
1 23

Nonlinear Dynamics
An International Journal of Nonlinear
Dynamics and Chaos in Engineering
Systems
 
ISSN 0924-090X
Volume 76
Number 2
 
Nonlinear Dyn (2014) 76:1099-1108
DOI 10.1007/s11071-013-1193-0

Periodic solutions of an epidemic model
with saturated treatment

Li Li, Yanping Bai & Zhen Jin



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Nonlinear Dyn (2014) 76:1099–1108
DOI 10.1007/s11071-013-1193-0

ORIGINAL PAPER

Periodic solutions of an epidemic model with saturated
treatment

Li Li · Yanping Bai · Zhen Jin

Received: 7 September 2012 / Accepted: 13 December 2013 / Published online: 25 December 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Based on the fact that many infectious dis-
eases exhibit periodic fluctuations and there is a satu-
rated phenomenon during disease treatment, we study
an SIR model with periodic incidence rate and saturated
treatment function. Firstly, we find that the basic repro-
duction number less than 1 cannot insure the global
stability of disease-free equilibrium and it needs to add
other conditions. Moreover, we establish sufficient con-
ditions for the multiplicity of positive periodic solu-
tions. We also apply the numerical method to confirm
theoretical results and show the stability of the periodic
solutions. We observe that there are two periodic solu-
tions in the system where one is stable and the other one
is unstable. These results will provide some guidance
for control measures of disease.
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1 Introduction

It can be observed that many infectious diseases exhibit
periodic fluctuations, such as pertussis (whooping
cough), measles (rubeola), influenza, polio, chicken-
pox, mumps, rabies, etc. Specifically, pertussis is a
contagious disease which can only spread from per-
son to person. Through close contact with others, peo-
ple who develop pertussis usually cough or sneeze to
spread the disease. Pertussis most commonly affects
infants and young children, especially babies less than
one year of age. Someone with pertussis often needs to
take deep breaths which lead to a “whooping” sound.
Pertussis has been an endemic (common) disease in
the United States, with a 3–5-year cycle and frequent
outbreaks [1]. Measles is also a highly contagious viral
disease which affects mostly children and can be trans-
mitted via droplets from the nose, mouth, or throat
of infected persons. There is no specific treatment for
measles and most people recover within 2–3 weeks.
However, it can be prevented by immunization [2].
Measles occurs in a seasonal pattern, which may still
occur every 2 or 3 years in areas where there is low
vaccine coverage. Its spread can be strengthened dur-
ing the late winter and early spring in temperate cli-
mates and after the rainy season in tropical climates [3].
Influenza viruses which are familiar to all of us circulate
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in animals and pose threats to human health. Typically,
human cases can be attributed to viruses from animal
sources, such as avian influenza virus subtypes H5N1
and H9N2 and swine influenza virus subtypes H1N1
and H3N2. The primary risk factor for human infec-
tion appears to be direct or indirect exposure to infected
live or dead animals or contaminated environments [4].
We know that influenza has seasonality and repeata-
bility. As mentioned in the WHO Director-General’s
post-pandemic announcement in August 2010, the pan-
demic A(H1N1) 2009 virus was expected to continue to
circulate and cause local outbreaks and epidemics [5].
Rabies is a preventable viral disease of mammals, most
often transmitted through the bite of a rabid animal.
The rabies virus infects the central nervous system,
ultimately causing disease in the brain and death [6].
Once these symptoms develop, the mortality is almost
100 %. Moreover, the monthly data of human rabies
cases reported by the Chinese Ministry of Health also
exhibit a periodic pattern on an annual base.

Seasonal variations can exert strong pressures on
population dynamics. In addition to driving tempo-
ral patterns, from an applied perspective, exposing the
mechanisms that link seasonal environmental changes
to disease dynamics will aid in forecasting long-term
health risks and in proposing control strategies. There
appear to be several reasons for this. First, the cause of
seasonality partly is climate, such as weather, humidity,
and so on, which can influence the survivance of virus
or bacteria [7–10]. Second, human or animals activ-
ity can be relevant to the incidence of disease [11,12].
Moveover, their relative importance depends on the
local context. For example, winter peaks in the inci-
dence of measles in temperate regions are likely to
be caused not only by school terms but also by lower
indoor humidity, which favors survival of the virus in
the air [13]. In the tropics, measles incidence peaks dur-
ing the dry season and the association with school terms
are not apparent. Instead, increased survival of the virus
in the dryer air may be the key determinant of these dry
season peaks [14]. However, the mechanisms responsi-
ble for seasonal disease incidence and the epidemiolog-
ical consequences of seasonality are poorly understood
with rare exception. So, investigating how a periodic
phenomenon arises is a hotspot for many researchers.
First, the differential equations with delay or nonlin-
ear incidence rate can have periodic solutions [15–18].
Moreover, seasonality can cause population fluctua-
tions ranging from annual cycles to multiyear oscilla-

tions, and even chaotic dynamics [19–21]. In general,
seasonally effective contact rate [22–28], and periodic
changing in the birth rate [29] and vaccination program
are often regarded as sources of periodicity [30].

With regard to mathematical describing of periodic-
ity, seasonal transmission is often assumed to be sinu-
soidal, such that λ(t) = λ(1 + η sin(π t

b + c)) where
η is the amplitude of seasonal variation in transmis-
sion (typically referred to as the “s̀trength of seasonal
forcing”), 2b is the period, and c is phase difference,
which is a crude assumption for many infectious dis-
eases [14,31,32]. When η = 0, there are no nonsea-
sonal infections. Sometimes, cosine function is also
taken to describe the fluctuation. Motivated by biologi-
cal realism, some recent papers take the contact rate as
λ(t) = λ(1 +ηterm(t)), where term is a periodic func-
tion which is +1 during the school term and −1 during
school holidays. A more natural term can be written
as λ(t) = λ(1 + η)term(t) [31]. In this paper, we will
take the form λ(t) = a + η sin π t

6 which is a special
circumstance.

Besides the periodic transmission rate, we adopt a
saturated incidence rate and a saturated treatment rate.
When the scale of the population is relatively small,
the bilinear incidence rate is reasonable. Moreover,
when it is relatively large, the standard incidence rate
is good. However, they are both extreme cases. So, in
1978, Capasso and Serio [33] introduced a saturated
incidence rate g(I )S into the epidemic model, where
g(I ) = k I

1+α I . k I measures the infection force of the

disease and k I
1+α I measures the inhibition effect from

the behavioral change of the susceptible individuals
when their number increases. When I is small, g(I )
and I are in direct proportion approximately. g(I ) tends
toward a saturation level when I gets large. So, the sat-
urated incidence rate is more reasonable and it has been
investigated by many papers [34–36].

The saturated treatment rate in our paper is used
to describe the effect of the infected individuals being
delayed for treatment due to the inhibition effect from
the behavioral change of the susceptible individuals
when their number increases or from the crowding
effect of the infective individuals [37]. At the beginning
of the outbreak, owing to shortage of effective treat-
ment techniques, the treatment rate is smaller. Then, as
there is improvement of the hospital treatment condi-
tions including effective medicines, skillful techniques,
better understanding, etc., the treatment rate will be
increased. At last, because the treatment capacity of
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Fig. 1 The transmission diagram

any community is limited, the treatment will reach its
saturation when the number of infective individuals is
large enough [38]. In view of the above description, we
suppose the treatment term to be γ I

1+α I , where γ and α

are undetermined parameters. Thus, the purpose of this
paper is to investigate an SIR model with saturated and
periodic incidence rate and saturated treatment func-
tion based on [37], to study its dynamic behavior and
to establish sufficient conditions for the multiplicity of
positive periodic solutions.

The article is organized as follows. In Sect. 2, we
introduce the model, study the global asymptotic sta-
bility of the disease-free equilibrium and the existence
of positive periodic solutions, and give sufficient con-
ditions for the existence of two positive periodic solu-
tions. Simulations of stability of positive periodic solu-
tions are performed in Sect. 3. In Sect. 4, we give a brief
discussion.

2 Mathematical modeling and analysis

2.1 Model formulation

We consider an SIR model with saturated and periodic
incidence rate and saturated treatment function, whose
corresponding autonomous model has been studied
in [37]. The population is divided into three classes:
the susceptible class denoted by S, the infectious class
denoted by I, and the recovered class denoted by R.
The transition dynamics associated with these subpop-
ulations are illustrated in Fig. 1.

The model is a system of ordinary differential equa-
tions:
⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = A − dS − λ(t)SI

1+k I ,

dI
dt = λ(t)SI

1+k I − (d + ε + μ)I − γ I
1+α I ,

dR
dt = μI + γ I

1+α I − dR.

(1)

where λ(t) = a + η sin π
6 t and other parameters are

positive. The interpretation and values of parameters
are described in Table 1.

Table 1 Descriptions and values of parameters in model (1)

Parameter Interpretation

A The recruitment rate of the population

k The auxiliary parameter

d The natural mortality rate

a The baseline contact rate

η The magnitude of forcing

μ The natural recovery rate of the infective

ε The disease-related death rate

γ The auxiliary parameter

α The auxiliary parameter

Noticing the equations in model (1), we have

dN

dt
= A − dN − ε I. (2)

Let X = {
(S, I, R)|S, I, R ≥ 0, 0 < S + I + R ≤ A

d

}
.

Theorem 2.1 The region X is positively invariant with
respect to system (1).

Because the third equation is independent of the first
two equations in system (1), we only need to study the
following reduced system,
{

dS
dt = A − dS − λ(t)SI

1+k I ,

dI
dt = λ(t)SI

1+k I − (d + ε + μ)I − γ I
1+α I .

(3)

2.2 Global stability of the disease-free equilibrium

It is easy to see that system (1) has one disease-free
equilibrium

E0 = (S0, 0, 0),

where S0 = A/d. We can evaluate the basic reproduc-
tion number R0 for system (1) following the definition
of [39–43]

R0 = λ̄S0

d + ε + μ + γ
,

where λ̄ = 1
ω

∫ ω

0 λ(t)dt and ω is the period.

Theorem 2.2 The disease-free equilibrium E0 is glob-
ally, asymptotically stable when (1) R0 < 1 and k > α.

Or (2) Rc
0 = λ̄S0

d+ε+μ
< 1.
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Proof (1) By [44], we know that E0 is locally stable, if
R0 < 1. So, we only need to prove that E0 is globally
attractive for R0 < 1. We know that when R0 < 1,
R0 + λ̄η

d+ε+μ+γ
< 1, that is, λ̄(S0 +η) < d +ε+μ+γ

for a small enough positive number η. Assume that
(S(t), I (t)) is a nonnegative solution of system (2).
Then, from the first equation in system (2), we can
obtain

dS

dt
= A − dS − λ(t)SI

1 + k I
≤ A − dS.

For the comparison system dS
′

dt = A −dS
′
, there exists

a unique and global, asymptotically stable equilibrium
S0 = A

d . Thus, by the standard comparison theorem
in [45], it can be obtained that for any small enough
η > 0, there exists a t0 such that S(t) < S0 + η for all
t > t0, which can be followed by

dI

dt
= λ(t)SI

1 + k I
− (d + ε + μ)I − γ I

1 + α I

≤
[

λ̄(S0 + η) − (d + ε + μ) − γ

1 + α I

]

I

<

(
d + ε + μ + γ

1 + k I
− (d + ε + μ) − γ

1 + α I

)

I

≤
(

γ

1 + k I
− γ

1 + α I

)

I.

When k > α, dI
dt < 0. Thus, for t → +∞, I → 0,

S → A
d . So, the disease-free equilibrium E0 is globally

attractive, that is, it is global asymptotically stable.

(2) If Rc
0 = λ̄S0

d+ε+μ
< 1, R0 < 1. So, we only need

to prove E0 is globally attractive. We also know that

when Rc
0 < 1, Rc

0 + λ̄η
d+ε+μ

< 1 for a small enough
number η. Following (1), for any small enough η > 0,
there exists a t0 such that S(t) < S0 + η for all t > t0,
which can be followed by

dI

dt
= λ(t)SI

1 + k I
− (d + ε + μ)I − γ I

1 + α I
≤ [λ̄(S∗ + η) − (d + ε + μ)]I

< (d + ε + μ)(Rc
0 − 1)I

< 0.

Similar to (1), the disease-free equilibrium E0 is glob-
ally attractive, that is, it is global asymptotically stable.

�	

The proof is completed.

2.3 Existence of positive periodic solutions

Define

X = R
2+, X0 := {(S, I ) ∈ X : I > 0}, ∂ X0 = X\X0

and denote u(t, x0) as the unique solution of system (2)
with the initial value x0 = (S0, I 0). Let P : X → X
be the Poincaré map associated with system (3), i.e.,

P(x0) = u(ω, x0), ∀x0 ∈ X,

where ω is the period. Applying the fundamental exis-
tence uniqueness theorem [46], we know that u(t, x0)

is the unique solution of system (1) with u(0, x0) = x0.

From Theorem 2.1, we know that X is positively invari-
ant and P is point dissipative.

Lemma 2.3 When R0 > 1, there exists a constant
δ > 0 such that when

‖(S0, I 0) − E0‖ ≤ δ

for any (S0, I 0) ∈ X0, we have

lim sup
m→∞

d[Pm(S0, I 0), E0] ≥ δ.

Proof We know that when R0 > 1, R0 − λ̄η
d+ε+μ+γ− kη > 1 for a small enough η. Now, we proceed by

contradiction to prove that

lim sup
m→∞

d(Pm(S0, I 0), E0) ≥ δ.

If not, then

lim sup
m→∞

d(Pm(S0, I 0), E0) < δ

for some (S0, I 0) ∈ X0. Without loss of generality, we
assume that d(Pm(S0, I 0), E0) < δ for all m ≥ 0. By
the continuity of the solutions with respect to the initial
values, we obtain that

‖u(t, Pm(S0, I 0)) − u(t, E0)‖ < η,∀m ≥ 0,

∀t1 ∈ [0, ω].
For any t ≥ 0, let t = mω + t1, where t1 ∈ [0, ω]
and m = [ t

ω
], which is the greatest integer less than or

equal to t
ω

. Then, we have

‖u(t, (S0, I 0)) − u(t, E0)‖
= ‖u(t1, Pm(S0 I 0)) − u(t1, E0)‖ < η

for any t ≥ 0, which implies that S0 − η < S(t) < S0

+η and 0 ≤ I (t) < η. Then, for ‖(S0, I 0)− E0‖ < δ,
we have
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Periodic solutions of an epidemic model 1103

dI

dt
≥ λ(t)(S0 − η)I

1 + kη
− (d + ε + μ)I − γ I. (4)

Since R0− λ̄η
d+ε+μ+γ

−kη > 1, I (t) → ∞ for t → ∞,
which leads to a contradiction. �	

The proof of the lemma is completed.

Theorem 2.4 System (1) has at least one positive peri-
odic solution.

Proof We first prove that {Pm}m≥0 is uniformly persis-
tent with respect to (X0, ∂ X0). First of all, we explain
that X0 and ∂ X0 are positively invariant. From the equa-
tions in system (2), we can find easily that X0 is posi-
tively invariant. Clearly, ∂ X0 is relatively closed in X.
Set

M∂ =
{
(S0, I 0) ∈ ∂ X0 : Pm(S0, I 0) ∈ ∂ X0,∀m ≥ 0

}
.

It is easy to show that

M∂ = {(S, 0) ∈ X : S ≥ 0}. (5)

Note that {(S, 0) ∈ X : S ≥ 0} ⊆ M∂ . We only
need to prove that

M∂ ⊆ {(S, 0) ∈ X : S ≥ 0}.
That is, for any (S0, I 0) ∈ ∂ X0, we have I (mω) =
0,∀m ≥ 0. If there exists an m1 ≥ 0 such that
I (m1ω) > 0, by replacing the initial time 0 with m1ω,
it can be seen that

I (t) = I (m1ω)e
∫ t

m1ω
λ(t)S(t)
1+k I (t) −(d+ε+μ)− γ

1+α I (t) dt
> 0,

(6)

which contradicts (S0, I 0) ∈ ∂ X0 that requires
Pm(S0, I 0) ∈ ∂ X0, for all m ≥ 0. So, the equality
(5) holds, which implies that E0 is the only fixed point
of P and acyclic in ∂ X0. �	

Moreover, Lemma 2.3 implies that E0 = (S0, 0)

is an isolated invariant set in X and W S(E0 ∩ X0) =
∅. By the acyclicity theorem on uniform persistence
for maps (Theorem 1.3.1 and Remark 1.3.1 in [47]), it
follows that P is uniformly persistent with respect to
(X0, ∂ X0).

Now, Theorem 1.3.6 in [47] implies that P has a
fixed point

(S∗(0), I ∗(0)) ∈ X0.

From the first equation of system (2), we have that

S∗(t) = e− ∫ t
0 (d+λ(t)I ∗(t))dt

×
⎡

⎣S∗(0) +
t∫

0

Ae
∫ t

0 (d+λ(t)I ∗(t))dt dt

⎤

⎦

> Ae− ∫ t
0 (d+λ(t)I ∗(t))dt

∫ t
0 e

∫ t
0 (d+λ(t)I∗(t))dt dt

> 0, ∀t ∈ [0, ω].
The periodicity of S∗(t) implies S∗(t) > 0 for all t > 0.

Similarly,

I ∗(t) = I ∗(0)e
∫ t

0
λ(t)S∗(t)

1+k I∗ −(d+ε+μ)− γ

1+α I∗ dt
> 0. (7)

Therefore, (S∗(t), I ∗(t)) is a positive ω-periodic solu-
tion of system (1).

Theorem 2.5 Assume that the following conditions
hold:

(H1)
λu A

d − (d + ε + μ)

k(d + ε + μ)
<

A

d
, (8)

(H2)

[

− λlαA

d + λu/k
+ (d + ε + μ)(k + α) + γ k

]2

> 4

(

d+ε+μ+γ − λlαA

d + λu/k

)

kα(d + ε + μ),

(9)

where λu = max
t∈[0,ω] λ(t) and λl = min

t∈[0,ω] λ(t). System

(2) has at least two positive periodic solutions.

Proof Firstly, through the transformation of variables

u1(t) = ln S(t), u2(t) = ln I (t),

we consider the following system
⎧
⎨

⎩

u̇1(t) = Ae−u1(t) − d − λ(t)eu2(t)

1+keu2(t) ,

u̇2(t) = λ(t)eu1(t)

1+keu2(t) − (d + ε + μ) − γ

1+αeu2(t) .
(10)

It is easy to know that if (u∗
1(t), (u

∗
2(t))

T is a
ω-periodic solution of system (10), then (S∗(t),
I ∗(t)) = (eu∗

1(t), eu∗
2(t))T is a positive ω-periodic solu-

tion of system (2). So, we only need to consider the
existence of ω-periodic solution of the system (10).
The rest of the proof follows as Theorem 3.1 in [48].
So, the detailed proof is omitted here. �	

3 Numerical simulations of periodic solution

In this section, we first study the stability of the periodic
solution of (2) with the given parameter in Table 1 and a
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small seasonal fluctuation in transmission rate, which
are proved by numerical simulations. Taking λ(t) =
a + η sin(π t/6) values into the system (2), we can get
the following equations:

{ dS
dt = A − dS − (a+η sin(π t/6))SI

1+k I ,

d I
dt = (a+η sin(π t/6))SI

1+k I − (d + ε + μ)I − γ I
1+α I .

(11)

Because the value of η is very small, we can regard η as
a small parameter, that is, a small seasonal fluctuation.
Let us investigate the existence and stability of periodic
solution for system (11). We can apply the singular per-
turbation approach to assume positive periodic solution
to be the form

S∗(t, η) = S0(t) + ηS1(t) + η2S2(t) + · · · ,

I ∗(t, η) = I0(t) + ηI1(t) + η2 I2(t) + · · · , (12)

Sn(t + 12) = Sn(t), In(t + 12) = In(t), n = 0, 1, 2, . . . .

Now in order to obtain the periodic solution, we sub-
stitute (12) into (11). Comparing the coefficients of the
terms ηn, n = 1, 2, . . ., we obtain the following equa-
tions
{ dS0

dt = A − dS0 − aS0 I0
1+k I0

,

dI0
dt = a0 S0 I0

1+k I0
− (d + ε + μ)I0 − γ I0

1+α I0
.

(13)

and
{ dSn

dt = xn1Sn + xn2 In + fn(t),
dIn
dt = xn3Sn + xn4 In + gn(t), n = 1, 2, . . . ,

(14)

where

xn1 = −1 + k I0 + aI0

1 + k I0
, xn2 = Ak − dkS0 − aS0

1 + k I0
,

xn3 = aI0

1 + k I0
,

xn4 = aS0 − (d + ε + μ)k I0

1 + k I0
− (d + ε + μ)α I0 + γ

1 + α I0

− (d + ε + μ) − γ k I0 − 2aS0 I0

(1 + k I0)(1 + α I0)
,

fn(t) = − 1

1 + k I0

[

(a + dk)

n−1∑

i=1

Sn−i (t)Ii

+ sin
π t

6

n−1∑

i=0

Sn−i−1(t)Ii + k
n−1∑

i=1

Ṡn−i (t)Ii

]

,

gn(t) = 1

(1 + k I0)(1 + α I0))

×
⎧
⎨

⎩
a

n−1∑

j=1

n− j∑

i=0

S j Ii In−i− j + a(1 + α I0)

×
n−1∑

i=1

Si In−i + sin
π t

6

⎡

⎣
n−2∑

j=0

n− j∑

i=0

S j Ii In−i− j

+ (1 + α I0)

n−1∑

i=0

Si In−i

⎤

⎦

− (d + ε + μ)

⎡

⎣kα

n−1∑

j=0

n− j−1∑

i=1

I j Ii In−i− j

+ ((1 + α I0)k + (1 + k I0)α)

n−1∑

i=1

Ii In−i

⎤

⎦

− γ k
n−1∑

i=1

Ii In−i − kα

n−1∑

j=0

n− j−1∑

i=1

Ii In−i− j İ j

−[(1 + α I0)k + (1 + k I0)α]
n−1∑

i=1

Ii İn−i

⎫
⎬

⎭
.

With regard to the system (13), let k = 0.01, α =
1, ε = 0.5, A = 50, d = 0.02, a = 2 × 10−4, η =
3 × 10−5, μ = 0.07, and γ = 0.5; we can give its
periodic solution:

(S0(t), I0(t)) = (S∗, I ∗)
= (4894.0608591, 12.24589776651). (15)

Substituting (15) into (14) for n = 1, it is can be easily
obtained that
⎧
⎪⎨

⎪⎩

dS1
dt = x11S1 + x12 I1 − sin π t

6 S0 I0
1+k I0

,

dI1
dt = x13S1+x14 I1+ sin π t

6 (1+α I0)S0 I0
1+k I0

, n =1, 2, . . . .

(16)

It can be easily known that (16) has a unique peri-
odic solution for given initial values. Moreover, since
fn(t) and gn(t) are continuous and bounded functions,
we can obtain that the solution of (14) exists uniquely
on [0,∞] for given initial values by the mathematical
induction when n = 2, 3, . . ..

Next, we investigate the stability of the periodic
solution Sp(t, η), Ip(t, η) by analyzing the perturba-
tion for the periodic solution. Applying the transfor-
mation S = Sp(t, η) + s, I = Ip(t, η) + i , we can
obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt = −ds + (a+η sin(π t/6))Sp Ip

1+k Ip

− (a+η sin(π t/6))(Sp+s)(Ip+i)
1+k(Ip+i) ,

di
dt = − (a+η sin(π t/6))Sp Ip

1+k Ip

+ (a+η sin(π t/6))(Sp+s)(Ip+i)
1+k(Ip+i)

−(d + ε + μ)i + γ Ip
1+α Ip

− γ (Ip+i)
1+α(Ip+i) .

(17)

It can be obtained by expanding the function
(a+η sin(π t/6))(Sp+s)(Ip+i)

1+k(Ip+i) ,
γ (Ip+i)

1+α(Ip+i) about (s, i) =
(0, 0) by Taylor formula in the above system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt = −

(
d + (a+η sin(π t/6))Ip

1+k Ip

)
s

− (a+η sin(π t/6))Sp

(1+k Ip)2 i − o(ρ),

di
dt = (a+η sin(π t/6))Ip

1+k Ip
s +

(
(a+η sin(π t/6))Sp

(1+k Ip)2

− (d + ε + μ) − γ

(1+α Ip)2

)
i + o(ρ),

(18)

where ρ = √
s2 + i2. Moreover, we expand

(a+η sin(π t/6))Ip
1+k Ip

,
(a+η sin(π t/6))Sp

(1+k Ip)2 , and γ

(1+α Ip)2 about

η = 0 by Taylor formula and substitute them into sys-
tem (18) to obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds
dt = −

(
d + aI0

1+k I0

)
s − aS0

(1+k I0)2 i

−η(b1s + b2i) − o(η)(s + i) − o(ρ),

di
dt = a+I0

1+k I0
s +

(
aS0

(1+k I0)2

− (d + ε + μ) − γ

(1+α I0)2

)
i

+ η(b1s + (b2 + b3)i) + o(η)(s + i)+o(ρ),

(19)

where b1 = I0 sin(π t/6)+aI1+aI 2
0 sin(π t/6)

(1+k I0)2 , b1 =
(S0 sin(π t/6)+aS1)(1+k I0)−2aS0(1+k I0)k I1

(1+k I0)4 , and b3 =
2αγ I1(1+α I0)

(1+α I0)4 .

Constructing the Lyapunov function as follows,

V (t) = |s(t)| + |i(t)|, (20)

we can calculate the upper right derivative of V (t)
along the solution of (19)

D+V (t) ≤ sign(s)ṡ + sign(i)i̇

≤ − d|s| − ((d + ε + μ)

+ γ

(1 + α I0)2 − 2aS0

(1 + k I0)2 − 2b2η

− b3η − 2o(η))|i | + 2|o(ρ)|,

where (d +ε+μ)+ γ

(1+α I0)2 − 2aS0
(1+k I0)2 = 0.1399 > 0.

Thus, for a sufficiently small η, there exists c > 0 such
that

D+V (t) < cV (t) + 2|o(ρ)|, (21)

where c < min{d, (d + ε + μ) + γ

(1+α I0)2 − 2aS0
(1+k I0)2

−2b2η−b3η−2o(η)} which indicates in any sufficient
neighborhood of the origin on s − i plane,

V (t) ≤ V (0),∀t ≥ 0,

lim
t→∞ |s(t)| = 0, lim

t→∞ |i(t)| = 0. (22)

So, Sp(t, η), Ip(t, η) is stable for a sufficiently small
η.

Now, we further investigate the dynamical behaviors
of (2) by numerical simulations:

(1) When R0 < 1 and Rc
0 < 1, the disease will disap-

pear which can be seen in Fig. 2.
(2) When R0 < 1 and k > α, the disease will disap-

pear which can be seen in Fig. 3.
(3) When R0 > 1, the disease-free equilibrium bec-

ome unstable and there is at least a positive periodic
solution which can be seen in Fig. 4.

(4) R0 < 1 cannot promise the global stability of dise-
ase-free equilibrium and it needs to add other con-
ditions which can be seen in Fig. 5.

In this case, there can exist two positive solutions where
one is stable and the other is unstable which can be seen
in Fig. 6a, b.
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I(
t)

(S(0),I(0))=(2000,25)
(S(0),I(0))=(2000,50)
(S(0),I(0))=(2000,100)

Fig. 2 The solution curves of system (1) with time when k =
0.01, α = 1, ε = 0.5, A = 50, d = 0.02, a = 2 × 10−4, η =
3 × 10−5, μ = 0.07, and γ = 0.5. Here, R0 = 0.5025 and
Rc

0 = 0.9284
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(S(0),I(0))=(2000,25)
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(S(0),I(0))=(2000,100)

Fig. 3 The solution curves of system (1) with time when k =
0.5, α = 0.4, ε = 0.05, A = 50, d = 0.02, a = 2 × 10−4, η =
3 × 10−5, μ = 0.07, and γ = 0.5. Here, R0 = 0.8559 and
Rc

0 = 3.9125
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0
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I(
t)

(S(0),I(0))=(2000,25)
(S(0),I(0))=(2000,50)
(S(0),I(0))=(2000,100)

Fig. 4 The solution curves of system (1) with time when k =
0.01, α = 1, ε = 0.05, A = 80, d = 0.02, a = 2 × 10−4, η =
3 × 10−5, μ = 0.07, and γ = 0.5. Here, R0 = 1.3694

Let η = 0.0003 and keep other parameters uncha-
nged as above; it can be obtained by numerical calcu-
lations that

λu A
d − (d + ε + μ)

k(d + ε + μ)
= 155.3571,

A

d
= 2500,

[

− λlαA

d+λu/k
+(d+ε+μ)(k+α)+γ k

]2

= 0.0026,

2

√(

d+ε+μ+γ − λlαA

d+λu/k

)

kα(d+ε+μ) = 0.0025,

which satisfy all the conditions in Theorem 2.5. Thus,
system (2) has at least two positive 12-periodic solu-
tions. We also know that the domains of S(t) and I (t)
are
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(S(0),I(0))=(2000,25)
(S(0),I(0))=(2000,50)
(S(0),I(0))=(2000,100)

Fig. 5 The solution curves of system (1) with time when k =
0.01, α = 1, ε = 0.05, A = 50, d = 0.02, a = 2 × 10−4, η =
3 × 10−5, μ = 0.07, and γ = 0.5. Here, R0 = 0.8559
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Fig. 6 The solution curves of system (2) under different initial
conditions. a The positive curve I (t) of solutions starting in M2.
b The negative curve of solutions in M1

M1 : = {(S(t), I (t))|1162.8 < S(t)

< 2500, 0.1494 < I (t) < 13.9085},
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M2 : = {(S(t), I (t))|1162.8 < S(t)

< 2500, 22.7161 < I (t) < 310.7143}.
According to the above discussion, the periodic solu-
tion in M2 is stable, which can be seen in Fig. 2. The
top figure demonstrates that all solutions starting in M2

tend toward a periodic solution, that is, the periodic
solution in M2 is stable. The other positive periodic
solution of system (2) is not easy to obtain numerically.
The forward solutions starting from M1 will leave M1

and tend toward the periodic solution in M2 or zero. So,
we reverse the time to simulation, that is, to obtain the
backward solution of system (2) with initial values in
M1, which is the bottom figure in Fig. 2. This demon-
strates that the solutions starting in the neighborhood
of the periodic solution in M1 will tend toward this
periodic solution firstly and then deviate from it, which
indicates that the periodic solution in M1 is unstable.

4 Discussion

In this paper, we consider a nonautonomous system
with periodic transmission rate, whose corresponding
autonomous system has been discussion in [37]. It is
concluded that the basic reproduction number being
the unity is a strict threshold for disease eradication
when the effect of delayed treatment is weak, that is,
α < (d + ε + μ + γ )(dk + λ)/(dγ ). However, when
this effect is strong, there exists a backward bifurca-
tion. In this case, letting the basic reproduction number
be below one is not enough to eradicate the disease.
Based on this consideration of saturated treatment, we
add the periodic incidence rate to the model. Firstly, we
find that the basic reproduction number less than 1 can-
not keep the global stability of disease-free equilibrium
and it needs tighter conditions such as Rc

0 < 1. More-
over, by Theorem 2.5 and Fig. 2, we can observe that
there are two periodic solutions for system (2) where
one is stable and the other is unstable. These theories
will provide some guidance for control measures of
diseases.

In practice, we need to take effective control mea-
sures to keep Rc

0 < 1 not R0 < 1. Moreover, there can
exist a periodic solution in our model even if R0 < 1.
So, we can adopt some prevention measures before the
peak is coming according to specific disease cycles and
factors for cycles. In addition, as shown in Fig. 6, when
the initial conditions are different, the disease will tend

toward different periodic solutions. So, besides related
control measures, we can change the initial condition to
change the tendency of the disease. Our future research
will focus on the stability of the periodic solution and
apply our mathematic methods to the research of spe-
cial diseases.
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