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Keywords: This paper investigates a discrete-time epidemic model by qualitative analysis and numer-
Epidemic model ical simulation. It is verified that there are phenomena of the transcritical bifurcation, flip
Discrete-time bifurcation, Hopf bifurcation types and chaos. Also the largest Lyapunov exponents are
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The obtained results show that discrete epidemic model can have rich dynamical behavior.
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1. Introduction

Mathematical models describing the population dynamics of infectious diseases have been playing an important role in
better understanding of epidemiological patterns and disease control for a long time. Epidemiological models are now
widely used as more epidemiologists realize the role that modeling can play in basic understanding and policy development
[10,19]. Understanding emergent infectious diseases in humans is viewed with increasing importance. The rapid spread of
SARS [4], the perceived threat of bio-terrorism [15] and concerns over influenza pandemics [23] have all highlighted vulner-
ability to (re)emerging infections. For all these examples, mathematical modeling has been used to develop an understand-
ing of the relevant epidemiology, as well as to quantify the likely effects of different intervention strategies [8,11,21].

An important aspect of the mathematical study of epidemiology is the formulation of the incidence function. The inci-
dence rate is the rate of new infection. In most epidemiological models, bilinear and standard incidence rates have been fre-
quently used in classical epidemic models [2,3,5,7,12-14,18]. Liu et al. [16,17] concluded that the bilinear mass action
incidence rate due to saturation or multiple exposures before infection could lead to nonlinear incidence rate SSPI9.

Simple models, by their own nature, cannot incorporate many of the complex biological factors. However, they often pro-
vide useful insights to help our understanding of complex process. For such reason, in the present study, we set p =2 and
q = 1. We firstly focus on the following continuous model:

ds _ 5y 2
{di—rs(l ) — ST, (1.1)

d — pS’I —dlI,

where S, I are denoted as the susceptible and infected, respectively. And r represents the intrinsic birth rate constant, K rep-
resents the carrying capacity, g represents the force of infection or the rate of transmission, and d represents the death coef-
ficient of I for the disease.
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By setting
t p r
'cfa, bfa, afa,

we have the following form:

{%—wu—%—mﬁ 12)

2
d_ pS?[ 1.

The advantages of a discrete-time approach are multiple in epidemic model [20,22]. Firstly, difference models are more
realistic than differential ones since the epidemic statistics are compiled from given time intervals and not continuously. The
second reason are that, the discrete-time models can provide natural simulators for the continuous cases. One can thus not
only study with good accuracy the behavior of the continuous-time model, but also assess the effect of larger time steps. At
last, the use of discrete-time models makes it possible to use the entire arsenal of methods recently developed for the study
of mappings and lattice equations, either from the integrability and/or chaos points of view.

Applying Euler scheme to the system (1.2), we obtain the following equation:

{Swlz(a+1ﬁndﬁb$h,

(13)
ITH~1 = bsilm

where ¢ = 4.
K
The paper is organized as follows. It is verified that there are phenomena of the transcritical bifurcation, flip bifurcation
and Hopf bifurcation in Section 2. In Section 3, a series of numerical simulations show that there are bifurcation and chaos in
the discrete epidemic model. Finally, some conclusions are given.

2. Bifurcation analysis

For the Eq. (1.3), if the parameters a, b and c are fixed, by calculating, we can get the three fixed points
Ey=(0,0), E; = (¢,0) and E; = (%,%) It is obvious that the fixed point Ey is a saddle. In the following sections, we will
focus on E;, E;.

2.1. Fixed point E; = (¢,0)

The following is the Jacobian matrix at E;:

1-a —bcif
JEl_ 0 bCLZZ )

where a is a bifurcation parameter. If ba* = c2, Jg, has eigenvalues 2, =1 —a, /1, = 1. And a # 2 implies |/;| # 1. The follow-
ing theorem is the case that the fixed point E; is a transcritical bifurcation point.

Theorem 2.1. If ba® = c2, a # 2, the system (1.3) will undergoes a transcritical bifurcation at E;. Moreover, when b > g—i the
system has three fixed points, and when b < g—ﬁ the system has two fixed points.

Proof. Let &, =S, —¢, n,=I,, i

=b— % and parameter p is a new and dependent variable, the system (1.3) becomes:

2 22

Enir = (1= @)&y — 1, — €& — G 1, — 2 &, — Sy — 20 iy, — ool
Muer = Mo + 2 &ty + % Mol + S EpMly + ooty + 2 Enlly M, (2.1)
Hoq = Uy

Let

1 1 0
T=|0 —-a O
0 0 1
By the following transformation:
Sn Un
My | = T| v |,
.un 511
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then the system (2.1) can be changed into

Upiq 1-a 0 O u, f1(un,vn,5n)
Unt1 = 0 10 Un + fz(umv,,,én) ’
Oni 0 0 1 On 0
where
- c(a—2)? 2cu, vy @2(a— Do, 2a(a— 1) vgd c?
Fltn, v o) = OB - 2 O Dtntn 20D 4y 4 (0 1) G+ 00 ) om0

- . a? 2c 2a o
fa(un, vy, 6) = 2 Unon + F(un + V) Uy + Unon(Un + Un) + (a—2 + bn) (Un + vn)°.

Then, we can consider
Uy = h(Vn,0n) = @ V% + Q000 + a302 + 0((|Un] + |6a])?),
which must satisfy:

~ _ 2
h(yn +f2(h(yn75n)7 Z/nyén)aénﬂ) = (1 - a)h(ymén) +M* Chz(vnyén) -
2(a— 1o,  2a(a—1)v,6,

+a (a-1w n ala—1)v,

c? c
2

+a— 1)(2—2+ 5n) n(h(Vn, S0) + Un)2.

2ch(vy, 0n) U
a

(h(vn,0n) + vn)

Thus, we can get that

cla-2 ala-1
a = (az )7 a, = (Cz )7 Cl3:0.

And the system (2.1) is restricted to the center manifold, which is given by:

, @ 2B3a-4) ; 222a-1)
a3 v

2c
2+ = vaon + o((|wn| + [0a])*).

a
f2 P Uni1 = U +FUH+C_21/”6”+

. . 22 52
Since £(0,61) =0, %00 =1, 5500 =% #0, 55

y s = g—ﬁ # 0, system (1.3) undergoes a transcritical bifurcation at E;.
The proof is completed. O

(0,0

Theorem 2.2. If a = 2, 4b +# ¢?, the system (1.3) will undergoes a flip bifurcation at E;. Moreover, the stable periodic-2 points
bifurcate from this fixed point.

Proof. Let &, =S, —¢, , =1, M, =a— 2, and parameter u is a new and dependent variable, the system (1.3) becomes:

Ener = —&n — B0, — &) — Cally — B 101, — L Ean, — DEN, — L&ty — B 12,
Moy = —Hy, (22)
Moor =200, + 280, + 2 1,1, + DEN, + i, + 5 1121,
Let
10 1
T=10 1 0
0 0 -

By the following transformation:

<n Un
Wy | =T on |,
nn Un

then the system (2.2) can be changed into

Unia -1 0 0\ /u, f1(Uun, vn, 6n)
ons1 | = 0 -1 0 on | + 0 >

b
Unt1 0 0 Acl_z Un f2(un, Un, 6y)
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where

c? 1 c? 1 c
f1(un, vn, 0) = —cuﬁ — CUp Uy — Updp +Z vﬁ +71 vnéﬁ +7unvn (iu" + vn) +§6nvn(un + V),

= 4b 4b 2b b
fa(tn, Un, 6n) = C—zvnén +?vn(un + ¥y) += Vndn(Up + Up) + bvn(Un + v3)? +C—2vn5§.

Then, we can consider
Vn = h(Utn, 3n) = b1ti2 + bytindy + b33} + 0(([ta] + [3al)°),

which must satisfy:

h(=tn + f1(tn, h(Un, 30), 0n), Sns1) = i—fh(un, Sn) + i—?h(un, Sn)on + 4—Cbh(un, Sn)(Un + h(tp, 6,))

+ Z—Cbh(un, On)0n(Un + h(un, dn)) + c%h(u”’ 5n)5ﬁ + bh(uy, 6,)(un + h(u, 5n))2.

By calculating, we can get that b; = b, = b; = 0. We take the center manifold as the following form:
Un = h(Un, 0) = batt} + bsu2d, + bstind? + 75} + o((|ua| + |0a])*),

and the system (2.2) is restricted to the center manifold, which is given by:
fi 1 Unpr = —up — cu? — cuy (bt + bsu2d, + beund; + b76, ) — Undy

c2 1
+7 (bat? + bsu2d, + belindy + b75ﬁ)3 +3 (bat? + bsu2d, + beundy + b73,) 57

c? . a1
+ 5”,1 (b4u3 + b5ui5n + bsunbi + b7éz) iun + (b4ui + bsuién + bsun(ﬁ + b75§)

c
+ = On (batty + bsiryon + beUnd; + b70,) [un + (bauti + bsudy + bgundy + b70,)].
Since
ofi 0°fi o*fi B
(%W”auaa =-270,
(0,0)
and
2
1 (0% 1 (0’ )
(2(8112 slaw))| =0
(0,0)

system (1.3) undergoes a flip bifurcation at E;. The proof is completed. [

2.2. Fixed point E; = (ﬁfl\/g—c)

\/E )
tem (1.3). The positive fixed point is so important to the biological system that people usually are very interested in it. In the

following two theorems it will be showed that the system (1.3) also undergoes transcritical and flip bifurcation at E,. Since
the analysis is very similar to the case at E;, the proof are omitted.

In this section, we will pay our attention to the fixed point E, <li WE*C , which is the only positive fixed point of the sys-

Theorem 2.3. If a> — 8a + %\/E > 0,ab = cv/b, the system (1.3) will undergoes a transcritical bifurcation at E.

Theorem 2.4. If a®> — 8a + 5 vb > 0,2b = cV/b, the system (1.3) will undergoes a flip bifurcation at Es.
Next, the Hopf bifurcation at E; will be discussed.

Theorem 2.5. If a*> — 8a + & vb < 0,ay = \2/—‘5 and a # 2, the system (1.3) will undergoes a Hopf bifurcation at E,. Moreover, for
a> % an attracting invariant closed curve bifurcates from the fixed point.

Proof. Let
1 _, _avb—c
\/57 1/]11 n b .
Then the system (1.3) can be changed into:
{ &nt = (1 - )& — 0, — avbey — 2vbean, — b,

Mpoy = (Za - 27%) En+ 1y + (a\/E - c) &+ 2Vbén, + béan,.

én:Sn*
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Now take a as an bifurcation parameter. For 8a — a> — & vb > 0, the eigenvalues of the Jg, are

2-a+i\/8a—a*-3%Vb
2=

2
and
1 2 , 8¢ o 2c
w_i\/(z—a) +8a—a ‘F‘/B‘ a+1—ﬁ.
Let aq :\2/—%, then
d(A) _ 1 1
da |y x5 /o] = _£7§>0,
0 Vb \/E
|A(ao)| =1, and
2-—a+iy/8a—a?—8+b 2
J12(0o) = b 1 4 2c ¢
’ 2 N/ vb b
aO:Z—fE

lf% #1, 21, #1, m=1,2,3,4. By the following transformation:

(n)=7C2)

where

(s simos)
T= .
—¢ 1./8a—a>-3\b

The system (2.3) can be changed into:
(um)f 12-a) ~1./8a—a —%Vh (un>+<f1(un,vn)>
Uni1 % 8a_a2_%\/5 (2—(1) Un fz(Un,Z/n) )
where

1 U,. 0. = 8a _az _8(’ Uu, v, +_l[3 — 8a_a2 [ ”22)
f ny Un b b \/B ntn 2 n 2 l \/E n¥n;
fg Lln, Z)n = 7Cun + Sab —a b - SC\/Eun Z)n - 72 Lln +72 80 —as — T \/Bun yn.

In [21], the coefficient 0 is given by

and

1-20)22 1 =
0= —Re {%lnlzo} —§|111\2 — |lo2|* + Re(ilyy),

where
17/: , ~ e , - V/8ab—a2b —8cvb 1.
120:§[<f1uu —flvv+2f2uv)+l(f2uu _vav—szv)} = 4 +Zl<_c_\/8ab_a2b_8C\/B)’
L= }1 [(fluu +f1m;) +i<f2uu +f2mz)} = —%i7
0= 3 (o~ o 2] + (o P+ 2r)] = V3P =E =8 (o —aap—sev),
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121 = 11_6 [(fluuu +iluvv +f2uuv +f21)vv) + i(quuu +f2uz/z/ _fluuy _fl wu)]

3ab byBa-@ 1 e €
~ 16 16 16 Vb))

By direct calculating, we obtain that 6 < 0. Using the Hopf bifurcation theorem in [6], the proof is completed. [

3. Numerical simulations

To provide some numerical evidence for the qualitative dynamic behavior of the model (1.3), the phase portraits, bifur-
cation diagrams, Lyapunov exponents, sensitive dependence on initial conditions and fractal dimension were used to illus-
trate the above analytical results and for finding new dynamics as the parameters vary.

Now, a is considered as a parameter with the range (0,1). A powerful numerical tool to investigate whether the dynamical
behavior is chaotic is a plot of the largest Lyapunov exponent, as a function of one of the model parameters. The largest
Lyapunov exponent is the average growth rate of an infinitesimal state perturbation along a typical trajectory (orbit).
Fig. 1a shows the spectrum of Lyapunov exponents of the system (1.3) with respect to parameter a, and the parameter values
are that b =5 and c = 0.5. Since that the bifurcation diagrams of a — S, is similar with the bifurcation diagrams of a — I, we
will only show the former which can be seen from Fig. 1b. From Fig. 1b, we can see that period-4 occurs at a ~ 0.19354839,
period-5 occurs at a ~ 0.35483871 and period-6 occurs at a ~ 0.55268817. Cascades of period-halving bifurcations and per-
iod-doubling bifurcations can be sen from Fig. 1b. And as a increases from 0.50322581 to 0.55653763, the system goes
through quasi-periodicity, including frequency-lockings and tangent bifurcation. When a 1is increased to
a.(a. ~ 0.86236556), system (1.3) becomes stable. To well see the dynamics, time series of S, given in Fig. 2.

(a)10 T T T T

S e i,
- T

;"‘WW

e |

-10 - - - .

Lyapunov exponent
o

Fig. 1. Spectrum of Lyapunov exponents and bifurcation diagrams for a—S, with b=5 and c=0.5.
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time

Fig. 2. Time series of S, with a=0.3, b=5 and c=0.5.

Lyapunov exponent

(b) 30F

25t

20

Fig. 3. Spectrum of Lyapunov exponents and bifurcation diagrams for c—S, with a=0.3 and b =5.

Since ¢ may play a important role of the system, we take it as a parameter. Fig. 3a shows the spectrum of Lyapunov expo-
nents of the system (1.3) with respect to parameter c, and the parameter values are that a = 0.3, and b = 5. Fig. 3b is the bifur-
cation diagram of system (1.3) for the S,. From Fig. 4, we can see that there is period-6 solution.
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Fig. 4. Time series of S, with a=0.3, b=5, and c=28.

4. Discussion and conclusion

In this paper, we have applied Euler scheme to convert the continuous epidemic model to a discrete model and studied
the dynamical characteristic of the discrete model. The discrete model can result in a much richer set of patterns than the
corresponding continuous-time model and it is more effective in practice. Our theoretical analysis and numerical simula-
tions have demonstrated that the discrete epidemic model undergoes transcritical bifurcation, flip bifurcation, Hopf bifurca-
tion and chaos.

Furthermore, chaos can cause the population to run a higher risk of extinction due to the unpredictability [1,9]. Also the
density of the infected may be out of control. But in the real world, the density of the infected needs to be under control or it

will be harmful to the health of people worldwide. Thus, how to control chaos in the epidemic model is very important,
which needs further investigation.
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