj are used to stimulate more

attributes to contribute to the identification of clusters in the
clustering process. By the Lagrangian multiplier technique, we
can obtain the minimum value of

Pm
j ¼ 1 l

b
lj:

~jðLl,aÞ ¼
Xm

j ¼ 1

lbljþa
Xm

j ¼ 1

llj�1

0
@

1
A, ð34Þ
where Ll ¼ ½ll1,ll2, . . . ,llm�. If ðL̂ l,âÞ is a minimizer of ~jðLl,aÞ, the
gradients in both sets of variables must vanish. Thus,

@ ~jðLl,aÞ
@llj

¼ blðb�1Þ
lj þa¼ 0, 1r jrm ð35Þ

and

@ ~jðLl,aÞ
@a ¼

Xm

j ¼ 1

llj�1¼ 0: ð36Þ

From (35) and (36), we obtain

l̂ lj ¼
1

m
, 1r jrm: ð37Þ

We see that when the llj are the same for 1r jrm,
Pnj

j ¼ 1 l
b
lj

achieves the minimum value, i.e.,

min
Xm
j ¼ 1

lblj ¼m
1

m

� �b

:

We also know that

Xm
j ¼ 1

lblj r
Xh

j ¼ 1

llj

0
@

1
A

b

þ
Xm

q ¼ hþ1

lblj r
Xm

j ¼ 1

llj

0
@

1
A

b

¼ 1:

If only one of the llj for 1r jrm is nonzero,
Pm

j ¼ 1 l
b
lj achieves the

maximum value, i.e.,

max
Xm

j ¼ 1

lblj ¼ 1:

This means that the smaller
Pm

j ¼ 1 l
b
lj is, the more attributes the

weights are assigned to. Using the same analysis, we also can
obtain minimal and maximal values of

Pm
j ¼ 1 sblj , i.e.,

m
1

m

� �b

r
Xm

j ¼ 1

sblj r1:

Therefore, the last two terms Tv
Pk

l ¼ 1

Pm
j ¼ 1 l

b
lj and

Ts
Pk

l ¼ 1

Pm
j ¼ 1 sblj are added to the objective function so that we

can simultaneously minimize the within cluster dispersion and
minimize them to stimulate more dimensions to contribute to the
identification of clusters. The parameter TvðZ0Þ and TsðZ0Þ are
used to balance which part plays a more important role in the
minimization process of (31). The larger Tv and Ts are, the more
the last two terms contribute in the optimization process and the
‘‘smoother’’ or fuzzier of the resulting L and S are. However, the
values of Tv and Ts should not be too large. The reason is that
when Tv and Ts are very large so that each element in L and S is
close to 1/m. In this case, the mixed dissimilarity measure (33)
becomes the simple matching dissimilarity measure (4) plus a
constant, i.e.,

saj
ðzj,xiÞ ¼ daj

ðzj,xiÞþ
1

m

and the mixed objective function (31) also becomes the original
objective function (1) plus constants, i.e.,

FeðW ,Z,LÞ ¼ FðW ,ZÞþnþðTvþTsÞkm
1

m

� �b

:

This will make the clustering process back to the standard
k-modes.

To minimize the mixed objective function, the matrices W, Z

and E are updated according to the following methods.
Given Ẑ and Ê are fixed, W is updated as

ŵ li ¼
1 if deðẑ l,xiÞrdeðẑh,xiÞ, 1rhrk,

0 otherwise

(
ð38Þ

for 1r irn, 1r lrk.
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Given Ŵ and Ê are fixed, Z is updated in the same manner as
that in Section 2.

Theorem 4. Let U be a set of n categorical objects described by

categorical attributes a1,a2, . . . ,am and Vaj
¼ fað1Þj ,að2Þj , . . . ,a

ðnjÞ

j g,
where nj is the number of categories of attribute aj for 1r jrm.
Let the cluster centers zl be represented by ½f ðzl,a1Þ,
f ðzl,a2Þ, . . . ,f ðzl,amÞ� for 1r lrk. Then, the mixed objective function

(31) is minimized iff f ðzl,ajÞ ¼ aðrÞj AVaj
where

jfwlijf ðxi,ajÞ ¼ aðrÞj ,wli ¼ 1gjZ jfwlijf ðxi,ajÞ ¼ aðtÞj ,wli ¼ 1gj, 1rtrnj

for 1r jrm.

Proof. For a given Ŵ and Ê, Tv
Pk

l ¼ 1

Pm
j ¼ 1 l

b
lj and

Ts
Pk

l ¼ 1

Pm
j ¼ 1 sblj are constants. Minimizing Fe is equivalent to

minimizing each inner sum of the quantity

Xk

l ¼ 1

Xn

i ¼ 1

ŵ lideðzl,xiÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

Xm

j ¼ 1

ŵ lisaj
ðzl,xiÞ,

which is nonnegative and independent. We write the l,jth inner

sum (1r lrk and 1r jrm) as

jl,j ¼
Xn

i ¼ 1

ŵ lisaj
ðzl,xiÞ:

When f ðzl,ajÞ ¼ aðtÞj , we have

jl,j ¼ ð1þ l̂ ljÞ
Xn

i ¼ 1,f ðxi ,ajÞaaðtÞ
j

ŵ liþ ŝ lj

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li

¼ ð1þ l̂ ljÞ
Xn

i ¼ 1

ŵ li�ð1þ l̂ ljÞ
Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ liþ ŝ lj

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li

¼
Xn

i ¼ 1

ŵli�ð1þ l̂ lj�ŝ ljÞ
Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li:

When Ŵ and Ŝ are given,
Pn

i ¼ 1 ŵ li and ŝ lj are fixed. Since

1þ l̂ lj�ŝ ljZ0, it is clear that jl,j is minimized iff

Xn

i ¼ 1,f ðxi ,ajÞ ¼ aðtÞ
j

ŵ li ¼ jfŵ lijf ðxi,ajÞ ¼ aðtÞj ,ŵ li ¼ 1gj

is maximal for 1rtrnj. The result follows. &

Theorem 4 tells us that it is safe to update the cluster centers Z

in the same manner as the original k-modes algorithm does even
when we use the mixed weighted dissimilarity measure.

Given Ŵ and Ẑ are fixed, E is updated by using Theorem 5 to
minimize the mixed objective function.

Theorem 5. Let Ŵ and Ẑ be fixed and b41, FeðŴ ,Ẑ ,EÞ reaches a

local minimum only if L and S satisfy the following conditions:

l̂ lj ¼
1

Pm
h ¼ 1

jclj�jcljjþTv

jclj�jclhjþTv

� �1=ðb�1Þ
ð39Þ

and

ŝ lj ¼
1

Pm
h ¼ 1

jcljjþTs

jclhjþTs

� �1=ðb�1Þ
: ð40Þ
Proof. We rewrite problem P3 as

FeðŴ ,Ẑ ,EÞ

¼
Xk

l ¼ 1

Xm

j ¼ 1

Xn

i ¼ 1

wlifaj
ðzl,xiÞþTv

Xk

l ¼ 1

Xm

j ¼ 1

lbljþTs

Xk

l ¼ 1

Xm
j ¼ 1

sblj

¼
Xk

l ¼ 1

Xm
j ¼ 1

lblj ½jclj�jcljj�þTv

Xk

l ¼ 1

Xm

j ¼ 1

lbljþ
Xk

l ¼ 1

Xm

j ¼ 1

sblj jcljjþTs

Xk

l ¼ 1

Xm

j ¼ 1

sblj ,

where jclj and jcljj are constants for fixed Ŵ and Ẑ . The Lagrangian
multiplier technique is used to obtain the following uncon-
strained minimization problem:

~PðL,S,a,ZÞ

¼
Xk

l ¼ 1

Xm

j ¼ 1

lblj ½jclj�jcljj�þTv

Xk

l ¼ 1

Xm

j ¼ 1

lbljþ
Xk

l ¼ 1

Xm

j ¼ 1

sblj jcljj

þTs

Xk

l ¼ 1

Xm

j ¼ 1

sblj�
Xk

l ¼ 1

al

Xm

j ¼ 1

llj�1

0
@

1
A�Xk

l ¼ 1

Zl

Xm
j ¼ 1

slj�1

0
@

1
A ð41Þ

where a¼ ½a1,a2, . . . ,ak� and Z¼ ½Z1,Z2, . . . ,Zk� are two vectors
containing the Lagrangian multipliers. If ðL̂,Ŝ,â,ẐÞ is a minimizer
of ~PðL,S,a,ZÞ, the gradients in both sets of variables must vanish.
Thus,

@ ~PðL,S,a,ZÞ
@llj

¼ blb�1
lj ½jclj�jcljj�þbl

b�1
lj Tv�al ¼ 0,

1r lrk, 1r jrm, ð42Þ

@ ~PðL,S,a,ZÞ
@slj

¼ bsb�1
lj jcljjþbsb�1

lj Tv�Zl ¼ 0, 1r lrk, 1r jrm,

ð43Þ

@ ~PðL,S,a,ZÞ
@al

¼
Xm

j ¼ 1

llj�1¼ 0, 1r lrk ð44Þ

and

@ ~PðL,S,a,ZÞ
@Zl

¼
Xm

j ¼ 1

slj�1¼ 0, 1r lrk: ð45Þ

From (42), (43), (44) and (45), we obtain

l̂ lj ¼
1

Pm
h ¼ 1

jclj�jcljjþTv

jclj�jclhjþTv

� �1=ðb�1Þ
ð46Þ

and

ŝ lj ¼
1

Pm
h ¼ 1

jcljjþTs

jclhjþTs

� �1=ðb�1Þ
: ð47Þ

This shows that (39) and (40) are the necessary conditions for

the optimization problem P3 to reach its minimum when W and Z

are fixed. We also see that computing L and S are independent of

each other. &

The MWKM algorithm that minimizes (31) is summarized as
follows:

Algorithm—MWKM
Input: The number of clusters k and the parameters b, Tv and Ts;
Randomly choose k cluster centers and set all initial weights of
L and S to 1/m;
REPEAT
Update the partition matrix W by (38);
Update the cluster centers Z by Theorem 4;
Update the dimension weights E by Theorem 5;
UNTIL (the objective function obtains its local minimum
value).
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Theorem 6. The mixed attribute weighting algorithm converges to a
local minimal solution in a finite number of iterations.

Proof. We first note that there are only a finite number of
possible partitions W. We then show that each possible partition
W appears at most once by the algorithm. Assume that
W ðt1Þ ¼W ðt2Þ, where t1at2. We note that, given W ðtÞ, we can
compute the minimizer ZðtÞ which is independent of SðtÞ. For
W ðt1Þ and W ðt2Þ, we have the minimizers Zðt1Þ and Zðt2Þ, respectively.
Using W ðt1Þ and Zðt1Þ, and W ðt2Þ and Zðt2Þ, we can compute the
minimizers Eðt1Þ ¼ fLðt1Þ,Sðt1Þg and Eðt2Þ ¼ fLðt2Þ,Sðt2Þg, respectively.

Although Zðt1Þ may be not equal to Zðt2Þ, jcðt1Þ

lj j ¼ jc
ðt2Þ

lj j for

1r jrm, 1r lrk. It is clear that Lðt1Þ ¼Lðt2Þ and Sðt1Þ ¼ Sðt2Þ.
Therefore, we obtain

FeðW
ðt1Þ,Zðt1Þ,Eðt1ÞÞ ¼ FeðW

ðt2Þ,Zðt2Þ,Eðt2ÞÞ:

However, the sequence Feð�, � ,�Þ generated by the algorithm is
strictly decreasing. Hence, the result follows. &

In Fig. 2, we show the 100 curves, where each curve refers to
the objective function values against the iterations of the pro-
posed algorithm with different initial cluster centers on the
soybean data set from UCI [55]. It is clear from the figure that
the objective function values are decreasing in each curve. With
our results, we show that the objective function values are
decreasing when the mixed weighting method is used. We also
see in Fig. 2 that the algorithm stops after a finite number of
iterations, i.e., the objective function values do not decrease any
more. This is exactly the results we showed in Theorem 6. The
algorithm can be used safely.

The proposed algorithm is scalable to either the number of
objects, attributes or clusters. This is because the new algorithm
only adds a new step to the k-modes clustering process to
calculate the attribute weights of each cluster. The runtime
complexity can be analyzed as follows. We only consider the
three major computational steps:
�

Fig
gue
Partitioning the objects: After initialization of the attribute
weights of each cluster and the cluster centers, a cluster
membership is assigned to each object. This process simply
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compares the summation of

deðzl,xiÞ ¼
Xm
j ¼ 1

saj
ðzl,xiÞ

for each object in all k clusters. Thus, the complexity for this
step is OðmnkÞ operations.

�
 Updating cluster centers: Given the partition matrix W, updat-

ing cluster centers is to find the modes of the objects in the
same cluster. Thus, for k clusters, the computational complex-
ity for this step is OðmnkÞ.

�
 Calculating attribute weights: The last phase of this algorithm is

to calculate the attribute weights for all clusters based on the
partition matrices W and Z. In this step, we only go through
the whole data set once to update the attribute weights. The
computational complexity of this step is also OðmnkÞ.

If the clustering process needs t iterations to converge, the
total computational complexity of this algorithm is OðmnktÞ

which is as much as the original k-modes algorithm (OðmnktÞ).
This shows that the computational complexity increases linearly
as the number of objects, attributes or clusters increases.
6. Experimental analysis

The main aim of this section is to evaluate the clustering
performance and scalability of the mixed attribute weighting
algorithm (MWKM). The motivation for development of the
MWKM algorithm is to cluster high-dimensional categorical data.
To better understand the properties of the algorithm, synthetic
data with controlled cluster structures and data sparsity were
first used to investigate the relationships of the dispersion and
weights of attributes in each cluster, the behavior of parameters
b,Tv,Ts, and the performance of the algorithm on clustering
accuracy in comparison with other clustering algorithms. The
structure of a synthetic categorical data set has the following
characteristics: (1) it contains more than one cluster, (2) the data
values of a cluster are concentrated on a subset of relevant
attributes, whereas other irrelevant attributes contain sparse
values, and (3) the relevant attributes for different clusters can
overlap. Fig. 3 and [42] illustrates an example of a synthetic data
set with four clusters.

A similar process as given by Zait and Messatfa [56] was used
to generate the synthetic data sets with different cluster struc-
tures. Table 2 gives the algorithm for synthetic data generation.

In addition, we also used several real data sets downloaded
from the UCI Machine Learning Repository [55]. These data sets
. 3. The structure of a synthetic data set where the gray areas represent four

ters that are formed in different subspaces, and the white areas represent the

ensions where data entries are sparse values.



Table 2
The algorithm for generating synthetic data.

1. Specify the number of clusters k, the number of objects in each cluster jclj for 1r lrk, the number of attributes m, the number of categories in each attribute nj for

1r jrm, the number of relevant attributes in each cluster rljðrmÞ for 1r lrk, the lowest frequency of each mode value in each relevant attribute fr and the lowest

frequency of each mode value in each irrelevant attribute fir;

2. For l¼1 to k

generate a set cl of jclj empty records with m attributes;

randomly select the rlj attributes from all the attributes as relevant attributes of the lth cluster;

For j¼1 to m

randomly select a category aðqÞj from Vaj
as the value of the mode of the lth cluster;

If the hth attribute is relevant to the lth clusters then

set jcljj ¼ frþbðjclj�frÞ�randðÞc;

//randðÞA ½0,1� is a random function.

Else

set jcljj ¼ firþbðfr�firÞ�randðÞc;

End If

randomly select a set X of jcljj objects from the lth cluster;

For each x in X

set f ðx,ajÞ ¼ aðqÞj ;

End For

For each y in cl�X

randomly select a category aðpÞj from Vaj
�faðqÞj g which satisfies

its frequency in the lth cluster is less than jcljj;

set f ðx,ajÞ ¼ aðpÞj ;

End For

End For

End For

Table 3
The seven data sets from UCI.

Data set Objects Attributes Clusters

Soybean 47 35 4

Heart disease 303 13 2

Dermatology 366 33 6

Breast cancer 699 9 2

Mushroom 8124 22 2

Connect-4 67,557 45 3

Census 2,458,284 68 N/A

Table 4
Notation for the contingency table for comparing two partitions.

C P Sums

p1 p2 � � � p0k

c1 n11 n12 � � � n1k0 b1

c2 n21 n22 � � � n2k0 b2

^ ^ ^ & ^ ^
ck nk1 nk2 � � � n0kk bk

Sums d1 d2 � � � d0k
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are shown in Table 3. If the attribute value of an object in the
given data sets is missing, then we denote the attribute value by e.

6.1. Performance analysis

In the performance analysis, we adopt the three widely used
methods to evaluate the results of clustering algorithms:

The category utility function: The category utility (CU) function
[57] is an internal criterion which attempts to maximize both the
probability that two data objects in the same cluster obtain the
same attribute values and the probability that data points from
different clusters have different attributes. The expression to
calculate the expected value of the CU function is shown in the
following equation:

CU ¼
Xk

l ¼ 1

jclj

n

Xm

j ¼ 1

Xnj

q ¼ 1

½PðaðqÞj jclÞ
2
�PðaðqÞj Þ

2
�, ð48Þ

where PðaðqÞj jclÞ ¼ jfxijf ðxi,ajÞ ¼ aðqÞj ,xiAclgj=jclj, PðaðqÞj Þ¼jfxijf ðxi,ajÞ ¼

aðqÞj ,xiAUgj=n, and cl is a set of objects in the lth cluster.
The adjusted rand index: The adjusted rand index [58] is an

external criterion which attempts to measure the similarity
between two partitions of objects in the same data set. Given a
set U of n data objects and two groupings (e.g., clusterings) of
these objects, namely C ¼ fc1,c2, . . . ,ckg and P¼ fp1,p2, . . . ,p0kg, the
overlappings between C and P can be summarized in a contin-
gency table where nij denotes the number of common objects
of groups ci and pj : nij ¼ jci \ pjj. The adjusted rand index is
defined as

AdjustedIndex¼
Index�ExpectedIndex

MaxIndex�ExpectedIndex

more specifically,

ARI¼

P
ij

nij

2

� �
�
P

i

bi

2

� �P
j

dj

2

� �� ��
n

2

� �

1
2

P
i

bi

2

� �
þ
P

j

dj

2

� �� �
�
P

i

bi

2

� �P
j

dj

2

� �� ��
n

2

� � , ð49Þ

where nij,bi,dj are values from the contingency table (Table 4).
Since these given data sets contain the clustering label on each
data object, we will evaluate the clustering results by using ARI to
compare them with the original clustering labels. If the clustering
result is close to the true class distribution, then the value of ARI

is high.
The set matching technique: This category of methods is based

on measuring the shared set cardinality between two clusterings.
Similar to the adjusted rand index, the set matching technique is
also an external criterion in which external information-class
labels need be used. It computes the best matches between
clusters (in terms of shared points) from each of the two
clusterings and returns a value equal to the total number of
points shared between pairs of matched clusters. The simplest
form of set matching technique is called the set matching error
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(ER) [59], which is defined as

ER¼ 1�
Xk

i ¼ 1

maxk0

j ¼ 1nij

n
, ð50Þ

where nij,k,k0 are values from Table 4. If the clustering result is
close to the true class distribution, then the value of ER is low.

Based on the above evaluation measures, we analyze the
performance of the proposed algorithm on two synthetic data
sets, called SDS1 and SDS2, and five real data sets: the soybean
data, the heart disease data, the dermatology data, the breast
cancer data and the mushroom data, respectively. On each data
set, the analysis consists of the following three parts:

Part 1: We compare the MWKM algorithm with other four
algorithms: the original k-modes algorithm (KM) [7], Chan’s
weighting algorithm (WKM) [38] and Jing’s weighting algorithm
(EWKM) [42] and the k-modes algorithm with the new dissim-
ilarity measure (NWKM) proposed in Section 4. To ensure that the
comparisons are in a uniform environmental condition, we first
set the number of clusters is equal to the ‘‘true’’ number of classes
for each of the given data sets. Furthermore, due to the fact that
the performance of these algorithms depends on initial cluster
centers, we randomly select 100 initial cluster centers and carry
out 100 runs of KM, WKM, EWKM, NWKM and MWKM on each
data set, respectively. In each run, the same initial cluster centers
are used in the five algorithms. Finally, we fix the other para-
meters b¼ 2 which most researchers proposed, Tv ¼ 1 and Ts ¼ 1.
In the above parameters setting, we show the average values and
the best values of the 100 runs of each algorithm for CU, ARI and
ER on these data sets in Tables 5–11. In each cell of these tables,
Table 5
The summary results for 100 runs of five algorithms on the SDS1 data set.

KM WKM

CU 2.0007/2.4134 1.5187/1.7868

ARI 0.5630/0.7692 0.3261/0.4125

ER 0.2479/0.0990 0.3958/0.2820

Table 6
The summary results for 100 runs of five algorithms on the SDS2 data set.

KM WKM

CU 2.8417/3.1761 1.4914/1.8047

ARI 0.6555/0.7748 0.1467/0.2498

ER 0.2020/0.1080 0.5871/0.4855

Table 7
The summary results for 100 runs of five algorithms on the soybean data set.

KM WKM

CU 4.6969/5.5575 3.4463/5.5575

ARI 0.6952/1.0000 0.4989/1.0000

ER 0.1500/0.0000 0.3181/0.0000

Table 8
The summary results for 100 runs of five algorithms on the heart disease data set.

KM WKM

CU 0.5746/0.6867 0.5311/0.6858

ARI 0.2558/0.3869 0.1209/0.2730

ER 0.2613/0.1881 0.3406/0.2376
the left value of ‘‘/’’ denotes the average value and the right value
of ‘‘/’’ denotes the best value.

Part 2: To analyze the effect of the parameter b, we first fix the
other parameters Tv ¼ 1, Ts ¼ 1 and randomly select 100 initial
cluster centers for each of the given data sets. Next, we apply the
WKM algorithm and the MWKM algorithm to cluster the data sets
with different b values, respectively, and compute the average
values for ARI,CU and ER in these 100 runs. Figs. 4, 6, 8, 10, 12, 14
and 16 show the comparison results of the WKM algorithm and
the MWKM algorithm with different b values (the value of b is
from 2 to 10 with step length of 1).

Part 3: To analyze the effect of the parameters Tv and Ts, we
first randomly select 100 initial cluster centers for each of the
given data sets. Next, the MWKM algorithm is used to cluster the
data sets with different Tv values while b¼ 2 and Ts ¼ 1 are fixed
and the MWKM algorithm is used to cluster the data sets with
different Ts values while b¼ 2 and Tv ¼ 1 are fixed. Figs. 5, 7, 9, 11,
13, 15 and 17 show the average values for ARI,CU and ER in these
100 runs of the MWKM algorithm with different Tv or Ts values
(the values of Tv and Ts are from 0 to n/k with step length of
n/(10� k), where n and k are the number of objects and the
number of clusters in the data set, respectively).
6.1.1. Synthetic data I

The first synthetic data set SDS1 has 1000 objects, 30 attri-
butes, and 5 clusters. The number of categories of each attribute is
set to 5. In each cluster, the number of objects and the number of
relevant attribute are set to 200 and 6, respectively. The para-
meter fr and fir are set to 0.5 and 0.2, respectively.
EWKM NWKM MWKM

1.5256/1.7497 2.1269/2.4322 2.3085/2.5142

0.3539/0.4654 0.6705/0.7963 0.7266/0.8461

0.3737/0.2680 0.1868/0.0810 0.1425/0.0640

EWKM NWKM MWKM

1.4194/1.5944 2.8952/3.1923 3.0997/3.2395

0.1407/0.1860 0.7086/0.7762 0.7665/0.8306

0.6116/0.5360 0.1760/0.1035 0.1254/0.0800

EWKM NWKM MWKM

4.6418/5.5575 4.7652/5.5575 4.8981/5.5575

0.6884/1.0000 0.7031/1.0000 0.7745/1.0000

0.1717/0.0000 0.1359/0.0000 0.1164/0.0000

EWKM NWKM MWKM

0.4629/0.6552 0.5908/0.6913 0.6438/0.7174

0.0856/0.2870 0.2714/0.3954 0.2915/0.4121

0.3702/0.2310 0.2576/0.1848 0.2389/0.1782



Table 9
The summary results for 100 runs of five algorithms on the dermatology data set.

KM WKM EWKM NWKM MWKM

CU 3.9374/4.5821 2.3193/4.1610 3.3288/4.5599 4.0158/4.6969 4.1368/4.7100

ARI 0.4505/0.6945 0.3349/0.7173 0.4731/0.7436 0.4833/0.7469 0.5081/0.7536

ER 0.3131/0.1831 0.4496/0.2104 0.3218/0.1475 0.2986/0.1557 0.2728/0.1530

Table 10
The summary results for 100 runs of five algorithms on the breast cancer data set.

KM WKM EWKM NWKM MWKM

CU 0.8337/1.0431 0.5411/0.9624 0.5301/0.5703 0.8540/1.0421 0.8960/1.0431

ARI 0.5137/0.7244 0.2848/0.5630 0.2898/0.3123 0.5524/0.7236 0.5957/0.7244

ER 0.1518/0.0730 0.2197/0.1245 0.2173/0.2060 0.1405/0.0744 0.1231/0.0730

Table 11
The summary results for 100 runs of five algorithms on the mushroom data set.

KM WKM EWKM NWKM MWKM

CU 1.4090/1.7306 0.0471/1.2952 0.6434/1.6471 1.4453/1.7362 1.4928/1.7362

ARI 0.2526/0.6129 0.0004/0.0439 0.1096/0.7047 0.2988/0.6198 0.3218/0.6198

ER 0.2824/0.1054 0.4810/0.3951 0.3854/0.0803 0.2664/0.1064 0.2550/0.1064

MWKM
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Fig. 4. (a) Means of ARI with respect to different values of b on the SDS1 data. (b) Means of CU with respect to different values of b on the SDS1 data. (c) Means of ER with

respect to different values of b on the SDS1 data.
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6.1.2. Synthetic data II

The second synthetic data set SDS2 has 2000 objects, 50
attributes, and 10 clusters. The number of categories of each
attribute is set to 5. In each cluster, the number of objects and the
number of relevant attribute are set to 200 and 5, respectively.
The parameter fr and fir are set to 0.5 and 0.2, respectively.

6.1.3. Soybean data

The soybean data set has 47 records, each of which is
described by 35 attributes. Each record is labeled as one of the
four diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia
Root Rot, and Phytophthora Rot. Except for Phytophthora Rot
which has 17 records, all other diseases have 10 records each.

6.1.4. Heart disease data

This data set generated at the Cleveland Clinic has 303
instances with eight categorical and five numeric features. It
contains two classes: normal (164 data objects) and heart patient
(139 data objects). In the test, all numerical attributes are
removed from the data set.
6.1.5. Dermatology data

This data set describes clinical features and histopathological
features of erythemato-squamous diseases in dermatology. It
contains 366 elements and 33 categorical attributes. It has six
clusters: psoriasis (112 data objects), seboreic dermatitis (61 data
objects), lichen planus (72 data objects), pityriasis rosea (49 data
objects), chronic dermatitis (52 data objects) and pityriasis rubra
pilaris (20 data objects).
6.1.6. Breast cancer data

This breast cancer domain was obtained from the University
Medical Center, Institute of Oncology, Ljubljana, Yugoslavia. It
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consists of 699 data objects and 9 categorical attributes. It has
two clusters, benign (458 data objects) and malignant (241 data
objects).

6.1.7. Mushroom data

This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus
and Lepiota Family. It consists of 8124 data objects and 23
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categorical attributes. Each object belongs to one of two classes,
edible (4208 objects) and poisonous (3916 objects).

According to Tables 5–11, we see that the WKM and EWKM
algorithms have poor performance in clustering categorical data.
This indicates that these weighting algorithms are not fit for
clustering categorical data. Furthermore, we also see that the
performance of the proposed algorithm is superior to the KM,
WKM, EWKM and NWKM algorithms for ARI, CU and ER in
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clustering the data sets. Figs. 4–17 show that the clustering
results of the proposed algorithm were not sensitive to the
change of b, Tv and Ts values. This means that the proposed
algorithm has very good robustness.
6.2. Scalability analysis

In the scalability analysis, we test the KM algorithm, the WKM
algorithm, the EWKM algorithm and the MWKM algorithm on the
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connect-4 data and the census data from UCI [55]. The computa-
tional results are performed by using a machine with an Intel
Q9400 and 2G RAM. The computational times of algorithms are
plotted with respect to the number of objects, attributes and
clusters, while the other corresponding parameters are fixed.
6.2.1. Connect-4 data

The connect-4 data contains all legal 8-ply positions in the
game of connect-4 in which neither player has won yet, and in
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which the next move is not forced. This data set contains 67,557
instances and 42 categorical attributes. It has three class: win
(44,473), loss (16,635) and draw (6449). Fig. 18(a) shows the
computational times against the number of objects, while the
number of attributes is 42 and the number of clusters is 3.
Fig. 18(b) shows the computational times against the number of
attributes, while the number of clusters is 3 and the number of
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objects is 680,000. Fig. 18(c) shows the computational times
against the number of clusters, while the number of attributes
is 42 and the number of objects is 680,000.

6.2.2. Census data

The census data has 2,458,284 records with 68 categorical
attributes, about 352 megabytes in total. It was derived from the
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USCensus1990raw data set which was obtained from the (U.S.
Department of Commerce) Census Bureau website using the
Data Extraction System. We take 100,000 records from this
data set to test the scalability of the MWKM algorithm.
Fig. 19(a) shows the computational times against the number
of objects, while the number of attributes is 68 and the number
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of clusters is 3. Fig. 19(b) shows the computational times
against the number of attributes, while the number of clusters
is 3 and the number of objects is 100,000. Fig. 19(c) shows the
computational times against the number of clusters, while
the number of attributes is 68 and the number of objects is
100,000.
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According to Figs. 18 and 19, we see that the four algorithms
are scalable, i.e., the computational times increase linearly with
respect to the number of objects, attributes, or clusters. The
MWKM algorithm requires slightly more computational time
than other k-modes algorithms. It is an expected outcome since
the calculation of the weighting information requires some
additional arithmetic operations. However, according to the tests,
the computational time of the MWKM algorithm is still scalable,
i.e., it can cluster large categorical data efficiently.
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7. Conclusions

In this paper, we have presented MWKM, a mixed attribute
weighting algorithm for high-dimensional categorical data which
is an extension of the k-modes algorithm. In this algorithm, a new
weighted dissimilarity measure has been proposed to eliminate
the effect of a problem that the attribute weight does not work
while the comparative result of an object and a cluster center in
an attribute is 0. Moreover, it has been integrated with Chan’s
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weighted dissimilarity measure to form a mixed weighted dis-
similarity measure which has been applied to the proposed
algorithm. We have rigorously derived the updating formulas of
the MWKM algorithm and proved the convergence of the algo-
rithm under the optimization framework. Experimental results
show that the proposed algorithm is effective and efficient in
clustering high-dimensional categorical data sets.
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