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ABSTRACT

Feature selection (attribute reduction) from large-scale incomplete data is a challenging problem in
areas such as pattern recognition, machine learning and data mining. In rough set theory, feature
selection from incomplete data aims to retain the discriminatory power of original features. To address
this issue, many feature selection algorithms have been proposed, however, these algorithms are often
computationally time-consuming. To overcome this shortcoming, we introduce in this paper a theoretic
framework based on rough set theory, which is called positive approximation and can be used to
accelerate a heuristic process for feature selection from incomplete data. As an application of the
proposed accelerator, a general feature selection algorithm is designed. By integrating the accelerator
into a heuristic algorithm, we obtain several modified representative heuristic feature selection
algorithms in rough set theory. Experiments show that these modified algorithms outperform their
original counterparts. It is worth noting that the performance of the modified algorithms becomes more

Granular computing

visible when dealing with larger data sets.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Feature selection, also called attribute reduction, is a common
problem in pattern recognition, data mining and machine learn-
ing. In recent years, both the number and dimensionality of items
in data sets have grown dramatically. For examples, tens, hun-
dreds, and even thousands of attributes are stored in many real-
world application databases [1-3]. It is well known that attributes
irrelevant to recognition tasks may deteriorate the performance
of learning algorithms [4]. In other words, storing and processing
all attributes (both relevant and irrelevant) could be computa-
tionally very expensive and impractical. To address this issue, as
pointed out in [5], some attributes can be omitted, which will not
seriously affect the resulting classification (recognition) accuracy.
Therefore, the omission of some attributes could be not only
tolerable but also even desirable relative to the computational
costs involved [6].

In feature selection, there are two general strategies, namely
wrappers [7] and filters. The former employs a learning algorithm
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to evaluate the selected attribute subsets, and the latter selects
attributes according to some significance measure such as infor-
mation gain [8], consistency [9], distance [10], dependency [11],
and others. These measures can be divided into two main
categories: distance-based measures and consistency-based mea-
sures [5]. Attribute reduction in rough set theory offers a
systematic theoretic framework for consistency-based feature
selection, which does not attempt to maximize the class separ-
ability but rather attempts to retain the discerning ability of
original features for the objects from the universe [12,13].

Generally speaking, one always needs to handle two types of
data, viz, those that assume numerical values and symbolic
values. For numerical values, there are two types of approaches.
One relies on fuzzy rough set theory, and the other is concerned
with the discretization of numerical attributes. In order to deal
with hybrid attributes, several approaches have been developed
in the literature [12,14-21]. In classical rough set theory, the
attribute reduction algorithm takes all attributes to be symbolic
values. After preprocessing original data, one can use classical
rough set theory to select a subset of features that is most suitable
for a given recognition problem.

Feature selection based on rough set theory starts from a data
table, which is also called an information system and contains
data about objects of interest that are characterized by a finite set
of attributes. According to whether or not there are missing data
(null values), information systems are classified into two
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categories: complete and incomplete. In general, by an incom-
plete information system, we mean a system with missing data
(null values) [22,23]. For an incomplete information system, if
condition attributes and decision attributes are distinguished
from each other, then it is called an incomplete decision table.
Feature selection from incomplete data usually starts from
incomplete decision tables.

In the last two decades, many techniques for attribute reduc-
tion have been developed in rough set theory [25-29]. Especially
£ in order to obtain all attribute reducts of a given data set,
Skowron proposed a discernibility matrix method [30]. However,
these feature selection algorithms are usually time-consuming to
process large-scale data. Aiming at efficient feature selection,
many heuristic attribute reduction algorithms have been devel-
oped in rough set theory, cf. [5,19,31-37]. Each of these algo-
rithms preserves a particular property of a given information
system. To accomplish attribute reduction from incomplete deci-
sion tables, similar to the discernibility matrix proposed by
Skowron, Kryszkiewicz gave a generalized discernibility matrix
to obtain all attribute reducts of an incomplete decision table [24].
To efficiently obtain an attribute reduct, several heuristic attribu-
tion reduction approaches have been presented [38-41]. For
convenience of our further development, we review several
representative heuristic attribute reduction algorithms in the
context of incomplete data here. Applying the idea of positive-
region reduction, Yang and Shu proposed a heuristic feature
selection algorithm in incomplete decision tables, which keeps
the positive region of target decision unchanged [39]. Liang et al.
defined new information entropy to measure the uncertainty of
an incomplete information system [23] and applied the corre-
sponding conditional entropy to reduce redundant features [38].
Qian and Liang [40] presented the combination entropy for
measuring the uncertainty of an incomplete information system
and used its conditional entropy to obtain a feature subset. As
Shannon’s information entropy was introduced to search reducts
in classical rough set model [34], an extension of its conditional
entropy also can be used to calculate a relative attribute reduct of
an incomplete decision table. However, the above algorithms are
still computationally time-consuming to deal with large-scale
data sets.

In this study, we will not consider how to discretize numerical
attributes and construct a heuristic function for feature selection.
Our objective is how to improve computational efficiency of a
heuristic attribute reduction algorithm in the context of incom-
plete data. A brief version of this work has been published in the
literature [42]. In this extended version, we propose a new rough
set framework, which is called positive approximation in incom-
plete information systems. The main advantage of this approach
stems from the fact that this framework is able to characterize the
granulation structure of an incomplete rough set using a granula-
tion order. Based on the positive approximation, we develop a
common accelerator for improving computational efficiency of a
heuristic feature selection, which provides a vehicle of making
rough set-based feature selection algorithms faster. By incorpor-
ating the accelerator into each of the above representative
heuristic attribute reduction algorithms, we obtain their modified
versions. Numerical experiments show that each of the modified
algorithms can choose the same feature subset as that of the
corresponding original algorithm while greatly reducing compu-
tational time. Furthermore, we would like to stress that the
improvement becomes more visible when the data sets become
larger.

The rest of the paper is organized as follows. Some basic concepts
are briefly reviewed in Section 2, which include incomplete infor-
mation systems, incomplete rough set model, incomplete variable
precision rough set model and partial relations. In Section 3, we

establish a positive approximation framework in incomplete infor-
mation systems and investigate some of its main properties.
In Section 4, by analyzing the rank preservation of several repre-
sentative significance measures of attributes, a general algorithm
based on the positive approximation is first introduced, and a series
of experimental studies are then conducted, which focus on com-
parison of computational efficiency and stability of the selected
attributes. Finally, Section 5 concludes the paper with some remarks
and discussions.

2. Preliminaries

In this section, we will review several basic concepts such as
incomplete information systems, tolerance relation and partial
relation. Throughout this paper, we suppose that the universe U is
a finite non-empty set.

An information system is a pair S=(U,A), where U is a non-
empty finite set of objects, A is a non-empty finite set of
attributes, and for every aeA, there is a mapping a, a: U-V,,
where V, is called the value set of a.

It may happen that some of attribute values for an object are
missing. To distinguish such a situation from the other, a so-called
null value, denoted by x, is usually assigned to those attributes. If
V, contains a null value for at least one attribute a € A, then S is
called an incomplete information system; otherwise it is a
complete one [24].

Let S=(U,A) be an information system and P< A an attribute
set. We define a binary relation on U as follows:

SIM(P)={(u,v)eU x U| VaeP, au)=a(v) ora(u)=x or av)=s=}.

In fact, SIM(P) is a tolerance relation on U. The concept of a
tolerance relation has a wide variety of applications in classifica-
tion. It can be easily shown that SIM(P) =, . pSIM({a}). Let Sp(u)
denote the set {v e U|(u,v) e SIM(P)}. Sp(u) is the maximal set of
objects which are possibly indistinguishable by P with u. Let
U/SIM(P) denote the family sets {Sp(u)lueU}, which is the
classification or the knowledge induced by P. A member Sp(u)
from U/SIM(P) will be called a tolerance class or an information
granule. It should be noticed that the tolerance classes in
U/SIM(P) do not yield a partition of U in general. They form a
cover of U, i.e., Sp(u) # 0 for every ue U, and |, . ;Sp(u) =U.

Let S=(U,A) be an incomplete information system, X a subset
of U, and P = A an attribute set. In the rough set model, based on
the tolerance relation [24,43], X can be characterized by SIM(P)X
and SIM(P)X, where

SIM(P)X = U {Y € U/SIM(P)|Y =X},
{ SIM(P)X = U {Y e U/SIM(P)|Y N X # 0}.

There are two kinds of attributes for a classification problem.
Each of them can be characterized by a decision table S=(U,CU
D) with Cn D=0, where an element of C is called a condition
attribute, C is called a condition attribute set, an element of D is
called a decision attribute, and D is called a decision attribute set.
Assume the objects are partitioned into r mutually exclusive crisp
subsets {X1,Xo,...,X;} by the decision attribute set D. Given any
subset P = C and the tolerance relation SIM(P) induced by P, one
can then define the lower and upper approximations of the
decision attribute set D as

SIM(P)D = {SIM(P)X1,SIM(P)X>, . .
{ SIM(P)D = {SIM(P)X;,SIM(P)X>, . .

L SIM(P)X;},
. SIM(P)X;}.

Let POSp(D)= |Ji_SIM(P)X;, which is called the positive
region of D with respect to the condition attribute set P.




1660 Y. Qian et al. / Pattern Recognition 44 (2011) 1658-1670

To formulate the variable precision rough set model, Ziako [44]
used the relative degree of misclassification function ¢ and the
granule-based definition of approximation. Using the approxi-
mating method of the variable precision rough set model, we will
introduce an incomplete variable precision rough set framework
for more flexible feature selection. Let S=(U,A) be an incomplete
information system, X a subset of U, and P< A an attribute set.
Given a threshold f €[0,0.5], X is approximated by SIM(P)’X and
SIM(P)ﬁX. where

SIM(P)’X = {u|D(Sp(u),Sp(u) N X) < Bu e X},
SIM(P)’ X = {uID(Sp(u),Sp(u) N X) < 1—f,u € U}..

Unlike the classical variable rough set model, the proposed
incomplete variable rough set model has the property that
SIM(P)*X < X < SIM(P)" X.

Assume the objects are partitioned into r mutually exclusive
crisp subsets {X1,Xs,...,X;} by the decision attribute set D. Given
any subset P < C and the tolerance relation SIM(P) induced by P,
one can then define the lower and upper approximations of the
decision attribute set D as

. SIM(P)’X,},

SIM(P)*D = (SIM(P)’X;,SIM(P)’X, ..
SIM(P)’ D = (SIM(P)’ X,,SIM(P)" X, . . . SIM(P) X;}..

Similar to the definition of positive region in the incomplete
rough set model, we come to the definition of positive region of a
variable rough decision as POSﬁ(D) =U_, SIM(P)*X;, which is
called the p-positive region of D with respect to the condition
attribute set P. Using the f-positive region, one can construct a
new heuristic function for feature selection from incomplete data
in the context of variable rough set framework.

Let S=(U,A) be an incomplete information system. We define a
partial relation < (or ) on 24 as follows [23,45]: we say that Q is
coarser than P (or P is finer than Q), denoted by P<Q (or Q :=P), if
and only if Sp(u;) = So(u;) forie {1,2,...,|U}}. If P<Q and P # Q, we
say that Q is strictly coarser than P (or P is strictly finer than Q)
and denoted by P<Q (or Q>P). In fact, P<Q<for
ief{l,2,...,]U]}, it follows that Sp(u;) <=Sq(u;), and there exists
je{1,2,...,|U]} such that Sp(u;) C So(u)).

3. Positive approximation in incomplete information systems

For a given incomplete data set, a cover induced by a tolerance
relation provides a granulation world for describing a target
concept. Therefore, a sequence of granulation worlds stretching
from coarse to fine granulation can be determined by a sequence
of attribute sets with granulations from coarse to fine in the
power set of attributes, which is called a positive granulation
world. If the granulation worlds are arranged from fine to coarse,
then the sequence is called converse granulation worlds.

In this section, we introduce a new set-approximation method
called positive approximation to incomplete information systems
and investigate some of its important properties, in which a target
concept is approximated by a positive granulation world. These
concepts and properties will be helpful for understanding the
notion of a granulation order and set approximation under a
granulation order in the context of incomplete data.

Definition 1. Let S= (U,A) be an incomplete information system,
XcU, and P={Py,P,,...,P,} a family of attribute sets with
Pi3=Py= - =P, (Pie2%). Given P;={P;,P,,...,P;}, we define
P;-lower approximation P;(X) and P;-upper approximation P;(X)

of P;-positive approximation of X as

i
&(X) = kg]SIM(Pk)ka

P;(X) =SIM(P)X,

where X;=X and Xk:X—UJ’-‘;]1Pj()(j) for k=2,3,...,i
i=12,...,n -

Definition 1 shows that a target concept can be approached by
the change of the lower approximation P;(X) and the upper
approximation P;(X). o

In order to illustrate the essence that positive approximation is
mainly concerned with the change of the construction of the
target concept X (tolerance classes in lower approximation of X
with respect to P) in incomplete information systems, we can
redefine P-positive approximation of X by using tolerance classes
on U. Therefore, the structures of P-lower approximation P(X) and
P-upper approximation P(X) of P-positive approximation of X can
be represented as follows:

{<PX)) ={Spw) | Sp(w) =Xpi<nue UYL <PX))> =

{Sp,(u) | Sp,Ww) N X #0,ue U},
where X; =X, X;=X— U, SIM(P)X; for i=2,...,n, and < -
denotes the structure of a rough approximation.

In the following, we show how positive approximation in an
incomplete information system works through an illustrative
example.

Example 1. Suppose that S=(U,A) is an incomplete information
system with U = {uq,u;,us,uy,us,ug}, P,Q <A are two attribute
sets, X = {uy,uz,us,us,ug}, SIM(P)= {{uy,uz},{us,uz},{t2,u3},{us,uy,
Us},{Uug,us,ug},{ug,us,ugl}, SIM(Q) = {{u1},{ua},{us},{ug,us},{ug,us},
{us,ug}}. Obviously, P:=Q holds. Hence, we can construct a
granulation order (a family of tolerance relations) P={P,Q},
where P; = {P} and P, = {P,Q}. Computing the positive approx-
imation of X with respect to P, we obtain that

(P1X) > = {{ug,uzh {ug,uz}, {ug,uslh,
(P1X0)> = {{ug,uz}, {u, U}, {2, Uz}, {Us, g, s}, {Ug, Us, Ug}, {Us, Us, Us}},
<Py (X)) = {{ug,uz}, {ug, Uz}, {up,us}, {us,ug}},

(Po(X)> = {{u1},{uz}.{us},{Ua, Us}, {Uug,us},{us,ug}}.

The target concept X is described by using the granulation order
P={P,Q}.

In practices, a granulation order on an attribute set can be
appointed by users or experts or built according to the signifi-
cance of each attribute. In particular, in an incomplete decision
table, some certain/uncertain decision rules can be extracted
through constructing the positive approximation of a target
decision.

Definition 2. Let S=(U,CuUD) be an incomplete decision table,
P = {Py,P,,...,Py} a family of attribute sets with P; =P = --- =Py,
and U/D={Xq,X2,...,X;} a decision (partition) on U. A lower
approximation and a upper approximation of D related to P are
defined by

PD={P(X;),P(X2),....P(X»)},
PD = (P(X;),P(X2), ....P(X,)}.

In this paper, PD is also called the positive region of D with
respect to the granulation order P, denoted by
POSY(D) = Uy _ ; P(X)
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Theorem 1. Let S=(U,A) be an incomplete information system, X a
subset of U and P = {P1,P,,...,P,} a family of attribute sets with
Pi=Py=--- =P, (P;e2". Then, for i=1,2,...,n, given that
P; = {P;,P,, ...,P;}, we have

POSp, (D)= POSp (D) U POS ! (D),
where Uy = U and Uj, 1 = U—~POS (D).

This theorem shows that a given target decision can be
positively approximated by using granulation orders on the
gradually reduced universe, which leads to the idea of the
accelerator proposed in this paper for improving the computa-
tional performance of a heuristic attribute reduction algorithm.

In what follows, we investigate the form of positive approx-
imation in the incomplete variable rough set framework. Accord-
ing to the definition of positive approximation in Definition 1, we
define f-positive approximation in an incomplete information
system as follows.

Definition 3. Let S= (U,A) be an incomplete information system,
X<cU and P={Py,P,,...,P;} a family of attribute sets with
Pi3=Py3= --- =P, (P; €2%). Given that P; = {P;,P,, ...,P;}, we define
Pf—lower approximation P;/(X) and Pf—upper approximation
P;"(X) of Plﬁ—positive approximation of X as

By | B
P/(X)= U SIM(P’Xi,

P () =SIMP)" ..

where X;=X and Xe=X-UZ |P/X) for k=23,
i=1,2,....,n. -

Definition 4. Let S=(U,CuUD) be an incomplete decision table,
P ={Py,P,,...,Py} a family of attribute sets with Py =P, 3= --- =Py,
and U/D={Xq,X2,...,X;} a decision (partition) on U. A lower
approximation and a upper approximation of D related to P are
defined as

{PBD = (PPX).PP), .. PP,
P'D= P x) P ), ... PP X))

In this paper, BﬁD is also called the positive region of D
with respect to the granulation order P, denoted by
POSE’(D) = Ui _ 1 P"Xi.

Theorem 2. Let S=(U,A) be an incomplete information system, X a
subset of U and P ={P;,P,,...,P,} a family of attribute sets with
Pi=Pys= - =Py (P;e2". Then, for i=1,2,...,n, given that
P; = {P;,P,, ... ,P;}, we have

Pos{ig (D)=POSy’(D)U Pos{‘,}f;‘ D),
where Uy =U and Uy, = U-POS}/ (D).

This theorem indicates that through the proposed incomplete
variable rough set model, a given target decision also can be
positively approximated by using granulation orders on the
gradually reduced universe, which shows that idea of the accel-
erator proposed in this paper can be used to improve the
computational performance of a heuristic attribute reduction
algorithm in the context of incomplete variable rough set
framework.

4. Feature selection based on the positive approximation

Feature selection based on rough set theory is about finding
some attribute subsets that have the minimal number of attri-
butes and retain some special properties. To construct a heuristic
feature selection algorithm, three key issues should be taken into

consideration, which are significance measures of attributes,
search strategy and stopping (termination) criterion. However, the
existing heuristic attribute reduction algorithms are computationally
intensive which become infeasible in case of large-scale data. As
already noted, we do not reconstruct significance measures of
attributes and design new stopping criteria, but improve the search
strategies of the existing algorithms by exploiting the proposed
concept of positive approximation in incomplete data.

4.1. Several representative significance measures of attributes

For efficient feature selection, many heuristic attribute reduc-
tion algorithms have been developed in the context of incomplete
data, see [38-41]. For convenience, we only focus on
two representative attribute reduction algorithms from
incomplete data.

Given an incomplete decision table S=(U,CUD), one can
obtain the condition classification U/SIM(C) = {Sc(u1),Sc(u2), ..,
Sc(uy)} and the decision partition U/D = {X;,X3,...,X}. In fact,
we can denote the decision partition by the tolerance class of
each object on the universe, that is U/SIM(D) = {Sp(u1),Sp(u2), - - .,
Sp(uu)}. Without loss of generality, let X; = {ujq,u)o, . . . Ujs, L where
IXjl =s;and 37; _; s; = |U|. Then, the relationship between U/D and
U/SIM(D) is as follows:

Xj=Sp(j) =Sp(t2) = - - = Sp(is)),

IXil =1Sp(j)| = Sp(Uj2)l = - - - = |Sp(us))I.

Using this relationship, one can equivalently redefine the positive
region of an incomplete decision table by

POSc(D) = {u | Sp(u) = Sp(u),u € U}.

Given the above denotations, in what follows we review two
types of significance measures of attributes.

Hu and Cercone proposed a heuristic feature selection algo-
rithm, called positive-region reduction (PR), which keeps the
positive region of target decision unchanged [31]. Applying the
idea of positive-region reduction, Yang and Shu gave a heuristic
feature selection algorithm in incomplete decision tables (IPR),
which also keeps the positive region of target decision
unchanged [39]. In this algorithm, the significance measures of
attributes are defined as follows.

Definition 5. Let S=(U,CUD) be an incomplete decision table
and B < C. va e B, the significance measure of a in B is defined as

Sig{""'(a,B.D) = y5(D)~75_ () (D).
where (D) = |POSg(D)|/|U|.

Definition 6. Let S=(U,CUD) be an incomplete decision table
and B = C. Va e C—B, the significance measure of a in B is defined
as

Sigd""(a,B.D) = 7, (D)~ (D).

In [23], Liang et al. defined information entropy to measure the
uncertainty of an incomplete information system and applied the
entropy to reduce redundant features. This reduction algorithm is
denoted here by ILCE. The conditional entropy used in the study
was defined as

u|

> (ISc(i)|—ISc(u;) N Spy)), ey
i=1

where Sc(u;) e U/SIM(C) and Sp(u;) € U/SIM(D). The corresponding
significance measures are listed as follows.

E(D|C) = e
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Definition 7. Let S=(U,CUD) be an incomplete decision table
and B = C. va € B, the significance measure of a in B is defined as

Sigh™™" (a,B,D) = E(D|B—{a})—E(D|B).

Definition 8. Let S=(U,CUD) be an incomplete decision table
and B = C. va e C—B, the significance measure of a in B is defined
as

Sig5“**"(a,B,D) = E(D|B)—E(D|B U {a}).

In the incomplete variable rough set model, according to the ideas
of Definitions 5 and 6, we can design an algorithm using the
corresponding significance measures for searching an attribute
reduct, which keeps the f-positive region of target decision
unchanged. In this algorithm, the significance measures of attri-
butes are defined as follows.

Definition 9. Let S=(U,CUD) be an incomplete decision table
and B < C. Va e B, the significance measure of a in B is defined as

Sigi"*'(a,B,D) = 74(D)~7}_ ) (D),
where y5(D) = |POSE /(D)|/|U].

Definition 10. Let S=(U,CUD) be an incomplete decision table
and B = C. Va e C—B, the significance measure of a in B is defined
as

Sig3"“(a,B,D) = 7§ 0y (D)~ 75(D).

All the definitions above are used in a heuristic feature selection
algorithm to select an attribute from incomplete data. For a given
incomplete decision table, the intersection of all attribute reducts
is said to be indispensable and is called the core. Each attribute in
the core must be in every attribute reduct of the incomplete
decision table. The core may be an empty set. The two kinds of
significance measures can be used to find the core attributes. The
following theorem is of interest with this regard.

Theorem 3. Let S=(U,CUD) be an incomplete decision table and
aeC. If Sigh"" (a,C,D) > 0 (4 € {1,2,3}), then a is a core attribute of S
in the context of type A.

In a heuristic feature selection algorithm, based on the above
theorem, one can find an attribute reduct by gradually adding
selected attributes to the core attributes.

4.2. Rank preservation of significance measures of attributes

As mentioned above, each of significance measures of attri-
butes provides some heuristics to guide the mechanism for
forward searching a feature subset. Unlike the discernibility
matrix, the time consumption of the heuristic algorithms has
been largely reduced. Nevertheless, these algorithms still could be
very time-consuming. To introduce an improved strategy for
heuristic feature selections, we concentrate on the rank preserva-
tion of the three significance measures of attributes based on the
positive approximation introduced in an incomplete deci-
sion table.

For a clearer representation, we denote the significance mea-
sure of an attribute by Sig%"(a,B,D,U) (4€{1,2,3}), which
denotes the value of the significance measure on the universe
U; and we write the tolerance class induced by u with respect to B
on the universe U as SY(u).

Firstly, we investigate the rank preservation of the significance
measure of attributes based on the dependency measure in
incomplete decision tables. To do it in a much clearer way, we
introduce the following two lemmas.

Lemma 1. Let A,B,C,A',B,C’ be six finite sets, where A’ =AU C and
B =BUC.IfA<B and C' N (AUB) =0, then AcB.

Lemma 2. Let S= (U,CUD) be an incomplete decision table, B< C
and U =U-POSy(D). If Shua@) =SpW) and wel’, then
Sg(lm(u’) c Sg’(u’).

By using these two lemmas, one can prove the following
theorem of rank preservation with respect to the significance
measure of attributes based on the dependency measure in
incomplete decision tables.

Theorem 4. Let S= (U,C U D) be an incomplete decision table, B< C
and U =U-POSy(D). Va,beC—B, if Sigd"*(a,B,D,U)> Sigq"*"
(b,B,D,U), then Sig{"**'(a,B,D,U’) > Sig$"**"( b,B,D,U").

Secondly, we study the rank preservation of the significance
measure of attributes based on Liang’s conditional entropy. To do
it, we need the following lemma.

Lemma 3. Let S=(U,CUD) be an incomplete decision table, B< C
and U’ = U—POS} (D). Then,

IS @W)HI—IS§ ) NSPW') = IS§' W)—IS§ W) NSy W).u' e U

From Lemma 3, one can get the rank preservation of the
significance measure of attributes based on Liang’s condition
entropy in incomplete decision tables, which is as follows.

Theorem 5. Let S= (U,C U D) be an incomplete decision table, B< C
and U =U-POSY(D). VabeC-B, if Sigd"*(a,B,D,U)>
Sig5"**"(b,B,D,U), then Sig5"* (a,B,D,U’) > Sig5"*"(b,B,D,U’).

For feature selection in the incomplete variable rough set
framework, if =0, we also can obtain the following rank
preservation result.

Theorem 6. Let S = (U,C U D) be an incomplete decision table, B < C,
U =U-POSY(D), and B=0. va,beC-B, if Sigd" (a,B,D,U)>
Sig3"**"(b,B,D,U), then Sig3"*'(a,B,D,U’) = Sig5"" (b,B,D,U’).

From Theorems 4,5,6, it is easy to observe that the sequence of
attributes selected in the process of feature selection will be kept
unchanged when reducing the lower approximation of positive
approximation in an incomplete decision table. This property can
be used to improve computational efficiency of a heuristic feature
selection algorithm, while retaining the same selected feature
subset from a given incomplete data set as its original version. If
we use the support vector machine (SVM) or the decision tree
method to construct a classifier, then the same feature subset
selected must possess the same classification accuracy. From
the viewpoint of classifiers, these attribute reduction algorithms
may lead to the overfitting problem as a decision tree does
when the tree has too long paths, which will weaken the general-
ization ability of classifiers induced by the attribute reducts
obtained. Hence, it is very desirable to solve the overfitting
problem of feature selection for learning a classifier in
the framework of rough set theory. This issue will be addressed
in future work. As pointed out in the introduction part, this
study does not aim to improve the classification accuracy of
a classifier induced by an attribute reduct, but only focuses
on largely reducing computational time of original attribute
reduction algorithms. In fact, a heuristic algorithm with the
proposed accelerator will have the same classification accuracy
as before.

Note that in the context of incomplete variable rough set
model, when 0 < f <0.5, the sequence of attributes selected in
the process of feature selection may be changed in an incomplete
decision table. It can be understood by the definition of incom-
plete variable rough set, in which the used inclusion degree
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function is not monotonic. However, it is not disappointing from
the following two reasons:

(1) When the stop criterion of an accelerated feature selection
algorithm is satisfied, if the reduced universe is not an empty
set, then the attribute reduct obtained by the algorithm must
include the same features as those obtained by the original
algorithm and have the same approximating ability as that
obtained by the original algorithm. This is because the stop
criterion requires y”Y%(D)=7£%(D) and YD) =y’ (D) (see
Algorithm 2).

(2) If the reduced universe is equal to an empty set, then we must
have extracted a feature subset with the dependency degree
yg(D) =(|POS§(D)|/|U|)= 1. In this situation, all objects in the
universe have been put in the lower approximation of the
target decision, hence the obtained feature subset has a much
better approximation ability than the original feature subset.
This does provide a satisfying and interesting feature subset
for a much better approximation.

4.3. Feature selection algorithms based on the positive
approximation

The objective of rough set-based feature selection is to find a
subset of attributes which retains some special properties as the
original data without redundancy. In fact, there may be multiple
reducts for a given decision table. It has been proven that finding
the minimal reduct of a decision table is an NP hard problem. In
most applications, it is enough to find a single reduct. Based on
the significance measures of attributes, some heuristic algorithms
have been proposed in the literature, most of which are greedy
forward search algorithms. These search algorithms start with a
non-empty set, and keep adding one or several attributes of high
significance into a pool each time until the dependence no longer
increases.

In a feature selection algorithm based on rough set theory, we
need to compute tolerance classes induced by the condition
attributes in an incomplete decision table. This process largely
affects computational time of an algorithm for feature selection.
In order to design an efficient feature selection algorithm, we first
give a fast algorithm for acquiring tolerance classes (QAATC) from
a given incomplete decision table, which is mainly based on the
idea of radix sorting algorithm. Its time complexity is
O(AIUI+ S S eq Ve ), where || is the number of
objects with missing value * under attribute ay, and |V, | repre-
sents the number of values (is not equal to =) under attribute a,
respectively. It is well known that rough set theory is mainly used
for knowledge discovery from symbolic data, in which the
number of values under each attribute is so small that it often
can be seen as a constant. Hence, the time complexity of the
algorithm is almost not affected by |V, |. In addition, the number
of objects with “x” under each attribute often is also much
smaller, and its maximum value is |U| in one worst attribute that
can not provide any classification information. Therefore, we can
further reduce the time complexity to

Al j-1
0(|A||U|+ S>> |*ak||vak> ~ O(JAI|U|+ |AI*|U)) = O(AI*|U).

j=1k=1

Hence, this algorithm will show its advantage for calculating
tolerance classes from large-scale incomplete data in which the
dimensionality has much smaller effect than the size of objects on
computational time. Taking into account the compactness of the
article, we omit the description of the algorithm here.

From the discussion in the previous subsection, we obtain an
improved forward search algorithm based on the positive approx-
imation and the fast algorithm for acquiring tolerance classes,
which is formulated as follows. In this general algorithmic frame-
work, we denote the evaluation function (stop criterion) by
EFY(B,D)=EFU(C,D). For example, if one adopts Liang’s condi-
tional entropy, then the evaluation function is EY(B,D) = EY(C,D).
That is to say, if EFU(B,D)=EFY(C,D), then B is said to be an
attribute reduct.

Algorithm 1. A general accelerated incomplete feature selection
algorithm based on the positive approximation (IFSPA)

Input: An incomplete decision table S= (U,C U D);
Output: One reduct red.
Step1: red«0; [[red is the pool to conserve the selected
attributes
Step2: Compute Sig™* (a,,C,D,U), k <|C|;
Step3: Put a, into red, where Sig™(a,,C,D,U) > 0;// These
attributes form the core of the given decision table
Step4: i1, Ry =red, Py = (R} and U; « U;
Step5: While U; # ¢ and EFYi(red, D) = EFYi(C,D) Do
{Compute the positive region of positive approximation
POS (D),
U; = U-POSg (D),
i—i+1,
red «red U {ag}, where Sig®"" (ag,red,
D,U;) = max{Sig®*" (ay,red,D,U;), a; e C—red},
Ri <R; U {ao},
Pi—{Ri,Ry,....Ri} };
Step6: return red and end.

outer

For feature selection from incomplete data in the incomplete
variable rough set framework, we can also modify a feature
selection algorithm using the f-positive approximation as
follows.

Algorithm 2. An accelerated incomplete feature selection algo-
rithm based on the f-positive approximation (IFSPA-IVPR)

Input: An incomplete decision table S= (U,C U D) and the
threshold § <0.5;
Output: One reduct red.
Step1: red < 0;/[red is the pool to conserve the selected
attributes
Step2: Compute Sigh™ (a,,C,D,U), k < |C|;
Step3: Put a; into red, where Sigh™ (a,,C,D,U) > 0;
Step4: i—1, Ry =red, Py = {Ry} and U; < U;
Step5: While U; # 0 and yfeLc',' D) # y/é”‘ (D) Do
{Compute the positive region of positive approximation
POS,’ (D),
U; = U-POSp’ (D),
i—i+1,
red —red U {ag}, where Sig3"* (ao,red,
D,U;) = max{Sigd"** (ay,red,D,U;), ai € C—red},
Ri < R; U {ao},
P;—{(Ri,Rz,....Ri} };
Step6: return red and end.

To determine the time complexity for Algorithms 1 and 2 in the
following, we use the same framework. Computing the
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Table 1
The complexity description.

Algorithms Step 2 Step 3 Step 5 Other steps
Original one 0 (IC1UP) 0 (IC) (] . Constant
0 ,Z(\C\—:HV\UP
IFSPA , iclj—1 O(IC) U Constant
Ol ICIFIUI+IC] Zlkz *a, 1[Va, | Z((\C\ i+ 1)U +(ICl— 1+1) Z Z [#q, 1V, )
j=1k=1 i=1
significance measure of an attribute Sig™"(a,,C,D,U) is one of key Table 2
steps in IFSPA. The fast algorithm for computing tolerance classes Data sets description.
has the time complexity O(|C||U I VoD, axeC.
P y oqcll |+Z Z"—l l*a"”. a1 G . Data sets Samples Features Classes
Hence, the time complexnty of computmg the core in Step 2 is
C . .
O(ICI?|U| +1C| Zl | Zk_1 I*q,11Vq,]). In Step 5, we begin with the 1 Audiology.standardized 200 69 24
core and add an attrlbute with the maximal significance into the 2 Soybean-large 307 35 19
set in each stage until a reduct is obtained, and this process is 3 Dermatology 366 34 6
4 Breast-cancer-wisconsin 699 9 2

called a forward reduction algorithm. To estimate the time
complexity of Step 5, we denote the number of objects with
missing value x under attribute a, and the number of values
(is not equal to %) under attribute aj on the universe U by |+! .| and
|V§i |, respectively. Hence, one can obtain that the time complex1ty

of Step 5 is given by
VD) )

IC| ICl—i+1 j—1
O > (CI=i+ 12Ul +(Cl—i+1) >~ Z|*
i=1 j=1 k=1

These results together show that the time complexity of IFSPA is
as follows:

1€ j=1 ICI
O<|C|2|U|+|C| DD IradiVa + D ((CI—i+1)?

j=1k=1 i=1

VD) )

According to the analysis on time complexity of Algorithm
QAATC, the time complexity of IFSPA can be approximately
estimated as O(CP|U|+ 219, (IC1=i+ 1)Ul +(ICl—i+1)%|Uil)).
However, the time complex1ty of a classical heuristic algorithm
is O(IC)2IUP + Y1 | (IC|—i+1)*|U|?). Obviously, the time complex-
ity of IFSPA is lower than that of each of classical heuristic
attribute reduction algorithms for incomplete data. The proposed
accelerator may be a more reasonable choice for improving the
time complexity of feature selection from large-scale incomplete
data in which the dimensionality has much smaller effect than
the size of objects on computational time. Hence, one can draw
the conclusion that the general incomplete feature selection
algorithm based on the positive approximation (IFSPA) may
significantly reduce the computational time for feature selection
from decision tables. To stress these findings, the time complexity
of each step in original algorithms and IFSPA is given in Table 1,
respectively.

ICl—i+1 j—1

Uil +(ICl—i+1) > Z I

j=1 k=1

4.4, Computational efficiency of algorithms

Many heuristic feature selection algorithms have been devel-
oped for incomplete data. The three heuristic algorithms men-
tioned in Subsection 4.1 are quite representative. The objective of
the following experiments is to show computational efficiency of
the proposed general framework for selecting a feature subset
from incomplete data. In what follows, we perform experimental
analysis on the classical incomplete rough set model and the
incomplete variable rough set model, respectively. Data used in
the experiments are outlined in Table 2, which were all down-
loaded from UCI Repository of machine learning databases.

4.4.1. Computational efficiency of algorithms based on the
incomplete rough set framework

In order to compare the two representative feature selection
algorithms (IPR and ILCE) with the modified ones, we employ in
this subsection four UCI data sets from Table 2 to verify the
performance of the modified algorithms in time reduction, which
are all symbolic data with missing values.

With regard to any heuristic feature selection algorithm for
incomplete data in rough set theory, the computation of tolerance
classes is the first key step. For convenience of comparison, we
will use algorithm QAATC in this paper.

In what follows, we apply each of the original algorithms along
with its modified version for searching attribute reducts. To
distinguish the computational times, we divide each of the six
data sets into 20 parts of equal size. The first part is regarded as
the 1st data set, the combination of the first part and the second
part is viewed as the 2nd data set, the combination of the 2nd
data set and the third part is regarded as the 3rd data set, and so
on. These data sets are used to calculate the computational time
used by each of the original feature selection algorithms and the
corresponding modifications and to show it vis-a-vis the size of a
universe. These algorithms are run on a personal computer with
Windows XP, Pentium(R) D 3.4 GHz processor and 1.00 GB
memory.

In the sequence of experiments, we compare IPR (and ILCE)
with IFSPA-IPR (and IFSPA-ILCE) on the four real-world data sets
in Table 2. We show the experimental results in Figs. 1-6. In each
of these figures, the x-coordinate pertains to the size of the data
set (the 20 data sets starting from the smallest one), while the y-
coordinate gives the computational time.

It is easy to see from Figs. 1 and 2 that the computational time
of each of these two algorithms usually increases with the
increase of the size of data. Nevertheless this relationship is not
strictly monotonic. For example, as the size of data set varies from
the 18th to the 19th in sub-figure (b) in Fig. 1, the computational
time decreases. One can also observe the same effect in sub-
figures (a) and (c) of Fig. 1 and sub-figure (b) of Fig. 2. Therefore,
one could envision that this situation must have occurred because
different numbers of features are selected.

From Figs. 1 and 2, we find that the modified algorithms are
much faster than their original counterparts. Furthermore, the
differences become larger and larger when the size of the data set
increases. Owing to the rank preservation of significance mea-
sures of attributes, the feature subset obtained by each of the
modified algorithms is the same as the one produced by the
original algorithm.
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Computational efficiency of algorithms based on the (IFSPA-IVPR) in the incomplete variable rough set framework.
We will still employ those four UCI data sets from Table 2 to
verify the performance of the modified algorithm in time

reduction.

this subsection, we compare the feature selection algo-
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In the experimental analysis, to demonstrate the performance
improvement of the modified algorithm, we set the value of f§ to
vary from 0 to 0.2, that is f=0, 0.1, and 0.2, respectively. We
report the experimental results in Figs. 3-6.

It can be seen from Figs. 3-6 that the computational time of
each of the two algorithms usually increases with the increase of
the size of data. Nevertheless this relationship is also not strictly
monotonic. For example, one can see this phenomenon from the
sub-figures (a), (b) and (c) in Fig. 4. We also observe the same
effect from Figs. 3, 5 and 6. Therefore, one could envision that this
situation must have occurred because of different numbers of
features selected.

As shown in Figs. 3-6, the modified algorithms are consis-
tently much faster than their original counterparts. Furthermore,
the differences become larger and larger when the size of the data
set increases. Although we cannot ensure the rank of attributes in
the process of feature selection remains unchanged, the feature
subset obtained by the modified algorithm has the following
properties: either the obtained feature subset has the same
approximation ability as that of the original one, which can be
ensured by the stop criterion in the modified algorithm; or the
obtained feature subset has a much better approximation ability
than the original one, in which all objects in the universe have
been put in the lower approximation of the target decision.

From the four figures, one can find the phenomenon that the
proposed algorithm is able to maintain a steady increase in
processing time, whereas the original algorithm incurs an unex-
pected high surge in processing time. This phenomenon may
result from three possible reasons: (1) the accelerated algorithm
does take much smaller processing time when the universe is
gradually reduced; (2) since the original algorithm selects more
attributes than the modified algorithm on the same data set, their
processing time has a remarkable difference; and (3) the acceler-
ated algorithm has put all objects in the lower approximation of
the target decision in the process of attribute reduction, so it can
save more processing time than the original one.

4.5. Stability analysis of algorithms

The stability of a heuristic feature selection algorithm determines
the stability of its classification accuracy. The objective of experiments
in this subsection is to compare the stabilities of computational time
and feature selection of each of the modified algorithms with those
obtained when running the original algorithms. In the experiments,
we still use the four real-world data sets in Table 2.

In order to evaluate the stability of the feature subset selected
with 10-fold cross validation, we introduce several definitions
and necessary notations as follows. Let X1,Xs,...,X;o be the 10
data sets coming from a given universe U. We use Cy to denote the
reduct induced by the universe U. The reducts induced by the data
set X; will be denoted by C; (1 <i < 10), respectively. To measure
the difference between two reducts C; and Cj, we use the distance

IG NGl
IGUGl”

D(G,G)=1—
Next we calculate the mean value of the 10 distances:
138 IG; N Co
=162 <1_ IGiU Co|>‘
The standard deviation
1 do X
7= 10 2, PG-Cor-10

is used to characterize the stability of the reduct result induced by
a heuristic feature selection algorithm for incomplete data. The

lower the value of the standard deviation, the higher the stability
of the algorithm. Similarly, we also can use the standard deviation
to evaluate the stability of computational time.

As before, we use the same heuristic feature selection algorithms
along with their modifications. The results reported in Tables 3-5 are
obtained from applications of the 10-fold cross validation.

Table 3 reveals that IFSPA-IPR has a far lower mean computa-
tional time and standard deviation than the ones produced by the
original IPR. The IFSPA-IPR’s stability is the same as that reported
for the IPR. In other words, as an accelerator for feature selection,
the positive approximation can be used to significantly reduce the
computational time of the algorithm IPR. The much smaller
standard deviation implies that the modified algorithm IFSPA-
IPR exhibits a far better robustness than the original IPR. We also
note that the modified algorithm has no effect on the stability of
reducts induced by the original algorithm (we obtained the same
attribute reduct on the same incomplete data set). The mechan-
ism can be well interpreted by the rank preservation of the
significance measures of attributes used in the algorithms IPR
and IFSPA-IPR (see Theorem 4). From Table 4, one can draw the
same conclusions.

From Table 5, it can be noted that IFSPA-IVPR has a far lower
mean computational time and standard deviation than the ones
produced by the original IVPR. In other words, as an accelerator for
feature selection, the positive approximation can be used to signifi-
cantly reduce the computational time of the algorithm IVPR. The
much smaller standard deviation implies that the modified algorithm
IFSPA-IVPR also exhibits a far better robustness than the original IVPR.
For the stability of attribute reducts, it can be seen that when the
threshold f = 0, the IFSPA-IVPR’s stability is the same as that reported
for the IVPR. This conclusion can be ensured by Theorem 6 (rank
preservation theorem). From the theorem it is easy to see that the
sequence of attributes in the process of feature selection will be kept
unchanged when reducing the lower approximation of positive
approximation in an incomplete decision table. This property can
be used to improve computational efficiency of a heuristic feature
selection algorithm, while retaining the same selected feature subset
from a given incomplete data set. For other cases, the property may
not hold in the incomplete variable rough set framework, which is
because one may have extracted a much better feature subset with
the dependency degree of one in the process of feature selection.

From the definition of positive approximation and the corre-
sponding accelerated algorithm, it follows that the stopping
criterion of each of accelerated feature selection algorithms
ensures that the feature subset selected has the same classifica-
tion ability as the original feature set, while each modified
algorithm has much smaller computational time. Hence, we think
that the idea of the accelerator (positive approximation) is
promising to be applied to other types of forward search feature
selection approaches based on measures like information gain,
distance, dependency and information entropy.

5. Conclusions

To overcome the limitations of the existing feature selection
schemes, a theoretic framework based on tolerance relations have
been proposed in this study, which is called the positive approxima-
tion and can be used to accelerate heuristic algorithms for feature
selection from incomplete data. Based on this framework, a general
heuristic incomplete feature selection algorithm (IFSPA) has been
presented. For feature selection from incomplete data, several repre-
sentative heuristic algorithms in rough set theory have been mod-
ified. Each of the modified algorithms can choose the same feature
subset as the original one. Experimental studies pertaining to four UCI
data sets show that the modified algorithms can largely reduce
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Table 3
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The stabilities of the time and feature selection of the algorithms IPR and IFSPA-IPR.

Data sets

IPR’s time

IFSPA-IPR’s time

IPR’s stability

IFSPA-IPR’s stability

Audiology.standardized

Soybean-large
Dermatology

Breast-cancer-wisconsin

72.2859 +5.2078
34.2984 +3.9632
43.0281 +1.9503
12.5109 + 1.7053

17.2050 + 1.1261
10.8922 + 1.4842
15.6281 + 0.5176
4.4656 + 0.8354

0.2650 + 0.1393
0.2312 £ 0.2071
0.2921 +0.2293
0.0700 + 0.1552

0.2650 +0.1393
0.2312 +0.2071
0.2921 + 0.2293
0.0700 + 0.1552

Table 4

The stabilities of the time and feature selection of the algorithms ILCE and IFSPA-ILCE.

Data sets

ILCE’s time

IFSPA-ILCE’s time

ILCE’s stability

IFSPA-ILCE’s stability

Audiology.standardized

Soybean-large
Dermatology

Breast-cancer-wisconsin

37.9297 +2.7544
18.9297 +1.9388
34.4672 + 0.6046
39.0875 +3.1274

21.0484 +1.2110
12.2275 + 0.7403
24.4734 + 0.6038
25.9265 +2.4856

0.1987 £ 0.1071
0.1773 £ 0.1364
0.2564 +0.1803
0.0733 +0.1171

0.1987 £ 0.1071
0.1773 £ 0.1364
0.2564 +0.1803
0.0733 £0.1171

Table 5

The stabilities of the time and feature selection of the algorithms IVPR and IFSPA-IVPR.

IFSPA-IVPR’s time

IVPR’s stability

IFSPA-IVPR’s stability

Data sets B IVPR’s time
Audiology.standardized 0.0 77.7891 + 3.1100
0.1 77.3484 + 3.6537
0.2 77.2594 +3.7293
Soybean-large 0.0 42.3766 +5.2753
0.1 48.9141 +19.4519
0.2 94.9578 + 24.4370
Dermatology 0.0 39.6219 + 0.3885
0.1 40.5563 + 0.9885
0.2 47.6219 +6.1172
Breast-cancer-wisconsin 0.0 23.3094 + 3.2563
0.1 24.0297 +4.2501
0.2 24.6734 +3.7963

31.9922 +1.7034
31.2969 + 1.5882
30.1219 + 1.1077
21.8516 + 3.0888
21.6031 +2.4870
20.1313 +2.1082
24.2484 +0.4813
23.5922 +0.4280
23.1859 +0.3763
15.6906 + 3.2757
10.3016 + 3.6133
9.8859 +3.7257

0.2650 + 0.1393
0.2430 + 0.1407
0.2402 + 0.1759
0.3630 + 0.1940
0.3869 +0.2251
0.1247 + 0.2422
0.2278 +0.1991
0.3433 +0.1220
0.3754 +0.2024
0.0700 + 0.1552
0.0733 +£0.1172
0.2343 +0.2185

0.2650 +0.1393
0.1837 +0.0923
0.1963 + 0.1526
0.3630 + 0.1940
0.3692 +0.2079
0.4840 + 0.1371
0.2278 +0.1991
0.2528 +0.1840
0.5052 + 0.2870
0.0700 + 0.1552
0.1200 +0.1833
0.1433 +0.2914

computational time of feature selection while producing the same
results or much better ones as those original algorithms. The results
show that the positive approximation is an efficient accelerator and
can effectively select a feature subset from an incomplete data set.
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Appendix A. Related proof

Lemma 1. Let AB,CA,B,C' be six finite sets, where A =AUC,
B =BUC.IfA =B and C' N (AUB) =0, then AcB.

Proof. Let acA, then aeA. From A’ =B, it follows that aeB.
Since C'N(AUB)=0, so C'NA=0, then a¢C’. From a e B, a¢C’ and
B'=BUC(, it follows that a e B. That is to say, AcB. O

Lemma 2. Let S=(U,CUD) be an incomplete decision table, B< C
and U =U-POSy(D). If SY,,w)=S§w), uel, then
Sgl:(a)(u/) < Sg/(u/).

Proof. For v eU and U = U—POS}{(D), we denote by X={u|
ueSy,,Wue POSY(D)} and Y = {v | v e SY(),v e POSy(D)}. Then,
we have that S§ () = S§,,,(W) UX and Sj(u) =SSP (W) U Y. From
the formula of Y, it follows that Y = POS} (D).Thus, Y N Shoig@) =0
and YNSE@)=0, that is Y N (g, 1) USH W) =0. And, from
St =Spw) and Lemma 1, it easily follows that
St sSgw). O

Theorem 4. Let S= (U,C U D) be an incomplete decision table, B< C

and U =U-POSy(D). For vabeC-B, if Sig"(a,B,D,U)>
Sigy"**"(b,B,D,U), then Sig$"*'(a,B,D,U’) = Sig$""*" (b,B,D,U’).

Proof. From the definition of Sig{"*“(a,B,D) = 4 (D)—75(D), we
know that its value only depends on the dependency function
yg(D) = |POSg(D)|/|U|. Since U’=U—POS§(D), one can know
POSY(D)=¢. From Lemma 2, one can know that
Shui @) =Sp W) if S§,, W)= SPw), w el Hence, it has that
POSy,, (D) = POS ,,,(D)—POSY (D). Therefore,

Sigt"“'@B,D.U) _ 7hua(P)—VH(D) _ |U'| IPOSp 4 (D)I~IPOS5(D)|
Sigi"“"(@B.D,U) 7,75 (D) IUI|POSY(D)|~|POS (D)

_|U'| IPOS. 1 (D)I—IPOSE (D) |U/|
U |POSY, 4, (D)|—|POSE (D)] Ul

Because |U'|/|U| >0 and if Sig$"** (a,B,D,U) > Sig$"*'(b,B,D,U), then
Sig"**(a,B,D,U’) = Sigd"* (b,B,D,U"). This completes the proof. [

Lemma 3. Let S= (U,CUD) be an incomplete decision table, B< C
and U’ = U—POS3 (D), then

IS @W)HI-ISY W) NSPW')| = IS§ W)—IS§' W) NS WHlL.u' e U.
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Proof. For v eU’ and U = U—POS},J(D), we denote by X={u|
ueSYw)uePOSY(D)} and Y ={v|veSYw)vePOSy(D)}. Then,
we have that Sy =Sy () U X and SYw)=SY @)U Y. From the
formulas of X and Y, it follows that X = POS} (D) and Y = POSy (D),
respectively. Thus, Y N SY' () =6 and X nSY (') = 0. Since VueX,
one can know that ue SY(w'). According to the symmetry of a
tolerance relation, it easily follows that u’ e SY(u). In addition,
from the definition of positive region, we know that SY(u) < SY(u),
thus v’ eSY(u). Similarly, one has that ueSY(w). Furthermore,
fromVueX and Vu e POSE’(D), one can obtain thatueV,ie, XcVY.
Therefore, one has that

Sfw)nSsw)y=ESY w)yuX)ynSEw)yuy)
=(S§ W)NSFW)) U SH @)NY)USHw)NX)uXnY)
=Y Ww)nSywyux.
And since X = POSy(D), we have that =(SY' @) NSy @) nX=0
and ISY) NSEw) =Sy W) N SY ()| +IX|. Therefore, it follows
that
S§ @)|—IS§ W) N SP ()] = (IS§ @) —IXD—(SF ') N Sy —1XI)
= IS5 W) |- I1X|—(IS§ @) N Sp)+1X1)
= |SE ()| —IS5 @) N SH)!.
That is, IS§W)|—ISY @) N SYW)| = 1S§ W)I—IS§ W)NSY W), w eU.
This completes the proof. O

Theorem 5. Let S= (U,C U D) be an incomplete decision table, B< C
and U =U-POSy(D). For ¥abeC—B, if Sigd"“(a,B,D,U)
> Sig3"**(b,B,D,U), then Sig5"**' (a,B,D,U") > Sig5"**' (b,B,D,U").

Proof. Let  U/SIM(B) = {S{(u1).S§(u2), ....S§(ug), SY(ugs1), ...,
Sg(u‘u‘)}, U/SIM(D) = {Sg(u1),5§’(u2), .. .,Sg(uq),SD U(Uqu]), vy
SY(uu))}, where y; ePOSé’(D) (i=1,2,...,9). Let us denote Liang’s

conditional entropy in the universe U by EY(D|B). Then it follows
that

EY(DIB) = ‘U — Z<|sg’<u,)|—|sg (1) N Spwy))
i=1
|U|
UZZ(ISE’(U)I—\S W) NSPWD+—— > (S§wy
‘ ‘ i=1 IUI i=q+1
(u,»)rwsg(ul)n
1 U
2Z(|sg<u)|—\sg(ulm+ 5 > (IS5
‘U‘ i=1 U i=q+1
— ISy (uy) N S
1 |U|
= gz > (SE)I=IS5 () N Spup).
Ul i=q+1
Furthermore, from Lemma 3, it follows that
1 i U U U
P > (1S5 @) —ISE (uy) N Sp(wy))
i=q+1
|U/‘2 1 U]
=z ie. 2 (SE@)I=ISgw) N Spa)
PP, 4,
w1 & " |U| v
= > (ISy(u|—IS§'(u) N Sp W)= {5z E (DIB).
U2 U =
Therefore, we have that Sig5" (a,B,D,U)/Sig5" (a,B,D,U’) =

|U'\?/|UI2. Thus, if Sigs"**"(a,B,D,U) > Sigs"**’(b,B,D,U), Va,b e C—B,
then Sigs"**'(a,B,D,U’) > Sig3" (b,B,D,U’). This completes the
proof. O

Theorem 6. Let S= (U,C U D) be an incomplete decision table, B < C,
U U—POSY(D), and f=0. For va,beC—B, if Sigs""* (a,B,D,U) >
Sig3“*"(b,B,D,U), then Sig3""*" (a,B,D,U’) > Sig3"**' (b,B,D,U").

Proof. Similar to the proof in Theorem 4, it can be easily
proved. O
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