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In rough set theory, accuracy and roughness are used to characterize uncertainty of a set
and approximation accuracy is employed to depict accuracy of a rough classification.
Although these measures are effective, they have some limitations when the lower/upper
approximation of a set under one knowledge is equal to that under another knowledge. To
overcome these limitations, we address in this paper the issues of uncertainty of a set in an
information system and approximation accuracy of a rough classification in a decision
table. An axiomatic definition of knowledge granulation for an information system is given,
under which these three measures are modified. Theoretical studies and experimental
results show that the modified measures are effective and suitable for evaluating the
roughness and accuracy of a set in an information system and the approximation accuracy
of a rough classification in a decision table, respectively, and have a much simpler and
more comprehensive form than the existing ones.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Recently, rough set theory developed by Pawlak in [11] has become a popular mathematical framework in areas such as
pattern recognition, image processing, feature selection, neural computing, conflict analysis, decision support, data mining
and knowledge discovery process from large data sets [1,10,13–16]. As one of the most important issues in rough set theory,
uncertainty of a set has been widely studied. As follows, we briefly review some relevant literatures.

To evaluate uncertainty of a system, the concept of entropy was introduced by Shannon in [21]. It is a very useful mech-
anism for characterizing information contents in various modes and has been applied in diverse fields. The entropy and its
variants were adapted for rough set theory in [4,23] and information interpretation of rough set theory was given in [5,17].
Beaubouef et al. [2] addressed information measures of uncertainty of rough sets and rough relation databases. In [6], a new
method for evaluating both uncertainty and fuzziness was proposed. Unlike most existing information entropies, Qian and
Liang [19] proposed a so-called combination entropy for evaluating uncertainty of a knowledge from an information system.
All these studies were dedicated to evaluating uncertainty of a set in terms of the partition ability of a knowledge. As a pow-
erful mechanism, granulation was first introduced by Zadeh in [26]. It presents a more visual and easily understandable
description for a partition on the universe. To characterize the granulation, granular computing was introduced in
[27,28], which, as a term with many meanings, covers all the research related to granulations. With regard to granular com-
puting, many pieces of nice work were accomplished in [3,9,18,20,25,29]. Especially, closely associated with granular com-
puting, several measures on knowledge in an information system were proposed and the relationships between these
. All rights reserved.
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measures were discussed in [7,8]. These measures include granulation measure, information entropy, rough entropy, and
knowledge granulation, and have become effective mechanisms for evaluating uncertainty in rough set theory.

To evaluate uncertainty of a set, Pawlak presented several numerical measures in [12], which are accuracy and roughness
of a set and approximation accuracy of a rough classification. Although these measures are effective, they have some restric-
tions. For instances, when the lower/upper approximation of a set under one knowledge is equal to that under another
knowledge, the imprecision of a rough set and approximation accuracy of a rough classification cannot be well characterized
by these measures. The applications of rough set theory in some fields are hence limited. To solve this problem, an improved
accuracy measure for rough sets was given in [24], which calculates the imprecision of a set using an excess entropy. How-
ever, this measure has a complex mathematical form. To overcome the shortcomings of the existing measures, we address in
this paper the issues of uncertainty of a set in an information system and approximation accuracy of a rough classification in
a decision table. An axiomatic definition of knowledge granulation for an information system is given, under which the mea-
sures of accuracy, roughness and approximation accuracy are modified. Theoretical studies and experimental results show
that the modified measures are effective and suitable for evaluating the roughness and accuracy of a set in an information
system and the approximation accuracy of a rough classification in a decision table, respectively, and have a much simpler
and more comprehensive form than the existing ones.

The rest of this paper is organized as follows. Some preliminary concepts such as information systems, indiscernibility
relation, partition, lower and upper approximations, partial relation of knowledge and decision tables are briefly recalled
in Section 2. In Section 3, an axiomatic definition of knowledge granulation for information systems is introduced, and
two definitions of knowledge granulation in the literatures are proved to be special forms of the axiomatic definition. In Sec-
tion 4, through some examples, the limitations of the classical measures are revealed. In Section 5, based on a knowledge
granulation, three modified measures (Accuracy, Roughness and c) are proposed to an information system, and numerical
experiments are performed on practical data sets to show the validity of these three modified measures. Section 6 concludes
this paper with some remarks and discussions.
2. Some basic concepts

In this section, several basic concepts are reviewed, which are information systems, indiscernibility relation, partition,
lower and upper approximations, partial relation of knowledge and decision tables.

In the following, we first recall the concept of information systems.
An information system is a pair S ¼ ðU;AÞ, where

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes; and
(3) for every a 2 A, there is a mapping a, a: U ! Va with Va being called the value set of a.

Each subset of attributes P # A determines a binary indistinguishable relation INDðPÞ as follows:
INDðPÞ ¼ fðu;vÞ 2 U � Uj8a 2 P; aðuÞ ¼ aðvÞg:
It can be easily shown that INDðPÞ is an equivalence relation on the set U.
For P # A, the relation INDðPÞ constitutes a partition of U, which is denoted by U=INDðPÞ or just U=P.
In the studies about information systems, a particular interest is given to the discrete classification xðUÞ ¼ ffxg j x 2 Ug,

and the indiscrete classification dðUÞ ¼ fUg, or just x and d if there is no confusion as to the domain set involved.
As follows, we give the definitions of a lower approximation and an upper approximation in rough set theory.
For any given information system S ¼ ðU;AÞ, P # A and X # U, one can define a lower approximation of X in U and an upper

approximation of X in U by
PX ¼
[
fPi 2 U=INDðPÞjPi # Xg
and
PX ¼
[
fPi 2 U=INDðPÞjPi

\
X–;g;
where PX is a set of objects that belong to X with certainty, while PX is a set of objects that possibly belong to X.
We define a partial relation � on the family fU=BjB # Ag as follows [12]: U=P � U=Q (or U=Q � U=P) if and only if, for

every Pi 2 U=P, there exists Q j 2 U=Q such that Pi # Q j, where U=P ¼ fP1; P2; . . . ; Pmg and U=Q ¼ fQ1;Q2; . . . ;Qng are parti-
tions induced by P;Q # A, respectively. In this case, we say that Q is coarser than P, or P is finer than Q. If U=P � U=Q and
U=P–U=Q , we say Q is strictly coarser than P (or P is strictly finer than Q), denoted by U=P � U=Q (or U=Q � U=P).

A decision table is an information system S ¼ ðU;C [ DÞ with C \ D ¼ Ø, where an element of C is called a condition attri-
bute, C is called a condition attribute set, an element of D is called a decision attribute, and D is called a decision attribute set.
If U=C � U=D, then S ¼ ðU;C [ DÞ is said to be consistent; otherwise it is said to be inconsistent [12]. For example, a decision
table about cars is given in Table 1.



Table 1
An information system about cars.

Car Price Size Engine Max-speed d

u1 Low Compact Gasoline Low Poor
u2 Low Full Diesel High Good
u3 High Full Diesel Medium Poor
u4 High Full Diesel Low Poor
u5 Low Full Gasoline High Poor
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In Table 1, U ¼ fu1;u2;u3;u4;u5g is the universe, C ¼ fc1; c2; c3; c4g with c1 ¼Price, c2 ¼Size, c3 ¼Engine, c4 ¼Max-Speed is
a condition attribute set, and D ¼ fdg is a decision attribute set.
3. Knowledge granulation

In this section, an axiomatic definition of knowledge granulation in an information system is introduced, and the knowl-
edge granulations given in [7] and [24] are proved to be special forms under this definition.

Definition 1. For any given information system S ¼ ðU;AÞ, let G be a mapping from the power set of A to the set of real
numbers. We say that G is a knowledge granulation in an information system S ¼ ðU;AÞ if G satisfies the following
conditions:

(1) GðPÞP 0 for any P # A (Non-negativity);
(2) GðPÞ ¼ GðQÞ for any P;Q # A if there is a bijective mapping f : U=P ! U=Q such that jXij ¼ jf ðXiÞjð8i 2 f1;2; . . . ;mgÞ,

where U=P ¼ fX1;X2; . . . ;Xmg and U=Q ¼ fY1; Y2; . . . ;Ymg; and
(3) GðPÞ < GðQÞ for any P;Q # A with P � Q (Monotonicity).

In [7], a definition of knowledge granulation was given, which is as follows.

Definition 2 [7]. Let S ¼ ðU;AÞ be an information system and U=A ¼ fX1;X2; . . . ;Xmg. A knowledge granulation of A is given
by
GKðAÞ ¼ 1

jUj2
Xm

i¼1

jXij2: ð1Þ
Obviously, when S ¼ ðU;AÞ is an information system, one has that 1= j U j6 GKðRÞ 6 1 for any subset R of A.

Proposition 1. GK in Definition 2 is a knowledge granulation under Definition 1.

Proof. It is sufficient to show that GK meets all the conditions in Definition 1.

(1) Obviously, GKðRÞ is non-negative.
(2) Let P;Q # A, U=P ¼ fX1;X2; . . . ;Xmg and U=Q ¼ fY1; Y2; . . . ;Yng. Suppose that there be a bijective mapping

f : U=P ! U=Q such that jXij ¼ jf ðXiÞjð8i 2 f1;2; . . . ;mgÞ. Then, n ¼ m and
GKðPÞ ¼ 1

jUj2
Xm

i¼1

jXij2 ¼
1

jUj2
Xm

i¼1

jf ðXiÞj2 ¼
1

jUj2
Xn

i¼1

jYij2 ¼ GKðQÞ:
(3) Let P;Q # A satisfying P � Q , U=P ¼ fX1;X2; . . . ;Xmg and U=Q ¼ fY1;Y2; . . . ;Yng. Then, m > n and there exists a parti-
tion C ¼ C1;C2; . . . ;Cn of 1;2; . . . ;m such that
Yj ¼
[
i�Cj

Xi; j ¼ 1;2; . . . ;n:
Hence,
GKðQÞ ¼ 1

jUj2
Xn

j¼1

jYjj2 ¼
1

jUj2
Xn

j¼1

[
i�Cj

Xi

������
������

2

¼ 1

jUj2
Xn

j¼1

X
i�Cj

jXij

0
@

1
A

2

>
1

jUj2
Xn

j¼1

X
i�Cj

jXij2
0
@

1
A ¼ 1

jUj2
Xm

i¼1

jXij2 ¼ GKðPÞ:
Thus, GK in Definition 2 is a knowledge granulation under Definition 1. This completes the proof. h
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In [24], Xu and Zhou used a graph, called ERG, to represent a partition of a given universe. Let R be an equivalence relation
defined on U, and the graph ERG with respect to R be given by GðRÞ ¼ ðNðRÞ; EðRÞÞ, where NðRÞ ¼ U and EðRÞ ¼ fðx; yÞjxRyg.
Then the roughness of R is defined as
RoughðRÞ ¼ connectionðGðRÞÞ
jNðRÞjðjNðRÞj � 1Þlog2jNðRÞj

; ð2Þ
where NðRÞ ¼ U, v is an node in NðRÞ, connectionðGðRÞÞ ¼
P

v2NðRÞIðGðRÞ
v Þ � IðGðRÞÞ and IðGðRÞÞ is the entropy of the informa-

tion source multiplied by the number of nodes.

Proposition 2. RoughðRÞ in [24] is a knowledge granulation under Definition 1.

Proof. It is sufficient to show that GK meets all the conditions in Definition 1.

(1) Let R # A. Since information theory shows that the entropy of a joint distribution is not over the sum of the entropies of
all the components, i.e.

P
v2NðRÞIðGðRÞ

v ÞP IðGðRÞ, hence, connectionðGðRÞÞ ¼
P

IðGðRÞv Þ � IðGðRÞÞP 0. And
j NðRÞ j ðj NðRÞ j �1Þlog2 j NðRÞ j is a constant greater than zero. Thus, RoughðRÞ is non-negative.

(2) Let P;Q # A, U=P ¼ fX1;X2; . . . ;Xmg and U=Q ¼ fY1;Y2; . . . ;Yng. Suppose that there be a bijective mapping
f : U=P ! U=Q such that jXij ¼ jf ðXiÞjð8i 2 f1;2; . . . ;mgÞ. Then, n ¼ m, IðGðPÞÞ ¼ IðGðQÞÞ, IðGðPÞvÞ ¼ IðGðQÞwÞ, and for
v ;w 2 NðRÞÞ;v 2 Xi;w 2 Yi and j Yi j¼j Xi j. Thus, RoughðPÞ ¼ RoughðQÞ.

(3) Let P;Q # A satisfying Q � P, U=P ¼ fX1;X2; . . . ;Xmg and U=Q ¼ fY1;Y2; . . . ;Yng. Let GðPÞ ¼ ðNðPÞ; EðPÞÞ and
GðQÞ ¼ ðNðQÞ; EðQÞÞ be the ERG graphs of P and Q, respectively. Since P and Q are two equivalence relations on U,
hence, NðPÞ ¼ NðQÞ ¼ U. It follows from P � Q that if ðx; yÞ 2 INDðQÞ, then ðx; yÞ 2 INDðPÞ for any x; y 2 U, i.e.
EðQÞ � EðPÞ. Therefore, connectionðGðQÞÞ < connectionðGðPÞÞ. Due to that P and Q are equivalence relations defined
on U, j NðPÞ j ðj NðPÞ j �1Þlog2 j NðPÞ j¼ jNðQÞ j ðjNðQÞ j �1Þlog2 j NðQÞ j¼j U j ðj U j �1ÞlogjUj2 . It follows immediately
that RoughðQÞ < RoughðPÞ.

These results together implies that RoughðRÞ in [24] is a knowledge granulation under Definition 1. h

Remark. In general, a knowledge granulation provides an important approach to measuring the discernibility ability of a
knowledge in rough set theory. The smaller the knowledge granulation is, the stronger its discernibility ability is.
4. Limitations of classical measures in rough set theory

In this section, through two illustrative examples, we reveal the limitations of existing classical measures for evaluating
uncertainty of a set and approximation accuracy of a rough classification.

In [12], Pawlak proposed two numerical measures for evaluating uncertainty of a set: accuracy and roughness. The accu-
racy measure is equal to the degree of completeness of a knowledge about the given object set X, and is defined by the ratio
of the cardinalities of the lower and upper approximation sets of X as follows:
aRðXÞ ¼
jRXj
jRXj

: ð3Þ
The roughness measure represents the degree of incompleteness of a knowledge about the set, and is calculated by sub-
tracting the accuracy from one:
qRðXÞ ¼ 1� aRðAÞ: ð4Þ
These measures take into account the number of elements in each of the approximation sets and are good metrics for
evaluating uncertainty that arises from the boundary region. However, the accuracy and roughness do not provide the infor-
mation that is caused by the uncertainty related to the granularity of the indiscernibility relation. Their limitations are re-
vealed by the following example.

Example 1. In Table 1, suppose that R1, R2, R3 # C, where R1 ¼ fc1g;R2 ¼ fc1; c2g and R3 ¼ fc1; c2; c3g.
By calculating, one can have
U=R1 ¼ ffu1;u2;u5g; fu3;u4gg;
U=R2 ¼ ffu1g; fu2;u5g; fu3;u4gg
and
U=R3 ¼ ffu1g; fu2g; fu3; u4g; fu5gg:
It is easy to see that
R3 � R2 � R1:
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Suppose X ¼ fu1;u2;u3;u5g. Then, it is obvious that
R1X ¼ R2X ¼ R3X ¼ fu1;u2;u5g
and
R1X ¼ R2X ¼ R3X ¼ fu1;u2;u3;u4;u5g:
Thus,
aR1 ðXÞ ¼ aR2 ðXÞ ¼ aR3 ðXÞ ¼ 0:6
and
qR1
ðXÞ ¼ qR2

ðXÞ ¼ qR3
ðXÞ ¼ 0:4:
Note that, in Example 1, there is a partial relation in three knowledge representation systems U=R1, U=R2 and U=R3, but
the same accuracy or roughness is obtained for each of the three rough sets of X induced by the three knowledge systems,
respectively. Therefore, it is necessary to introduce more effective measures.

In [12], approximation accuracy of a rough classification was introduced by Pawlak. Let F ¼ fY1;Y2; . . . ;Yng be a classifi-
cation of the universe U, and C an attribute set in an information system. Then, C-lower and C-upper approximations of F are
given by CF ¼ fCY1; CY2; . . . ;CYng and CF ¼ fCY1;CY2; . . . ;CYng, respectively, where
CYi ¼
[
fx 2 Uj½x	C # Yi 2 Fg; 1 6 i 6 n
and
CYi ¼
[
fx 2 Uj½x	C \ Yi–;;Yi 2 Fg; 1 6 i 6 n:
The approximation accuracy of F by C is defined as
aCðFÞ ¼
P

Yi2U=DjCYijP
Yi2U=DjCYij

: ð5Þ
The approximation accuracy provides the percentage of possible correct decisions when classifying objects by employing
the attribute set C. Although, in some situations, aCðFÞ can be used to evaluate the approximation accuracy of a rough clas-
sification in an information system, its limitations are revealed by the following example.

Example 2. In Table 1, U=D ¼ ffu1;u3;u4;u5g; fu2gg gives a classification of the universe U.
For C1 ¼ fc3g and C2 ¼ fc2; c3g, one has that
aC1 ðU=DÞ ¼ aC2 ðU=DÞ ¼ 0:4:
In Example 2, although there is a partial relation between the two knowledge representation systems U=C1 and U=C2, they
achieve the same approximation accuracy for the rough classification.
5. Uncertainty measures based on a knowledge granulation

In this section, based on a knowledge granulation in an information system, the three existing measures of accuracy,
roughness and approximation accuracy are modified. Furthermore, theoretical studies and experimental results are provided
to show that the modified measures are effective and suitable for evaluating the roughness and accuracy of a set in an infor-
mation system and the approximation accuracy of a rough classification in a decision table, respectively.

Definition 3. Let S ¼ ðU;AÞ be an information system, ; � X # U and R # A. The roughness of X with respect to R is defined as
follows:
RoughnessRðXÞ ¼ qRðXÞGKðRÞ; ð6Þ
where qRðXÞ ¼ 1� jRXj
jRXj

.

Clearly, the granularity of the partition induced by the equivalence relation R is taken into account in the new definition.
In the following, we show that the modified roughness measure has some significant properties and is valuable in evaluating
uncertainty of a set.

Property 1 (Equivalence). Let S ¼ ðU;AÞ be an information system, P;Q # A and ; � X # U. If U=P ¼ U=Q, then
RoughnessPðXÞ ¼ RoughnessQ ðXÞ.

Property 2 (Maximum). Let S ¼ ðU;AÞ be an information system, R # A and ; � X # U. The maximum roughness of X with
respect to R is one. This value is achieved only if U=R ¼ d.
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Property 3 (Minimum). Let S ¼ ðU;AÞ be an information system, R # A and ; � X # U. The minimum roughness of X with respect
to R is zero. This value is achieved only if U=R ¼ x. Obviously, when S ¼ ðU;AÞ is an information system, one has that
0 6 RoughnessRðXÞ 6 1 for any subset R of A.

Proposition 3. Let S ¼ ðU;AÞ be an information system, P;Q # A and ; � X # U. If P � Q, then
RoughnessPðXÞ 6 RoughnessQ ðXÞ:
Proof. Let P � Q . It is easy to obtain that GKðPÞ 6 GKðQÞ and 0 6 qPðXÞ 6 qQ ðXÞ. Then,
RoughnessPðXÞ ¼ qPðXÞGKðPÞ 6 qQ ðXÞGKðQÞ ¼ RoughnessQ ðXÞ:
This completes the proof. h

Proposition 3 states that the roughness of X with respect to R decreases with R becoming finer.

Definition 4. Let S ¼ ðU;AÞ be an information system, ; � X # U, and R # A. The accuracy of X with respect to R is defined as
follows:
AccuracyRðXÞ ¼ 1� qRðXÞGKðRÞ; ð7Þ
where qRðXÞ ¼ 1� jRXj
jRXj

.

Property 4 (Equivalence). Let S ¼ ðU;AÞ be an information system, P;Q # A and ; � X # U. If U=P ¼ U=Q, then
AccuracyPðXÞ ¼ AccuracyQ ðXÞ.

Property 5 (Maximum). Let S ¼ ðU;AÞ be an information system, R # A and ; � X # U. The maximum accuracy of X with respect
to R is one. This value is achieved only if U=R ¼ x.

Property 6 (Minimum). Let S ¼ ðU;AÞ be an information system, R # A and ; � X # U. The minimum accuracy of X with respect
to R is zero. This value is achieved only if U=R ¼ d.

Obviously, when S ¼ ðU;AÞ is an information system, one has that 0 6 AccuracyRðXÞ 6 1 for any subset R of A.

Proposition 4. Let S ¼ ðU;AÞ be an information system, P;Q # A and ; � X # U. If P � Q, then
AccuracyPðXÞP AccuracyQ ðXÞ:
Proof. Let P � Q . It is easy to obtain that RoughnessPðXÞ 6 RoughnessQ ðXÞ.

Thus
AccuracyPðXÞ ¼ 1� qPðXÞGKðPÞ ¼ 1� RoughnessPðXÞP 1� RoughnessQ ðXÞ ¼ AccuracyQ ðXÞ:
This completes the proof. h

Proposition 4 states that the accuracy of X with respect to R increases with R becoming finer.
As follows, we analyze the complexity for computing uncertainty of a set. Let S ¼ ðU;AÞ be an information system, where

U ¼ fu1;u2; . . . ;ujUjg is a universe and A is a set of attributes, and let R # A and X a non-empty subset of U : ; � X # U. By per-
forming the following steps, one can compute the roughness of X with respect to R.

(1) Compute U=R ¼ fX1;X2; . . . ;Xng and GKðRÞ ¼ 1
jUj2
Pn

i¼1jXij2;
(2) compute RX ¼

S
fXi 2 U=RjXi # Xg, RX ¼

S
fXi 2 U=RjXi

T
X–;g, aRðXÞ ¼ jRXj

jRXj
and qRðXÞ ¼ 1� aRðXÞ; and

(3) finally, compute RoughnessRðXÞ ¼ qRðXÞGKðRÞ.

In Step (1), to compute all Xiði ¼ 1;2; . . . ; nÞ, it needs to decide whether ðui;ujÞ 2 INDðRÞði; j ¼ 1;2; . . . ; j U jÞ or not. Thus, its
time complexity is Oðj A jj Uj2Þ. The time complexity of (2) is Oðj U jÞ and the time complexity of the step (3) is a constant.
Therefore, the overall time complexity is Oðj A jj Uj2Þ.

Example 3 (Continued from Example 1). By computing, we have that
GKðR1Þ ¼
1

25
32 þ 22
� �

¼ 0:52;

GKðR2Þ ¼
1

25
1þ 22 þ 22
� �

¼ 0:36
and
GKðR3Þ ¼
1

25
1þ 1þ 22 þ 1
� �

¼ 0:28:
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Hence, the roughnesses of X with respect to R1, R2 and R3 are given by
RoughnessR1
ðXÞ ¼ 0:4� 0:52 ¼ 0:208;

RoughnessR2
ðXÞ ¼ 0:4� 0:36 ¼ 0:144
and
RoughnessR3
ðXÞ ¼ 0:4� 0:28 ¼ 0:112;
respectively. Obviously, RoughnessR1
ðXÞ > RoughnessR2

ðXÞ > RoughnessR3
ðXÞ. It is clear that the roughness of X with respect to

R decreases with R becoming finer.

The accuracies of X with respect to R1, R2 and R3 are given by
AccuracyR1
ðXÞ ¼ 0:792;

AccuracyR2
ðXÞ ¼ 0:856
and
AccuracyR3
ðXÞ ¼ 0:888;
respectively. Thus, AccuracyR1
ðXÞ < AccuracyR2

ðXÞ < AccuracyR3
ðXÞ. Therefore, the accuracy of X with respect to R increases as

R becoming finer.
In [24], the accuracy of X with respect to R is defined as
DRðXÞ ¼ 1� qRðXÞ � roughðRÞ; ð8Þ
where qRðXÞ ¼ 1� jRXj
jRXj

.
For Example 3, one can also compute the accuracies of X with respect to R1, R2 and R3 with the formula (8), which are as

follows:
DR1 ðXÞ ¼ 1� qRðXÞ � roughðRÞ ¼ 1� 0:4� 1� 3� 2� log23þ 2þ 2� 3� log23
5� 4� log25

� �
¼ 0:781;

DR2 ðXÞ ¼ 1� qRðXÞ � roughðRÞ ¼ 1� 0:4� 1�
2� ð2þ 2� 3� log23Þ � log2

1
55

5� 4� log25

" #
¼ 0:898
and
DR3 ðXÞ ¼ 1� qRðXÞ � roughðRÞ ¼ 1� 0:4� 1�
2þ 2� 3� log23� 3� log2

3
55

5� 4� log25

" #
¼ 0:958:
Clearly, DR1 ðXÞ < DR2 ðXÞ < DR3 ðXÞ. Thus, the results are consistent with those in Example 3.
The time complexity of the method in [24] is equivalent to that of computing an equivalence relation, i.e. Oðj A jj Uj2Þ,

which is the same as the method proposed in this paper.

Remark. One can see that the measure in the literature [24] and the measure in this paper improve the Pawlak’s accuracy
measure. It has been shown that RoughðRÞ in [24] is a kind of knowledge granulation. So, the measures in the literature [24]
and this paper both come from the knowledge granulation defined in this paper. But the definition of knowledge granulation
given in this paper has a much simpler form. Thus, the measure proposed in this paper is much simpler and more
comprehensive than that in [24].

In the following, the measure proposed in this paper is exemplified through an information system about planning tennis
ball (see Table 2 in [22]), where U ¼ fu1; u2; . . . ;u24g and A ¼ fa1; a2; a3; a4gwith a1 ¼Outlook, a2 ¼Temperature, a3 ¼Humid-
ity and a4 ¼Windy.

Let R1 ¼ fa1; a2g and R2 ¼ fa1; a2; a3g. By computing, we have GKðR1Þ ¼ 0:132 and GKðR2Þ ¼ 0:090. Clearly, it is different
between the knowledge granulation of R1 and that of R2. In fact, U=R1 � U=R2, i.e., R2 is finer than R1.

Let
X1 ¼ fu4; u5; u6; u17;u23g;
X2 ¼ fu1; u2; u3; u8; u11g;
X3 ¼ fu8; u11;u12;u15g;
X4 ¼ fu1; u4; u5; u9; u14; u19;u21;u22; u23g
and
X5 ¼ fu6;u7;u11;u12;u15;u17;u18;u21;u24g. By testing on these five sets, X1, X2, X3, X4 and X5, one can obtain the same lower

approximation and upper approximation for these sets according to R1 and R2 (see Table 3), which are the same as those
obtained by using Pawlak’s roughness measure. However, these sets have different RoughnessðXÞ (see Table 4). This is caused



Table 2
An information system about planning tennis ball.

Events Outlook Temperature Humidity Windy

u1 Overcast Hot High Not
u2 Overcast Hot High Very
u3 Overcast Hot High Medium
u4 Sunny Hot High Not
u5 Sunny Hot High Medium
u6 Rain Mild High Not
u7 Rain Mild High Medium
u8 Rain Hot Normal Not
u9 Rain Cool Normal Medium
u10 Rain Hot Normal Very
u11 Sunny Cool Normal Very
u12 Sunny Cool Normal Medium
u13 Overcast Mild High Not
u14 Overcast Mild High Medium
u15 Overcast Cool Normal Not
u16 Overcast Cool Normal Medium
u17 Rain Mild Normal Not
u18 Rain Mild Normal Medium
u19 Overcast Mild Normal Medium
u20 Overcast Mild Normal Very
u21 Sunny Mild High Very
u22 Sunny Mild High Medium
u23 Sunny Hot Normal Not
u24 Rain Mild High Very

Table 3
The lower approximations and upper approximations of sets.

X R1X ¼ R2X R1X ¼ R2X

X1 fu4; u5; u23g fu4; u5;u6; u7;u17;u18; u23; u24g
X2 fu1; u2; u3g fu1; u2;u3; u8;u10;u11; u12g
X3 fu11;u12g fu8; u10; u11;u12; u15; u16g
X4 fu4; u5; u9;u21; u22; u23g fu1; u2;u3; u4;u5; u9; u13;u14; u19; :::;u23g
X5 fu6; u7; u11;u12; u17; u18;u24g fu6; u7;u11; u12; u15;u16;u17; u18; u21;u24g

Table 4
Comparison of classical roughness measure and the measure in this paper.

X qR1
ðXÞ ¼ qR2

ðXÞ RoughnessR1
ðXÞ RoughnessR2

ðXÞ

X1 0.625 0.082 0.056
X2 0.571 0.075 0.052
X3 0.667 0.088 0.060
X4 0.534 0.071 0.049
X5 0.364 0.048 0.033
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by that R1 and R2 have different knowledge granulations. Thus, under the measure proposed in this paper, the uncertainties
of X with respect to different equivalence relations are well characterized.

In order to demonstrate the advantage of the measure proposed in this paper, we have downloaded three public data sets
from UCI Repository of Machine Learning Databases [30], which are described in Table 5.

In Table 5, the data set Servo is from a simulation of a servo system involving a servo amplifier, a motor, a lead screw/nut,
and a sliding carriage of some sort; the data set Tic-tac-toe is the encoding of the complete set of possible board configura-
tions at the end of tie-tac-toe games, which is used to obtain possible ways to create a ‘‘three-in-a-row”; and the Nursery
data set is derived from a hierarchical decision model originally developed to rank applications for nursery schools.
Table 5
Data sets description.

Data sets Samples Number of attributes

Servo 167 4
Tic-tac-toe 958 9
Nursery 12960 8



Table 6
Pawlak’s accuracy measure a and the accuracy measure Accuracy proposed in this paper with different numbers of attributes for X1 in the data set Servo.

Measure Attributes

1 2 3 4

a 0.000000 0.000000 0.200000 1.000000
Accuracy 0.793288 0.957008 0.989587 1.000000

Table 7
Pawlak’s accuracy measure a and the accuracy measure Accuracy proposed in this paper with different numbers of attributes for X2 in the data set Tie-tac-toe.

Measure Attributes

1 2 3 4 5 6 7 8 9

a 0.000000 0.000000 0.100257 0.111406 0.311080 0.653716 0.897533 1.000000 1.000000
Accuracy 0.641548 0.876951 0.958570 0.984367 0.994799 0.998832 0.999828 1.000000 1.000000

Table 8
Pawlak’s accuracy measure a and the accuracy measure Accuracy proposed in this paper with different numbers of attributes for X3 in the data set Nursery.

Measure Attributes

1 2 3 4 5 6 7 8

a 0.000000 0.500000 0.800000 0.947368 0.982143 0.991071 0.997006 1.000000
Accuracy 0.666667 0.966667 0.996667 0.999781 0.999975 0.999994 0.999999 1.000000
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Here, we compare the accuracy measure proposed in this paper with Pawlak’s accuracy measure for a set on these three
practical data sets. Let X1 be the set of first 10 objects in the data set Servo, and X2, X3 be the set of first 500 and 1000 objects
in the data set Tie-tac-toe and Nursery, respectively. The comparisons of values of two measures for the sets X1, X2, and X3

with the numbers of attributes in these three data sets are shown in Tables 6–8 and Figs. 1–3.
It can be seen from Tables 6–8 that the values of the accuracy measure in this paper and Pawlak’s accuracy measure in-

crease with the number of selected attributes becoming bigger. However, from Fig. 1, it is easy to see that the values of a is
equal to zero when the number of features equals 1 or 2. In this situation, the lower approximation of the object set equals an
empty set in the data set. Hence, Pawlak’s accuracy measure cannot be used to effectively characterize the accuracy of the
object set. But, for the same situation as that the number of attributes equals 1 and 2, the values of the accuracy measure in
this paper equal 0.793288 and 0.957008, respectively. It shows that unlike Pawlak’s accuracy measure, the accuracy measure
in this paper induced by two attributes is higher than that induced by only one attribute. Thus, the measure in this paper
may be much better than Pawlak’s accuracy measure for this situation. One can draw the same conclusion from Figs. 2
Fig. 1. Variation of Pawlak’s accuracy measure a and the accuracy measure Accuracy in this paper with the number of attributes for X1 (data set Servo).



Fig. 2. Variation of Pawlak’s accuracy measure a and the accuracy measure Accuracy in this paper with the number of attributes for X2 (data set Tie-tac-toe).

Fig. 3. Variation of Pawlak’s accuracy measure a and the accuracy measure Accuracy in this paper with the number of attributes for X3 (data set Nursery).
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and 3. In other words, when a equals zero or has the same value except one for different numbers of attributes in Figs. 1–3,
the measure in this paper is still valid for evaluating the accuracy of the set by using the selected attributes. Therefore, the
measure proposed in this paper may be better than Pawlak’s measure for evaluating uncertainty of a set.

The idea in the measure definition of this paper can be generalized to defining approximation accuracy of a rough clas-
sification. Based on the knowledge granulation, a new approximation accuracy of a rough classification in a decision table
can be proposed, which is as follows.

Definition 5. Let S ¼ ðU;C [ DÞ be a decision table, U=D ¼ fY1;Y2; . . . ;Yng and R # C. An approximation accuracy of U=D with
respect to R is defined as:
cRðU=DÞ ¼ 1� ð1� aRðU=DÞÞGKðRÞ: ð9Þ
Property 7 (Equivalence). Let S ¼ ðU;C [ DÞ be a decision table, U=D ¼ fY1;Y2; . . . ;Yng and P;Q # C. If U=P ¼ U=Q, then
cPðU=DÞ ¼ cQ ðU=DÞ.

Property 8 (Maximum). Let S ¼ ðU;C [ DÞ be a decision table, U=D ¼ fY1;Y2; . . . ;Yng and R # C. The maximum approximation
accuracy of U=D with respect to R is one only if

P
Yi2U=DjCYij ¼

P
Yi2U=DjCYij.
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Property 9 (Minimum). Let S ¼ ðU;C [ DÞ be a decision table, U=D ¼ fY1;Y2; . . . ;Yng and R # C. The minimum approximation
accuracy of U=D with respect to R is zero only if U=R ¼ d.

Obviously, when S ¼ ðU;C [ DÞ is a decision table, one has that 0 6 cRðU=DÞ 6 1 for any subset R of C.

Proposition 5. Let S ¼ ðU;C [ DÞ be a decision table, U=D ¼ fY1;Y2; . . . ;Yng and P;Q # C. If P � Q, then
Table 9
aCðU=D

Measur

aCðU=D
cC ðU=D
cPðU=DÞP cQ ðU=DÞ:
Proof. Let P � Q . It is easy to obtain that aQ ðU=DÞ 6 aPðU=DÞ and GKðQÞP GKðPÞ.

Thus
cPðU=DÞ ¼ 1� ð1� aPðU=DÞÞGKðPÞP cQ ðU=DÞ:
This completes the proof. h

Proposition 5 states that the approximation accuracy of U=D with respect to R increases with R becoming finer.
The time complexity of computing cCðU=DÞ is Oðj C jj Uj2Þ, which is the same as aCðU=DÞ.

Example 4 (Continued from Example 2). By computing, one has that GKðC1Þ ¼ 0:52 and GKðC2Þ ¼ 0:44. Thus,
cC1
ðU=DÞ ¼ 0:688
and
cC2
ðU=DÞ ¼ 0:736:
Therefore, when C2 � C1, cC2
ðU=DÞ > cC1

ðU=DÞ.
For a general decision table, to illustrate the difference between aCðU=DÞ and cCðU=DÞ, the practical data set Tic-tac-toe in

Table 5 is used again. The data set has two decision classes. The comparisons of values of the two measures with the numbers
of attributes in the data set is shown in Table 9 and Fig. 4.

It can be seen from Table 9 that the values of the measure c and the approximation accuracy aCðU=DÞ increase as the num-
ber of selected attributes becoming bigger in the data set. The measure c and the approximation accuracy will achieve the
Þ and cCðU=DÞ with different numbers of attributes in the data set Tie-tac-toe.

e Features

1 2 3 4 5 6 7 8 9

Þ 0.0000 0.0000 0.0640 0.0988 0.2788 0.6539 0.8943 1.0000 1.0000
Þ 0.6415 0.8769 0.9569 0.9841 0.9945 0.9988 0.9998 1.0000 1.0000

Fig. 4. Variation of the measure c in this paper and the approximation accuracy with the number of attributes (data set Tic-tac-toe).
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same value of one if the decision table becomes consistent by adding selected attributes. However, from Fig. 4, it is easy to
see that the values of approximation accuracy is equal to zero when the number of attributes equals 1 or 2. In this situation,
the lower approximation of the rough classification equals an empty set in the decision table. But, for the same situation as
that the number of attributes equals 1 and 2, the values of the measure c equal 0.6415 and 0.8769, respectively. It shows that
unlike the approximation accuracy, the measure in this paper with two attributes is higher than that with only one attribute.
In other words, when aCðU=DÞ ¼ 0 in Fig. 4, the measure c is still valid for evaluating the approximation accuracy of a clas-
sification by using the selected attributes. Hence, the measure c may be better than the approximation accuracy for evalu-
ating the approximation accuracy of a rough classification.
6. Conclusions and discussion

In this paper, we have addressed the issues of uncertainty of a set in an information system and approximation accuracy
of a rough classification in a decision table. Two examples have been employed to reveal the limitations of three existing
classical measures for evaluating uncertainty of a set and approximation accuracy of a rough classification. An axiomatic def-
inition of knowledge granulation for an information system have been given. Under this definition, it has been proved that
the knowledge granulations given in [7,24] are two special forms of the definition. Based on the knowledge granulation de-
fined in this paper, the three existing measures have been modified. Theoretical studies and numerical experiments have
been carried out to show that the modified measures are effective and suitable for evaluating the roughness and accuracy
of a set in an information system and the approximation accuracy of a rough classification in a decision table, respectively,
and have a much simpler and more comprehensive form than the existing ones.These new measures may be helpful for rule
evaluation and knowledge discovery.
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