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Abstract For further studying the theory of multigranu-

lation rough sets, we attempt to investigate a new theory on

multigranulation rough sets from the topological view in

this paper. We firstly explore multigranulation topological

rough space and its topological properties by giving some

new definitions and theorems. Then, topological granular-

ity and topological entropy are proposed to characterize the

uncertainty of a multigranulation topological rough space.

Finally, based on the invariance of interior and closure

operators of a target concept, a granulation selection

algorithm is introduced to deal with the granularity selec-

tion issue in the multigranulation rough data analysis.

Keywords Rough sets � MGRS � Topology �
Multigranulation topological rough space �
Topological entropy

1 Introduction

Rough set theory (RS), originated by Pawlak [28], is a new

mathematical tool to deal with incomplete, imprecise, and

uncertain knowledge. In the past decades, rough set theory

has developed significantly due to its wide applications.

Various generalized rough set models have been estab-

lished and their corresponding properties or structures have

been investigated intensively and extensively [1, 2, 3, 4,

16, 39, 50, 52]. These extensional ways are mainly based

on either relaxing an equivalence relation or generalizing

partition to covering on the universe.

Topology is an important branch of mathematics aimed

at studying the invariance of a given space under topo-

logical transformation (homeomorphism) [9], whose theo-

ries and applications have been studied in [6, 7, 14, 7, 17,

18]. In [29], Pawlak has pointed out that topology is closely

related to rough set theory and convinced that topology

structure of the rough set is one of key issues of rough set

theory. The topology theory and rough set theory have been

applied in many science and engineering areas such as in

chemistry, biology, image processing, knowledge acquisi-

tion and pattern recognition. Therefore, how to combine

rough set theory and topology theory becomes an inter-

esting and natural research topic, in fact which has received

considerable attention from the scholars in this community

[12, 21, 22, 30, 31, 27, 36, 43, 49, 46, 51]. In particular,

Skowron [41] and Wiweger [45] separately discussed this

topic in 1988. Lin continued to discuss this topic and

established a connection between fuzzy rough sets and

topology [21]. Furthermore, by using the theories of the

topology and the neighborhood systems, Polkowski [26]

constructed and characterized topological spaces from

rough sets based on information systems. In the literature

[27], Polkowski pointed out: ‘‘topological aspects of rough

set theory were recognized early in the framework of

topology of partitions’’. Lashin [15] generalized rough set

theory in the frameworks of topological space and topo-

logized information tables. Zhu [51] studied several
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covering-based rough sets on the topological view. Yang

[44] investigated relationships among separation axioms

and two topological spaces. Kortelainen [11] and Jarvinen

[8] considered relationships among modified sets, topo-

logical spaces and rough sets based on a preorder. Qin [37]

discussed the relationship between fuzzy rough set models

and fuzzy topologies on a finite non-empty universe. Some

other authors discussed relationships between generalized

rough sets and the topology from different viewpoints (for

example see [5, 10, 41]). Skowron et al. [41] generalized

the classical approximation spaces to tolerance approxi-

mation spaces and discussed the problems of attribute

reduction in these spaces. In addition, connections between

fuzzy rough set theory and fuzzy topology were also

investigated [16, 37, 40].

According to the different strategies, Qian and Liang

[33] proposed multigranulation rough sets by employing

multiple binary relations on the universe instead of a single

one. A target concept was described through these granu-

lations on the universe based on a user’s different

requirements or targets of problem solving. Since multi-

granulation rough set is an important research direction of

the rough set theory, there have been many studies on this

topic. For example, Liu et al. [24, 25] proposed covering

fuzzy rough set based multigranulation rough sets. Xu

et al. [42] investigated another generalized version, called

variable precision multigranulation rough sets. Yang et al.

[44] proposed a multigranulation rough set based on a

fuzzy binary relation. Lin et al. [23] investigated a neigh-

borhood-based multigranulation rough set model, which

can be used to deal with the data sets with hybrid attributes.

Liang et al. [20] proposed an efficient feature selection

algorithm for large-scale data sets from the perspective of

multigranulation which also demonstrates the usefulness of

MGRS theory. What deserves to be mentioned is that She

et al. [38] explored the topological structures and the

properties of multigranulation rough sets. However, the

multigranulation topological rough space and the corre-

sponding topological properties are still not studied. The

motivation of this paper is to investigate these problems

and to describe the uncertainty of multigranulation topo-

logical space by proposing topological granularity measure

and topological entropy.

With respect to the application of the multigranulation

rough sets in a multi-source information system and the

distributive information system where information is

obtained from different sources [13], it is important to

consider two interesting issues, i.e., the granular selection

and the granulation selection in the view of granular

computing [35]. They are two different important ways to

reduce the redundant information in data analysis. The

theory of granular selection is the same as that of covering

reduct [53]. So we only concentrate on the issue of the

granulation selection in this paper. Given two multigran-

ulation spaces of a universe, two multigranulation topo-

logical rough spaces will be generated. In the view of

granular computing, the issue in this paper is that for a

family of single granulation spaces which induced a mul-

tigranulation topological rough space, what would be the

corresponding ‘‘smallest’’ subset of that family of granu-

lations, which can produce the same multigranulation

topological rough space? That is, they have the same

interior and closure operators of a target concept.

Throughout the research, some new results and

achievements proposed in the paper may enrich the theo-

ries of the multigranulation rough sets and the topology,

which may form the theoretical basis for further applica-

tions of multigranulation rough set theory and topology.

The main objective of this paper is to study the multi-

granulation rough set theory via topology theory. The rest

of this paper is organized as follows. Some basic concepts

of topology and multigranulation rough sets are briefly

reviewed in Sect. 2. In Sect. 3, the multigranulation topo-

logical rough space is constructed and some of its impor-

tant properties are investigated. In Sect. 4, the topological

granularity and the topological entropy are introduced to

characterize the uncertainty of multigranulation topological

rough space. The concept of granulation selection is pro-

posed and a granulation selection algorithm based on the

invariance of interior and closure operators of a target

concept is given to select the necessary granulation in

multigranulation rough data analysis. Finally, Section 5

concludes with some remarks.

2 Preliminaries

In this section, we introduce some fundamental key con-

cepts of topology and rough set theory [9, 29]. Throughout

this paper, we suppose that the universe X is a non-empty

finite set.

2.1 Basic concepts of topology

We present a brief overview of topological space, a closure

operator, an interior operator, and a topology based on a

set. They are all important concepts in topology theory and

they were used to study rough sets [22, 32, 47]. In this

paper, these topological tools are also employed to inves-

tigate multigranulation rough sets.

Definition 2.1 (A topological space) [9] A topological

space is a pair ðX; sÞ consisting of a set X and a family s of

subset of X satisfying the following conditions:

(T1) / 2 s and X 2 s,

(T2) s is closed under arbitrary union,
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(T3) s is closed under finite intersection.

The pair ðX; sÞ is called a topological space. The elements

of X are called points of the space. The subsets of X
belonging to s are called the open set in the space, and the

complement of the subsets of X belonging to s are called

the closed set in the space and the family of open subsets of

X is also called a topology for X.

Definition 2.2 (Closure and interior operators). For an

operator cl : 2X ! 2X, if it satisfies the following condi-

tions, then we call it a closure operator on X:8X; Y � X,

(C1) cl ð;Þ ¼ ;;
(C2) X � clðXÞ,
(C3) cl(cl(X)) = cl(X),

(C4) cl(X [ Y) = cl(X) [ cl(Y).

For an operator int : 2X ! 2X, if it satisfies the follow-

ing rules, then we call it an interior operator on

X:8X; Y � X,

(I1) intðXÞ ¼ X;
(I2) intðXÞ � X;

(I3) int(int(X)) = int(X),

(I4) int(X \ Y) = int(X) \ int(Y).

It is well known that an interior operator int on X can

induce a topology s such that in the topological space

ðX; sÞ; intðXÞ is just the interior of X for each X � X. The

similar statement is also true for a closure operator [31].

In a topological space ðX; sÞ, a family b � s of sets is called

a base for the topology s if for each point x of the space, and

each neighborhood X of x, there is a member V of b such that

x 2 V � X. We know that a subfamily b of a topology s is a

base for s if and only if each member of s is the union of

members of b. Moreover, b � 2X forms a base for some

topology onX if and only ifb satisfies the following conditions:

(B1) X ¼ [ fBjB 2 bg;
(B2) For every two members X and Y of b and each point

x 2 X \ Y there is Z 2 b such that x 2 Z � X \ Y:

2.2 Fundamentals of multigranulation rough sets

In [33], Qian analyzed some restrictions of Pawlak classi-

cal rough set in practice and proposed a new extension of

rough set i.e., multigranulation rough sets, in which a target

concept can be approximated by multiple equivalence

relations according to a user’s different requirements. In

other words, a target concept can be approximated by

multiple granulation spaces in the view of granular com-

puting [34].

Assume that X is a finite non-empty universe of dis-

course. Let R be an equivalence relation on X;X=R is a

corresponding partition of X, denoted by X=R ¼ f½x�Rjx 2
Xg in which ½x�R ¼ fyjy 2 X; xRyg is an equivalence class

consisting x:X=R can generate a topological space, denoted

as ðX; sRÞ. and X=R is a topology base of sR, each subset of

sR is both open and close [5].

Definition 2.3 [33]. Let S ¼ ðX;AT ; f Þ be an information

system. Suppose that X � X; R1;R2; � � � ;Rq be q equiva-

lence relations on X, the lower approximation
Pq

i¼1 RiðXÞ
and the upper approximation

Pq
i¼1 RiðXÞ of X with respect

to R1;R2; � � � ;Rq are defined as follows, respectively,

Xq

i¼1

RiðXÞ ¼ fx 2 X j _ð½x�Ri
� XÞ; i� qg; ð1Þ

Xq

i¼1

RiðXÞ ¼ fx 2 X j ^ð½x�Ri
\ X 6¼ ;Þ; i� qg: ð2Þ

From the above expressions, the operator ‘_‘ is a dis-

junctive operator which here indicates that in multiple

independent granular structures, one needs only at least one

granular structure to satisfy with the inclusion condition

between an equivalence class and a target concept. The

expression (2) is the upper approximation of the optimistic

multigranulation rough set that can be also defined by the

complement of the lower approximation, which has been

proved in [23]. the operator ‘^‘ in expression (2) is a

conjunctive operator whose meaning is that in multiple

independent granular structures, one needs all granular

structures to satisfy with non-empty for joint operator

between an equivalence class and a target concept. And
Pq

i¼1 RiðXÞ � X �
Pq

i¼1 RiðXÞ. So we can label multi-

granulation rough set X ¼ ð
Pq

i¼1 RiðXÞ;
Pq

i¼1 RiðXÞÞ,
accordingly, we call ðX;R1;R2; � � � ;RqÞ a multigranulation

approximation space in the view of granular computing.

From [33], we obtain the following interpretations:

• The lower approximation of a set X with respect to
P

i=1
q Ri is the set of all elements, which can certainly be

classified as X using
P

i=1
q Ri (are certainly X in view of

P
i=1
q Ri).

• The upper approximation of a set X with respect to
P

i=1
q Ri is the set of all elements, which can possibly be

classified as X using
P

i=1
q Ri (are possibly X in view of

P
i=1
q Ri).

• The boundary region of a set X with respect to
P

i=1
q Ri

is the set of all elements, which can be classified neither

as X nor as not-X using
P

i=1
q Ri.

Let ; be an empty set, * X the complement of X in U,

we have the following properties of multigranulation rough

sets [33].
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By the above discussions and similar to Definition 1 of [48],

we can define an interior and closure operators of multi-

granulation rough set X from a topological point of view.

3 Topological approach to multigranulation rough sets

In this section, in order to better apply the multigranulation

rough set theory into complex data analysis, we shall

investigate an interesting and natural research topic of

studying multigranulation rough set theory via topology

theory.

Definition 3.1 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q

topological spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X � X. Then we define

mint and mcl operators of X with respect to C, where

C ¼ fs1; s2; � � � ; sqg, respectively, as follows:

mintðXÞ ¼
[
fA 2 sij _ ðA � XÞ; i� qg; ð3Þ

mclðXÞ ¼
[
fA 2 sij ^ ðA \ X 6¼ ;Þ; i� qg: ð4Þ

The area of topological uncertainty or boundary (mbn)is

defined as

mbnðXÞ ¼ mclðXÞ n mintðXÞ:

Theorem 3.1 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q

topological spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X � X. We have

mintðXÞ ¼
Pq

i¼1 RiðXÞ; mclðXÞ ¼
Pq

i¼1 RiðXÞ.

Proof By Definition 3.1 and the definitions of lower and

upper approximations of X in MGRS they can be easily

proved.

According to the above propositions of multigranulation

rough sets, we easily obtain the following results.

Proposition 3.1 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q

topological spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X; Y � X. Then, with

respect to the operators mint, we have

(1) mintðXÞ ¼ X;
(2) mint ð;Þ ¼ ;;
(3) mintðXÞ � X;

(4) X � Y ) mintðXÞ � mintðYÞ;
(5) mint(mint(X)) = mint(X).

(1ML)
Pq

i¼1 RiðUÞ ¼ U (Co-normality)

(1MH)
Pq

i¼1 RiðUÞ ¼ U (Co-normality)

(2ML)
Pq

i¼1 Rið;Þ ¼ ; (Normality)

(2MH)
Pq

i¼1 Rið;Þ ¼ ; (Normality)

(3ML)
Pq

i¼1 RiðXÞ � X (Contraction)

(3MH)X �
Pq

i¼1 RiðXÞ (Extension)

(4ML)
Pq

i¼1 Rið
Tn

j¼1 XjÞ �
Tn

j¼1ð
Pn

j¼1 RiðXjÞÞ (Implication)

(4MH)
Pq

i¼1 Rið
Sn

j¼1 XjÞ �
Sn

j¼1ð
Pn

j¼1 RiðXjÞÞ (Implication)

(5ML)
Pq

i¼1 Rið
Sn

j¼1 XjÞ �
Sn

j¼1ð
Pn

j¼1 RiðXjÞÞ (Implication)

(5MH)
Pq

i¼1 Rið
Tn

j¼1 XjÞ �
Tn

j¼1ð
Pn

j¼1 RiðXjÞÞ (Implication)

(6ML)
Pq

i¼1 Rið
Pq

i¼1 RiðXÞÞ ¼
Pq

i¼1 RiðXÞ (Idempotency)

(6MH)
Pq

i¼1 Rið
Pq

i¼1 RiðXÞÞ ¼
Pq

i¼1 RiðXÞ (Idempotency)

(7ML)
Pq

i¼1 Rið�XÞÞ ¼ �
Pq

i¼1 RiðXÞ (Duality)

(7MH)
Pq

i¼1 Rið�XÞ ¼ �
Pq

i¼1 RiðXÞ (Duality)

(8ML)X � Y )
Pq

i¼1 AiðXÞ �
Pq

i¼1 RiðYÞ (Monotone)

(8MH)X � Y )
Pq

i¼1 RiðXÞ �
Pq

i¼1 RiðYÞ (Monotone)

(9ML)8K 2 U=Ri; i 2 f1; 2; � � � ; qg;
Pq

i¼1 RiðKÞ ¼ K (Granularity)

(9MH)8K 2 U=Ri; i 2 f1; 2; � � � ; qg;
Pq

i¼1 RiðKÞ ¼ K (Granularity)

(10ML)
Pq

i¼1 RiðXÞ ¼
Sq

i¼1ðRiðXÞÞ (Relation based Addition)

(10MH)
Pq

i¼1 RiðXÞ ¼
Tq

i¼1ðRiðXÞÞ (Relation based Multiplication)
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Similarly, with respect to the operators mcl, we have the

following results:

(1) mclðXÞ ¼ X;
(2) mcl ð;Þ ¼ ;;
(3) X � mclðXÞ;
(4) X � Y ) mclðXÞ � mclðYÞ;
(5) mcl(mcl(X)) = mcl(X).

Theorem 3.2 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q topo-

logical spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X; Y � X. Then, mint(X \
Y) = mint(X) \ mint(Y) holds if and only if the multi-

granulation rough set model is equivalent to the Pawlak’s

single granulation rough set model.

Proof It can be proved by employing the result of Prop-

osition 10 in [20].

Theorem 3.3 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q topo-

logical spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X; Y � X. Then, mcl(X [
Y) = mcl(X) [ mcl(Y) holds if and only if the multigran-

ulation rough set model is equivalent to the Pawlak’s

single granulation rough set model.

Proof It can be proved by employing the result of Prop-

osition 10 in [20].

From the above discussions, we can get the following

results.

Theorem 3.4 Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q topo-

logical spaces induced by equivalence relations

R1;R2; � � � ;Rq, respectively, and X; Y � X. Then, mint and

mcl are interior and closure operators, respectively, if and

only if the multigranulation rough set model is equivalent

to the Pawlak’s single granulation rough set model.

Definition 3.2 (Natural mapping). Let R be an equiva-

lence relation, the family of f½x� j x 2 Xg is a quotient set

on X, denoted by X=R. A mapping f : X! X=R satisfies

f ðxÞ ¼ ½x�; x 2 X, we call f a natural mapping on X.

Definition 3.3 (Intersection operator). Let R1 and R2 be

equivalence relations on a finite universe X; f1 and f2 nat-

ural mappings. Then we define a intersection mapping F\ :

X! 2X satisfies F\(x) = f1(x) \ f2(x).

Further, if s1, s2 are two topologies induced by R1 and

R2, then we can define s1 u s2 ¼ fF\ðxÞ j x 2 Xg.

Theorem 3.5 s1 u s2 is a topology.

Proof Suppose X be a finite universe, R1 and R2 two

equivalence relations, and s1 ¼ f;;X; ½xi1�R1
; ½xi2�R1

; � � � ;

½xik�R1
g, s2 ¼ f;;X; ½xj1�R2

; ½xj2�R2
; � � � ; ½xjl�R2

g induced by

R1 and R2; k; l� jXj, where j � j is cardinality of X.

(1) Based on the definition of s1 u s2, obviously

; 2 s1 u s2, X 2 s1 u s2.

(2) Assume that X; Y 2 s1 u s2, then there exists two

equivalence classes ½x�R1
2 s1, ½x0 �R2

2 s2 such that

X � ½x�R1
, Y � ½x0 �R2

. Hence X \ Y 2 ½x�R1
\ ½x0 �R2

2
s1 u s2.

(3) Let s 2 s1 u s2, suppose that
S

X2s X 62 s1 u s2. Then

there at least exists an element x 2 X 2 s, we have an

equivalence class [x] consisting x in s1 u s2 such that

½x� 62 s1 u s2. Note that ½x� ¼ ð½x�R1
\ ½x�R2Þ2s1us2

holds, a contraction!

Therefore, s1 u s2 is still a topology.

Similarly, we can prove that the intersection of the finite

topologies is topology, i.e. um
i¼1si is a topology with respect

to s1; s2; � � � ; sq, denoted by um
i¼1si ¼ CM .

Definition 3.4 (Multigranulation topological rough

space) Let ðX; s1Þ; ðX; s2Þ; � � � ; ðX; sqÞ be q topological

spaces induced by equivalence relations R1;R2; � � � ;Rq,

respectively. An intersection operation F\: X! 2X. Then

ðX;uq
i¼1siÞ is called a multigranulation topological rough

space, denoted as ðX;uq
i¼1siÞ ¼ ðX;CMÞ, written by ðX;CÞ

for simplicity.

Definition 3.5 (The partial relation between two multi-

granulation topological rough space) Let s1, s2 be two

topologies on X, if for any X 2 s1, there exists Y 2 s2 such

that X � Y . Then we call s1 finer than s2, denoted by s1 B s

s2. If s1 is strictly finer than s2, denoted by s1 \ ss2. If and

only if X = Y, then s1 = s2. Similarly, let C1;C2 be two

multigranulation topological rough spaces on X, if for any

s1 2 C1, there exists s2 2 C2 such that s1 B s s2, then we

call C1 than C2, denoted by C1� CC2. If C1 is strictly finer

than C2, denoted by C1\CC2. If and only if s1 = s1, then

C1 ¼ C2.

Theorem 3.6 Let s1; s2; � � � ; sq be q topologies on X
induced by equivalence relations R1;R2; � � � ;Rq, respec-

tively. If s1\ss2\s � � �\ssq, then C ¼ s1.

Actually, from the above definition, we know ðX;CÞ is

finer than each topology on X.

Corollary 3.1 If s1 \ ss2, and b1, b2 are the topology

base of s1, s2, respectively. Then b1 \ sb2.

Corollary 3.2 If C1\CC2, and b1M, b2M are their family

of the topology base of C1;C2, respectively. Then

b1M\Cb2M .
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Theorem 3.7 (Topology base of CM) Let bi be the

topology base of si, then uq
i¼1bi is a topology base of

multigranulation topological rough space C.

Proof

(1) For any x 2 X, there exists ½x�Ri
2 bi such that

x 2 \½x�Ri
. Note that \½x�Ri

2 uq
i¼1bi. Hence, let

B ¼ \½x�Ri
2 uq

i¼1bi, we have x 2 B.

(2) For any B1;B2 2 uq
i¼1bi, suppose x 2 B1 \ B2, but B1

is a set which is intersection of \i=1
q [x]R_i, B2 is a set

which is intersection of \i=1
q [y]R_i, then x = y,

otherwise [x]R_i = [y]R_i. Hence B1\ B2 = ;. There

exists B3 = ;; obviously, ; � ; holds.

Therefore uq
i¼1bi is a topology base of multigranulation

topological rough space C.

Corollary 3.3 Let s1; s2; � � � ; sq be q topologies on X
induced by equivalence relations R1;R2; � � � ;Rq and bi the

topology base of si for i 2 f1; 2; � � � ; qg. Then uq
i¼1bi is a

partition of X.

Definition 3.5 Let ðX;CÞ be a multigranulation topo-

logical rough space, bM is a topology base of C, and

X � X. Then the interior operator is defined as

INTðXÞ ¼ fx 2 X j 8x 2 A 2 ðC n NÞ; thenA � Xg; ð5Þ

where N ¼
S
fY jY � X � Xg.

Definition 3.6 Let ðX;CÞ be a multigranulation topo-

logical rough space, bM a topology base of C, and X � X.

Then the closure operator is

CLðXÞ ¼ [ fA 2 C j A \ X 6¼ ;g: ð6Þ

Example 3.1 Let X ¼ fx1; x2; x3; x4; x5g and

X ¼ fx1; x2; x3; x4g � X. R1 and R2 are two equivalence

relations on X:X=R1 ¼ ffx1; x2; x3g; fx4; x5gg corres-

ponding to f1ðxÞ ¼ ½x�R1
;X=R2 ¼ ffx1g; fx3g; fx2; x4; x5gg

corresponding to f2(x) = [x]R_2. Then we have that
P2

i¼1 RiðXÞ¼ fx1;x2;x3g,
P2

i¼1 RiðXÞ¼ fx1;x2;x3;x4;x5g
and get two topologies s1¼f;;X;fx1; x2;x3g;fx4;

x5gg;s2¼f;;X;fx1g;fx3g;fx2;x4; x5gg:b1¼ffx1;x2;x3g;
fx4;x5gg and b2 = {{x1}, {x3}, {x2, x4, x5}} are topology

bases of s1 and s2, respectively. By Definition 3.3, we have

that C¼ s1u s2¼f;;X;fx1;x2;x3g; fx4;x5g;fx1g;fx3g;
fx2;x4;x5g; {x1, x3}, {x1, x2}, {x2, x3}, {x2, x3, x4, x5},

{x1, x2, x4, x5}}. Then the topology base of bM = {{x1},

{x3}, {x2}, {x4, x5}}. Hence, mint(X) = {x1, x2, x3},

mcl(X) = {x1, x2, x3, x4, x5}.

As a result of this example, we have the following

propositions.

Proposition 3.1 Let ðX;CÞ be a multigranulation

multigranulation topological rough space and X �

X:
Pq

i¼1 RiðXÞ and
Pq

i¼1 RiðXÞ are lower and upper

approximations of X. Then we have

(1)
Pq

i¼1 RiX ¼ INTðXÞ,
(2)

Pq
i¼1 RiX ¼ CLðXÞ.

Proof

(1) For any x 2
Pq

i¼1 RiX, there exists ½x�R � X. From

Definition 3.4, ½x�R 2 CM n N, where N ¼ fY jY � Xg.
Hence x [ INT(X), i. e.,

Pq
i¼1 RiX � INTðXÞ. On the

other hand, for any x [ INT(X), there exists A 2 C n N

such that x [ A and A, X. Obviously, A is an

equivalence class induced by R and A ¼ ½x�R, i. e.,

½x�R � X. So x 2
Pq

i¼1 RiX. Hence x 2 INTðXÞ
�
Pq

i¼1 RiX. Therefore,
Pq

i¼1 RiX ¼ INTðXÞ holds.

(2) According to the definition of
Pq

i¼1 RiX, for any

Ri, [x]R_i\ X = ; holds. To C, there exists some

element V (a subset of X) in C such that V � ½x�Ri
. So

there exists two cases:

(i) If V \ X = ;, then V *CLðXÞ. Hence
Pq

i¼1 RiX ¼ CLðXÞ holds.

(ii) If V \ X = ;, then V � CLðXÞ. Note that

V � ½x�Ri
, hence

Pq
i¼1 RiX ¼ CLðXÞ also holds.

From the above Proposition, we find that a target con-

cept’s interior and closure operators in multigranulation

topological rough space are also equal to its lower and

upper approximations in the multigranulation rough rough

sets, respectively.

Proposition 3.2 Let ðX;C be a multigranulation topo-

logical rough space and X � Y � X. Then

INTðXÞ � INTðYÞ;CLðXÞ � CLðYÞ:

Proof They can be proved similar to Theorem 3.2 in [34].

4 Measure of multigranulation topological rough space

4.1 Measure of multigranulation topological rough

space

In this section, we introduce the uncertainty of multigran-

ulation topological rough space.

Definition 4.1 (Granularity of a set) Let X be a finite

nonempty universe. A function m : 2X ! < is called a

measure of the granularity of a set if it satisfies the fol-

lowing conditions: for all A;B 2 2X,

(M1) m(A) C 0,

(M2) A, B ) m(A) \ m(B),

238 Int. J. Mach. Learn. & Cyber. (2014) 5:233–243

123



(M3) A*s B ) m(A) = m(B).

Where A*s B,(*(A \ s B), *(B \ s A)), ‘‘\s’’ is the

weak order that is an extension of ‘‘,’’ (see [47]).

Theorem 4.1 Let X=R ¼ fA1;A2; � � � ;Akg be a partition

of X, then we call

mðAÞ ¼ jXj
k

1	 1

k � jAj

� �

a measure of granularity of a set A, k is the number of

blocks in X=R, denoted by jX=Rj ¼ k.

Proof It is sufficient to show that m meets all the con-

ditions in Definition 4.1.

(1) Obviously, mðAÞ ¼ jXj
k
ð1	 1

k�jAjÞ 
 0.

(2) If A � B, then |A| \ |B|, then mðAÞ 	 mðBÞ ¼ jXj
k
ð1	

1
k�jAjÞ 	 jXj

k
ð1	 1

k�jBjÞ ¼
jXj
k
ð1	 1

k�jAj 	 1þ 1
k�jBjÞ ¼

jXj
k

ð 1
k�jBj 	 1

k�jAjÞ\0, i.e., m(A) \ m(B).

(3) If *A*sB, then |A| B |B| and |A| C |B|. Hence

m(A) = m(B).

Proposition 4.1 (Maximum) Let X=R be a partition of X
induced by an equivalence relation on X and X 2 X=R.

The maximum granularity measure of X with respect to R is

one. This value is achieved if and only if

k ¼ 1;maxðmðAÞÞ ¼ jXjð1	 1
jXjÞ.

Proposition 4.2 (Minimum) Let X=R be a partition of X
induced by an equivalence relation on X and X 2 X=R.

The minimum granularity measure of X with respect to R is

one. This value is achieved if and only if k ¼ jXj;
minðmðAÞÞ ¼ ð1	 1

jXjÞ.

Hence, ð1	 1
jXjÞ �mðAÞ� jXjð1	 1

jXjÞ.

Example 4.1 (Continued from Example 3.1) To

b1;mðB11Þ ¼ 5
2
ð1	 1

3�2Þ ¼ 25
12
;mðB12Þ ¼ 5

2
ð1	 1

2�2Þ ¼ 15
8

,

so mðb1Þ ¼ ð25
12
; 15

8
ÞT . To b2;mðB21Þ ¼ 2

9
; mðB22Þ ¼ 2

9
;

mðB23Þ ¼ 8
27

, so mðb2Þ ¼ ð29 ; 2
9
; 8

27
ÞT . To bM;mðB1Þ ¼ 4

5
;

mðB2Þ ¼ 4
5
;mðB3Þ ¼ 9

10
; mðB4Þ ¼ 9

10
;mðB4Þ ¼ 9

10
, so

mðbMÞ ¼ ð45 ; 4
5
; 9

10
; 9

10
; 9

10
ÞT .

Definition 4.2 Let T ¼ fCg be a family of multigranu-

lation topological rough spaces on X. A function G : C!
< is called a measure of granularity of a partition if it

satisfies the following conditions for all C1;C2 2 T ,

(G1) GðCÞ
 0 (Nonnegativity)

(G2) C1 � C2 ) GðC1Þ\GðC2Þ (Monotonicity)

(G3) C1 ¼ C2 ) GðC1Þ ¼ GðC2Þ (Size invariance)

Considering a family set bM ¼ fB1;B2; � � � ;Bqg of a

finite non-empty universe X. One may associate it with a

probability discussion [19], PbM
¼ ðjB1j

jXj ;
jB2j
jXj ; � � � ;

jBqj
jXj Þ: Then

we can define granularity of a multigranulation topological

rough space as follows.

Theorem 4.2 (Topological granularity) Let ðX;CÞ be a

multigranulation topological rough space, m : 2X ! < a

measure of the granularity of subsets of X, and bM ¼
fB1;B2; � � � ;Bqg a topology base of CM . Then a measure

GMðCÞ ¼
Xq

i¼1

mðBiÞ � pðBiÞ:

is topological granularity of C, where pðBiÞ ¼ jBij
jXj.

Proof It is sufficient to show that GM satisfies all the

conditions in Definition 4.2.

(1) Obviously, GMðCÞ
 0 holds.

(2) Suppose C1\CC2, by Corollary 3.3, b1M � b2M

holds. This means that every equivalence class of

b2M is a union of one or more blocks of b1M and at

least one equivalence class of bM
’ is the union of at

least two blocks from b1M. By the fact X is a finite

universe, there exists a finite sequence of partitions

b1M ¼ bM1 � bM2 � � � � bMl ¼ b2M such that exactly

one block of bj?1 is the union of two equivalence

classes from bj for j ¼ 1; 2; � � � ; n	 1 and n C 2. We

want to show that G(bj) \ G(bj?1). Without loss of

generality, suppose a equivalence class of bj?1 is

obtained by the union of two equivalence classes Bj1

and Bj2 of bj, that is, bj ¼ fBj1;Bj2; � � � ;Bjkg; k
 2

and bjþ1 ¼ fBj1 [ Bj2; � � � ;[Bjkg. According to the

definition of GMðCÞ and monotonicity of m, we have:

GMðbjÞ¼
Xk

i¼1

mðBjiÞ �pðBjiÞ

¼mðBj1Þ �pðBj1ÞþmðBj2Þ �pðBj2Þ

þ
Xk

i¼3

mðBjiÞ �pðBjiÞ

\mðBj1[Bj2Þ �pðBj1ÞþmðBj2[Bj1Þ �pðBj2Þ

þ
Xk

i¼3

mðBjiÞ �pðBjiÞ

¼mðBj1[Bj2Þ � ðpðBj1ÞþpðBj2ÞÞ

þ
Xk

i¼3

mðBjiÞ �pðBjiÞ

¼mðBj1[Bj2Þ �pðBj1[Bj2Þþ
Xk

i¼3

mðBjiÞ �pðBjiÞ

¼GMðbjþ1Þ:

It immediately follows that GðC1Þ\GðC2Þ holds.
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(3) Suppose C1 ¼ C2, based on Corollary 3.3, b1M � b2M

holds. And by Definition 3.4, GðC1Þ ¼ GðC2Þ holds.

Proposition 4.3 (Maximum). Let ðX;CÞ be a multi-

granulation topological rough space. The maximum topo-

logical granularity measure of s with respect to X is one.

This value is achieved if and only if m ¼ 1;

maxðGMðCÞÞ ¼ jXj 	 1.

Proposition 4.4 (Minimum). Let ðX;CÞ be a multigran-

ulation topological rough space. The maximum topological

granularity of s with respect to X is one. This value is

achieved if and only if m ¼ jXj, minðGMðCÞÞ ¼ 1	 1
jXj.

Hence, 1	 1
jXj �GMðCÞ� jXj 	 1.

Theorem 4.3 Let C1;C2 be two multigranulation topo-

logical rough space. If C1\sC2, then GMðC1Þ\GMðC2Þ.

Theorem 4.4 Let s1; s2; � � � ; sq be q topologies induced

by equivalence relations R1;R2; � � � ;Rq, respectively. If

s1\ss2\s � � �\ssq, then GMðCÞ ¼ GMðsqÞ.

Definition 4.3 (Topological entropy) Let ðX;CÞ be a

multigranulation topological rough space, bM ¼
fB1;B2; � � � ;Bqg is a topology base of C. Then the topo-

logical entropy of C is defined as:

EMðCÞ ¼ 1	 1

jXj
Xq

i¼1

mðBiÞ � pðBiÞ;

where pðBiÞ ¼ jBij
jXj.

Proposition 4.5 (Maximum). Let ðX;CÞ be a multi-

granulation topological rough space. The maximum topo-

logical entropy of s with respect to X is one. This value is

achieved if and only if q ¼ jXj, maxðEMðCÞÞ ¼
1	 1

jXj þ 1

jXj2 ¼ 1.

Proposition 4.6 (Minimum) Let ðX;CÞ be a multigran-

ulation topological rough space. The maximum topological

entropy measure of s with respect to X is one. This value is

achieved only if q = 1, minðEMðCÞÞ ¼ 1
jXj.

Hence, 1
jXj �EMðCÞ� 1	 1

jXj þ 1

jXj2.

Example 4.2 (Continued from Example 3.1) From

Example 4.1, PC ¼ f1
5
; 1

5
; 1

5
; 2

5
g, then we have GMðCÞ ¼ 22

25

and EMðCÞ ¼ 103
125
:

4.2 Application of multigranulation topological rough

space

Multigranulation rough set model is one of important

extensions of Pawlak rough set model. One of the advan-

tage of the former may be suitable to deal with the complex

problem, such as multi-source information system where

information comes from different sources. In such multi-

source environment, the granular selection and the granulation

selection are two key issues in process of the multigranulation

rough data analysis. Granular selection theory is the same as

covering reduct theory. Accordingly, we only investigate the

granulation selection theory in this section.

In what follows, we give a real-life example to illustrate

the application of the multigranulation rough set theory via

topology theory. For example, when a doctor will incline to

diagnose a disease of a patient more accurately, he always

integrates multiple values of the patient’s physical exami-

nation indicators from different hospitals where supply

different examination indicators. These integrated infor-

mation coming from different sources is called a multi-

source information.

Example 4.3 Let U = {x1, x2, x3, x4, x5, x6, x7} be a

universe of seven objects which are here regarded as

patients. Suppose there are four hospitals (Hi, i =

{1, 2, 3, 4}) providing us information regarding the attri-

butes {a, b, c}, {a, b, d}, {a, b, e}, {f, g, h}, respec-

tively. These attributes represent the patient’s physical

examination indicators. Table 1 depicts the information

provided by the four hospitals. In Table 1, a denotes

HBsAg, b denotes RHBs; c denotes HBeAg, d denotes

RHBe, e denotes RHBc, f denotes denotes CHO, g denotes TG,

and h denotes TP which are the eight examination indica-

tors used to determine whether the patient has the disease

of Hepatitis B or not. ‘‘?’’ and ‘‘-’’ represent two attribute

values that the former indicates positive and the latter

indicates negative.‘‘H’’ , ‘‘L’’ and ‘‘M’’ represent three

attribute values that ‘‘H’’ indicates High, ‘‘L’’ indicates

Low, and ‘‘M’’ indicates Middle. The data in Table 1

come from the URL:http://www.forwardhealth.wi.gov/.../

PEHIUserGuide.pdf.spage.

According to each subsystem where information was

provided by each hospital can generate a granulation in the

view of granular computing. Accordingly, this multi-source

information system may generate three granulations.

Table 1 A multi-source information system

H1 H2 H3 H4

a b c a b d a b e f g h

1 ? - ? ? ? - ? - ? H H L

2 ? ? ? - - ? - ? ? L M L

3 ? - - - - ? - - ? H L H

4 - ? - ? - ? - - ? L L H

5 - - - - - ? - - ? H M M

6 - ? - - - - - - - H H M

7 - - - - - - - - ? M M L
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However, these granulations are not equally significant or

even some of those granulations are redundant that lead to

too much cost for one patient. Seen by this way, it is

necessary to delete some redundant granulations in the

process of multigranulation rough data analysis.

Definition 4.2 (Significance of granularity) We say that

sk is significant in C, if ECðX;uq
i¼1siÞ 6¼ ECðX;uq

i¼1;i6¼ksiÞ.
Whereas, sk is not significant in C, if ECðX;uq

i¼1siÞ ¼
zECðX;uq

i¼1;i6¼ksiÞ.

To further study significance of sk, we introduce a

quantitative measure for the significance as follows.

The significance measure of sk in C is defined as

SCðskÞ ¼ ECðX;uq
i¼1siÞ n ECðX;uq

i¼1;i 6¼ksiÞ:

Example 4.4 (Continued from Example 3.1) From

Example 4.1, we have SCðs1Þ ¼ 	414
3375

\0, SCðs2Þ ¼ 6
15

.

Definition 4.3 (Granulation selection) Let C ¼ fs1; s2;

� � � ; sqg be a family of topological spaces on X, if there

exists a subset Ci ¼ fsi1; si2; � � � ; sikg � C, such that

ECðX;uq
i¼1siÞ ¼ ECðX;uq

i¼ksikÞ, but ECðX; si1 u si2 u � � � u
sik u siðkþ1ÞÞ 6¼ ECðX; s1 u s2 � � � u sqÞ , then we call Ci a

granularity reduct of C.

Step I2 is one of the key steps in this algorithm. The

time complexity of computing is O(m|Ri||U|2), where m is

the number of the attribute of each granularity Ri. |Ri| is the

number of granularities on U. |U| is the number of the

samples on U.

According the above algorithm, we can get one granu-

larity selection {H1, H2, H3} which can determine whether

one suffers from the desease of Hepatitis B from Table 1,

which result is consistent to that determined by doctors in

the real patient cases.

Example 4.5 Here, we employ another simple example to

illustrate the effectiveness of the granularity selection

algorithm. Table 2 depicts a complete target information

system containing some information about an emporium

investment project. Locus, Investment and Population

density are the conditional attributes of the system, whereas

Decision is the decision attribute. The attribute domains are

as follows: VLocus = {good, common, bad}, VInvestment =

{high, low}, VPopulation density = {big, small, medium},

VDecision = {yes, no}. Each attribute in Table 2 here is

regarded as a granulation as well as a source, hence, we call

it a special multi-source information system.

Based on Table 2, X ¼ fx1; x2; x3; x4; x5g, suppose a

target concept X ¼ fx2; x4; x5g � X, by employing the

multigranulation rough set theory and multigranulation

topological rough space theory, we can get all topological

spaces as follows:

s1 ¼ f;;X; fx1g; fx2; x3; x4; x5gg;
s2 ¼ f;;X; fx1; x2g; fx3; x4; x5gg;
s3 ¼ f;;X; fx1; x2g; fx3; x4; x5gg;
s4 ¼ f;;X; fx1g; fx2g; fx3; x4; x5gg;
s5 ¼ f;;X; fx1; x2g; fx3; x4; x5gg;
s6 ¼ f;;X; fx1g; fx2g; fx3; x4; x5gg:

By Definition 3.4, then we can get a multigranulation

topological rough space ðX;CÞ, where C ¼ f;;X; fx1g;
fx2g; fx3; x4; x5g; fx1; x2g; fx1; x3; x4; x5g; fx2; x3; x4; x5gg.
By the granulation selection algorithm, we know

s1, s2, s3, s4, s5 are redundant granular spaces, and {s6} is

a granulation selection of C which preserves the invariance

of topological entropy of X in the multigranulation topo-

logical rough space.

5 Conclusions and discussions

In this paper, we have presented an investigation of the

topological method for multigranulation rough sets and

addressed a series of concepts of the multigranulation

topological rough space and its topological properties.

Moreover, we have introduced topological granularity and

topological entropy to show the uncertainty of multigran-

ulation topological rough space from the topological view.

Table 2 A complete target information system about emporium

investment project

Project Locus Investment Population density Decision

x1 Common High Big Yes

x2 Bad High Big No

x3 Bad Low Small No

x4 Bad Low Small Yes

x5 Bad Low Small No
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In particular, a granulation selection algorithm based on the

invariance of topological entropy was preliminarily pro-

posed to reduce redundant granular spaces in the multi-

granulation rough data analysis.
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