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a b s t r a c t

Interval information systems are generalizedmodels of single-valued information systems.
By introducing a dominance relation to interval information systems, we propose a ranking
approach for all objects based on dominance classes and establish a dominance-based
rough set approach, which is mainly based on substitution of the indiscernibility relation
by the dominance relation. Furthermore, we discuss interval ordered decision tables
and dominance rules. To simplify knowledge representation and extract much simpler
dominance rules, we propose attribute reductions of interval ordered information systems
and decision tables that eliminate only the information that are not essential from the
viewpoint of the ordering of objects or dominance rules. The approaches show how to
simplify an interval ordered information system and find dominance rules directly from an
interval ordered decision table. These results will be helpful for decision-making analysis
in interval information systems.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Rough set theory, introduced by Pawlak [1,2], has been conceived as a tool to conceptualize and analyze various types of
data. It can be used in the attribute-value representationmodel to describe the dependencies among attributes and evaluate
the significance of attributes and derive decision rules. It has important applications to intelligence decision and cognitive
sciences, as a tool for dealing with vagueness and uncertainty of facts, and in classification [3–10]. Rough-set-based data
analysis starts from a data table, called information systems. The information systems contains data about objects of interest,
characterized by a finite set of attributes [11–17]. It is often interesting to discover somedependency relationships (patterns)
among attributes.

The original rough set theory does not consider attributes with preference-ordered domains, that is, criteria. However,
in many real situations, we are often faced with the problems where the ordering of properties of the considered attributes
plays a crucial role. One such problem is the ordering of objects. For this reason, Greco, Matarazzo, and Slowinski [18–21]
proposed an extension of rough set theory, called the dominance-based rough set approach (DRSA) to take into account
the ordering properties of criteria. This innovation is mainly based on the substitution of the indiscernibility relation by
a dominance relation. In DRSA, where condition attributes are criteria and classes are preference ordered, the knowledge
approximated is a collection of upward and downward unions of classes and the dominance classes are sets of objects
defined by using a dominance relation. In recent years, many studies have been made in DRSA [22–25].

Interval information systems are an important type of data tables, and generalized models of single-valued information
systems. In recent years, some problems of decision making in the context of interval information systems have been
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Table 1
An interval information system

U a1 a2 a3 a4 a5

x1 1 [0, 1] 2 1 [1, 2]
x2 [0, 1] 0 [1, 2] 0 1
x3 [0, 1] 0 [1, 2] 1 1
x4 0 0 1 0 1
x5 2 [1, 2] 3 [1, 2] [2, 3]
x6 [0, 2] [1, 2] [1, 3] [1, 2] [2, 3]
x7 1 1 2 1 2
x8 [1, 2] [1, 2] [2, 3] 2 [2, 3]
x9 [1, 2] 2 [2, 3] [0, 2] 3
x10 2 2 3 [0, 1] 3

studied [26–31]. Most of them are based on the concept of a possible degree between two interval numbers [27,30,31].
So far, however, how to make a decision by a dominance relation has not been reported in interval information systems.
In this paper, we aim to introduce a dominance relation to interval information systems and interval decision tables, and
to establish a rough set approach based on this dominance relation for decision-making analysis in the context of interval
numbers.

The rest of this paper is organized as follows. By reviewing somepreliminary concepts, a dominance relation is introduced
to interval information systems and some of its important properties are investigated in Section 2. In Section 3, through the
notions of dominance degree andwhole dominance degree, a ranking approachwith dominance-class nature is established,
which is based on possible place of each object in the rank. In Section 4, a dominance-based rough set approach is established
in interval ordered information systems, which is mainly based on the substitution of the indiscernibility relation by
a dominance relation. In Section 5, to simplify knowledge representation, a criterion-reduction approach to an interval
ordered information system is proposed, which eliminates only those criterions not essential from the viewpoint of the
ordering of objects. In Section 6, the notion of interval ordered decision tables is given and dominance rules extracted from
this type of decision tables are also discussed. In Section 7, an approach to relative attribute reductions is presented in
interval ordered decision tables for extracting much simpler dominance rules. In Section 8, through a venture-investment
issue, it is illustrated that how to make a decision by using the approaches proposed in this paper. Finally, we conclude this
paper with a summary in Section 9.

2. Dominance relation in interval information systems

In this section, we introduce a dominance relation to an interval information system, and obtain some of its important
properties.

An interval information system (IIS) is a quadruple S = (U, AT , V , f ), where U is a finite non-empty set of objects and AT
is a finite non-empty set of attributes, V =

⋃
a∈AT Va and Va is a domain of attribute a, f : U × AT → V is a total function

such that f (x, a) ∈ Va for every a ∈ AT , x ∈ U , called an information function, where Va is a set of interval numbers. Denoted
by

f (x, a) = [aL(x), aU(x)] = {p | aL(x) 6 p 6 aU(x), aL(x), aU(x) ∈ R},

we call it the interval number of x under the attribute a. In particular, f (x, a) would degenerate into a real number if
aL(x) = aU(x). Under this consideration, we regard a single-valued information system as a special form of interval
information systems.

Example 2.1. An interval information system is presented in Table 1, where U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},
AT = {a1, a2, a3, a4, a5}.

In practical decision-making analysis, we always consider a binary dominance relation between objects that are possibly
dominant in terms of values of an attributes set in an interval information system. In general, an increasing preference and a
decreasing preference are considered by a decision maker. If the domain of an attribute is ordered according to a decreasing
or increasing preference, then the attribute is a criterion.

Definition 2.1. An interval information system is called an interval ordered information system (IOIS) if all attributes are
criterions.

It is assumed that the domain of a criterion a ∈ AT is completely pre-ordered by an outranking relation <a; x<a y
means that x is at least as good as (outranks) y with respect to the criterion a. For a subset of attributes A ⊆ AT , we define
x<A y ⇔ ∀a ∈ A, x<a y. In other words, x is at least as good as ywith respect to all attributes in A.

In the following, we introduce a dominance relation that identifies dominance classes to an interval ordered information
system. In a given IOIS, we say that x dominates ywith respect to A ⊆ AT if x<A y, and denoted by xR>A y. That is

R>A = {(y, x) ∈ U × U | y<A x}.
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Obviously, if (y, x) ∈ R>A , then y dominates x with respect to A. In other words, y may have a better property than x with
respect to A in reality.

Analogously, the relation R6A (called a dominated relation) can be defined as follows:

R6A = {(y, x) ∈ U × U | x<A y}.

Given A ⊆ AT and A = A1 ∪ A2, where the attributes set A1 according to increasing preference and A2 according to
decreasing preference. Let us define these two binary relations more precisely as follows:

R>A = {(y, x) ∈ U × U | aL1(y) > aL1(x), aU1 (y) > aU1 (x)(∀a1 ∈ A1); aL2(y) 6 aL2(x), aU2 (y) 6 aU2 (x)(∀a2 ∈ A2)}

= {(y, x) ∈ U × U | (y, x) ∈ R>A },

R6A = {(y, x) ∈ U × U | aL1(y) 6 aL1(x), aU1 (y) 6 aU1 (x)(∀a1 ∈ A1); aL2(y) > aL2(x), aU2 (y) > aU2 (x)(∀a2 ∈ A2)}

= {(y, x) ∈ U × U | (y, x) ∈ R6A }.

From the definition of R>A and R6A , the following properties can be easily obtained.

Property 2.1. Let S = (U, AT , V , f ) be an interval ordered information system and A ⊆ AT , then

R>A =

⋂
a∈A

R>
{a}, R6A =

⋂
a∈A

R6
{a}.

Property 2.2. Let S = (U, AT , V , f ) be an interval ordered information system and A ⊆ AT . Then

(1) R>A , R6A are reflexive,
(2) R>A , R6A are unsymmetric and
(3) R>A , R6A are transitive.

The dominance class induced by the dominance relation R>A is the set of objects dominating x, i.e.,

[x]>A = {y ∈ U | aL1(y) > aL1(x), aU1 (y) > aU1 (x)(∀a1 ∈ A1); aL2(y) 6 aL2(x), aU2 (y) 6 aU2 (x)(∀a2 ∈ A2)}

= {y ∈ U | (y, x) ∈ R>A }

and the set of objects dominated by x,

[x]6A = {y ∈ U | aL1(y) 6 aL1(x), aU1 (y) 6 aU1 (x)(∀a1 ∈ A1); aL2(y) > aL2(x), aU2 (y) > aU2 (x)(∀a2 ∈ A2)}

= {y ∈ U | (x, y) ∈ R>A },

where [x]>A describes the set of objects that may dominates x and [x]6A describes the set of objects that may be dominated
by x in terms of A in an interval ordered information system, which are called the A-dominating set and the A-dominated
set with respect to x ∈ U , respectively.

Remark. In many practical issues, one also can define the dominance relation on the universe with interval values through
using other ways. For example, there are the following definitions:

(1) R>1
A = {(y, x) ∈ U × U | aL1(y) > aU1 (x)(∀a1 ∈ A1); aL2(y) 6 aU2 (x)(∀a2 ∈ A2)},

(2) R>2
A = {(y, x) ∈ U × U | aL1(y) > aL1(x)(∀a1 ∈ A1); aL2(y) 6 aL2(x)(∀a2 ∈ A2)} and

(3) R>3
A = {(y, x) ∈ U × U | aU1 (y) > aU1 (x)(∀a1 ∈ A1); aU2 (y) 6 aU2 (x)(∀a2 ∈ A2)}.

Each of these three dominance relations is based on a particular practical meaning, which can induce the dominance
class of each object on the universe accordingly. In this investigation, we do not deal with the relationship among these
dominance relations, but rough set approach, ranking problem and attribute reduction in interval ordered information
systems. Furthermore, through using each of these dominance relations, one can obtain similar research results as the
rest part of this paper. Therefore, for convenience, we only adopt the dominance relation R>A for studying interval ordered
information systems in this paper.

For simplicity, without any loss of generality, in the following we only consider attributes with increasing preference.

Property 2.3. Let S = (U, AT , V , f ) be an interval ordered information system and A, B ⊆ AT , we have that

(1) if B ⊆ A ⊆ AT , then R>B ⊇ R>A ⊇ R>AT ;
(2) if B ⊆ A ⊆ AT , then [x]>B ⊇ [x]>A ⊇ [x]>AT ;
(3) if xj ∈ [xi]

>

A , then [xj]
>

A ⊆ [xi]
>

A and [xi]
>

A =
⋃

{[xj]
>

A : xj ∈ [xi]
>

A }; and
(4) [xi]

>

A = [xj]
>

A iff f (xi, a) = f (xj, a) (∀a ∈ A).
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Proof. Let B ⊆ A ⊆ AT , (1) and (2) are straightforward.
(3) If xj ∈ [xi]

∧>

A , it follows from the dominance relation R>A that the interval number f (xj, a) is bigger than the interval
number f (xi, a) for arbitrary a ∈ A, i.e., aL(xj) > aL(xi) and aU(xj) > aU(xi). Analogously, for ∀x ∈ [xj]

>

A , we have that
aL(x) > aL(xj) and aU(x) > aU(xj) for arbitrary a ∈ A. Therefore, aL(x) > aL(xi) and aU(x) > aU(xi) (∀a ∈ A). Thus we have
x ∈ [xi]

>

A , i.e., [xj]
>

A ⊆ [xi]
>

A . Therefore [xi]
>

A =
⋃

{[xj]
>

A : xj ∈ [xi]
>

A }.
(4) ‘‘⇒’’ When [xi]

>

A = [xj]
>

A , it follows from (3) that [xj]
>

A ⊆ [xi]
>

A , i.e., aL(xj) > aL(xi) and aU(xj) > aU(xi) for any a ∈ A.
Analogously, we have that aL(xi) > aL(xj) and aU(xi) > aU(xj) for any a ∈ A. Thus, aL(xi) = aL(xj) and aU(xi) = aU(xj) for
every a ∈ A, i.e., f (xi, a) = f (xj, a) (∀a ∈ A).

‘‘⇐’’ If f (xi, a) = f (xj, a) (∀a ∈ A), then aL(xi) = aL(xj) and aU(xi) = aU(xj) for any a ∈ A. Therefore, from the definition
of the set of objects dominating x, it is easy to get [xi]

>

A = [xj]
>

A .
This completes the proof. �

Let U/R>A denote classification on the universe, which is the family set {[x]>A | x ∈ U}. Any element from U/R>A will be
called a dominance class with respect to A. Dominance classes in U/R>A do not constitute a partition of U in general. They
constitute a covering of U .

These notions and properties mentioned above can be understood through the following example.

Example 2.2 (Continued From Example 2.1). Compute the classification induced by the dominance relation R>A in Table 1.
From Table 1, one can get that

U/R>AT = {[x1]
>

AT , [x2]
>

AT , . . . , [x10]
>

AT },

where

[x1]
>

AT = {x1, x5, x7, x8}, [x2]
>

AT = {x1, x2, x3, x5, x6, x7, x8, x9, x10},

[x3]
>

AT = {x1, x3, x5, x6, x7, x8}, [x4]
>

AT = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x5]
>

AT = {x5}, [x6]
>

AT = {x5, x6, x8}, [x7]
>

AT = {x5, x7, x8},

[x8]
>

AT = {x8}, [x9]
>

AT = {x9}, [x10]
>

AT = {x10}.

And

U/R6AT = {[x1]
6

AT , [x2]
6

AT , . . . , [x10]
6

AT },

where

[x1]
6

AT = {x1, x2, x3, x4}, [x2]
6

AT = {x2, x4}, [x3]
6

AT = {x2, x3, x4},

[x4]
6

AT = {x4}, [x5]
6

AT = {x1, x2, x3, x4, x5, x6, x7}, [x6]
6

AT = {x2, x3, x4, x6},

[x7]
6

AT = {x1, x2, x3, x4, x7}, [x8]
6

AT = {x1, x2, x3, x4, x6, x7, x8},

[x9]
6

AT = {x2, x4, x9}, [x10]
6

AT = {x2, x4, x10}.

From this example, we easily verify (3) of Property 3.3. Obviously, dominance classes in U/R>AT constitute a covering of
U .

In practical applications, we can define various dominance relations according to various semantic interpretations and
obtain corresponding dominance class of each object with respect to some dominance relation.

3. Ranking for all objects in IOIS

There are two classes of problems in intelligent decision-making: one is to find satisfactory results through ranking with
information aggregation, and the other is to find dominance rules through relations. In this section, we only focus on how
to rank all objects by using the dominance relation R>A in an interval ordered information system.

In [32], Qiu et al. defined a concept of dominance degree for ranking all objects in classical ordered information systems.
In the following, we introduce a dominance degree between two objects and a whole dominance degree of a object in order
to decide the place of each object in final rank in an interval ordered information system.

Definition 3.1. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . Dominance degree between two objects with respect to the
dominance relation R>A is defined as

DA(xi, xj) =
| ∼ [xi]

>

A ∪ [xj]
>

A |

|U|
,

where | · | denotes the cardinality of a set, xi, xj ∈ U .
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From this definition, one can obtain the following property.

Property 3.1. DA(xi, xj) has the following properties

(1) 1
|U|

≤ DA(xi, xj) ≤ 1;

(2) if (xj, xk) ∈ R>A , then DA(xi, xj) 6 DA(xi, xk); and
(3) if (xj, xk) ∈ R>A , then DA(xj, xi) > DA(xk, xi).

Proof. (1) is straightforward.
(2) It easily follows from Property 2.2 that the dominance relation R>A is transitive. Hence, if (xj, xk) ∈ R>A , we have that

[xj]
>

A ⊆ [xk]
>

A . Therefore

DA(xi, xj) − DA(xi, xk) =
1

|U|
(| ∼ [xi]

>

A ∪ [xj]
>

A | − | ∼ [xi]
>

A ∪ [xk]
>

A |)

6
1

|U|
(| ∼ [xi]

>

A ∪ [xk]
>

A | − | ∼ [xi]
>

A ∪ [xk]
>

A |)

= 0,

that is DA(xi, xj) 6 DA(xi, xk).
(3) Similar to (2), we have that [xj]

>

A ⊆ [xk]
>

A , hence ∼ [xj]
>

A ⊇∼ [xk]
>

A . Thus

DA(xj, xi) − DA(xk, xi) =
1

|U|
(| ∼ [xj]

>

A ∪ [xi]
>

A | − | ∼ [xk]
>

A ∪ [xi]
>

A |)

>
1

|U|
(| ∼ [xk]

>

A ∪ [xi]
>

A | − | ∼ [xk]
>

A ∪ [xi]
>

A |)

= 0,

that is DA(xj, xi) > DA(xk, xi).
This completes the proof. �

In fact, a dominance degree between two objects with respect to the dominance relation R>A also can be defined by the
rough membership function, which is as follows

D∗

A(xi, xj) =
|[xi]

>

A ∩ [xj]
>

A |

|[xi]
>

A |
.

However, this definition has some limitations for characterizing dominance degree between any two objects in interval
ordered information systems. For example, Let U = {x1, x2, x3, x4, x5, x6, x7, x8} and AT = {a}, where a(xi) = i. For
the definition of the dominance class, one can know that [x1]

>

{a} = {x1, x2, x3, x4, x5, x6, x7, x8}, [x5]
>

{a} = {x5, x6, x7, x8},
[x7]

>

{a} = {x7, x8} and [x8]
>

{a} = {x8}. Hence, we have that

D∗

{a}(x1, x5) =
|[x1]

>

{a} ∩ [x5]
>

{a}|

|[x1]
>

{a}|
=

4
8

=
1
2
, D∗

{a}(x7, x8) =
|[x7]

>

{a} ∩ [x8]
>

{a}|

|[x7]
>

{a}|
=

1
2
.

That is D∗

{a}(x1, x5) = D∗

{a}(x7, x8). In other words, the above definition can not be used to well characterize the dominance
relation between these two objects with respect to R>

{a} in this situation. If we adopt the dominance degree in Definition 3.1,
then one can obtain that

D{a}(x1, x5) =
| ∼ [x1]

>

{a} ∪ [x5]
>

{a}|

|U|
=

4
8

=
1
2
, D{a}(x7, x8) =

| ∼ [x7]
>

{a} ∪ [x8]
>

{a}|

|U|
=

7
8
,

i.e., D{a}(x1, x5) < D{a}(x7, x8). This can depict the practical means of the example. Therefore, one can draw a conclusion:
the dominance degree DA(xi, xj) has better performance than the term D∗

A(xi, xj) for characterizing the dominance relation
between any two objects in interval ordered information systems.

From Definition 3.1, let (xi, xj) ∈ U × U , we can construct a dominance relation matrix with respect to A induced by
the dominance relation R>A . From this matrix, the whole dominance degree of each object can be calculated according to the
following formula

DA(xi) =
1

|U| − 1

∑
j6=i

DA(xi, xj), xi, xj ∈ U .

As a result of the above discussions, we come to the following two corollaries.
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Corollary 3.1. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . If R>A = R>AT , then DA(xi, xj) = DAT (xi, xj), xi, xj ∈ U.

Corollary 3.2. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . If R>A = R>AT , then DA(xi) = DAT (xi) for any xi ∈ U.

Similar to the definition of dominance degree, we can give a concept called dominated degree between two objects in an
interval ordered information system as follows

D′

A(xi, xj) =
| ∼ [xi]

6

A ∪ [xj]
6

A |

|U|
.

Let (xi, xj) ∈ U × U , we thus can construct a dominanced relation matrixwith respect to A induced by the relation R6A . From
this matrix, the whole dominanced degree of each object can also be calculated according to the following formula

D′

A(xi) =
1

|U| − 1

∑
j6=i

D′

A(xi, xj), xi, xj ∈ U .

Through these two concepts, we can also design a ranking approach for all objects.
From the whole dominance degree of each object on the universe, we can rank all objects according to the number of

DA(xi). A larger number implies a better object. This idea can be understood by the following example.

Example 3.1 (Continued From Example 2.2). Rank all objects in U according to the dominance relation R>AT .

From the definition of dominance degree, we can get the dominance relation matrix as

1 1 1 1 0.7 0.8 0.9 0.7 0.6 0.6
0.5 1 0.7 1 0.2 0.4 0.4 0.2 0.2 0.2
0.8 1 1 1 0.5 0.7 0.7 0.5 0.4 0.4
0.4 0.9 0.6 1 0.1 0.3 0.3 0.1 0.1 0.1
1 1 1 1 1 1 1 0.9 0.9 0.9
0.9 1 1 1 0.8 1 0.9 0.8 0.7 0.7
1 1 1 1 0.8 0.9 1 0.9 0.7 0.7
1 1 1 1 0.9 1 1 1 0.9 0.9
0.9 1 0.9 1 0.9 0.9 0.9 0.9 1 0.9
0.9 1 0.9 1 0.9 0.9 0.9 0.9 0.9 1


.

Therefore, one can obtain that

DAT (x1) = 0.81, DAT (x2) = 0.42, DAT (x3) = 0.67, DAT (x4) = 0.32,
DAT (x5) = 0.97, DAT (x6) = 0.87, DAT (x7) = 0.89, DAT (x8) = 0.97,
DAT (x9) = 0.92, DAT (x10) = 0.92.

In the following, we rank all objects according to the number of DAT (xi). A object with larger number implies a better object.(
x5
x8

)
<

(
x9
x10

)
< x7 < x6 < x1 < x3 < x2 < x4.

Note that one can obtain a corresponding rank for all objects by using any dominance relation with a practical semantic
interpretation.

4. Rough set approach to IOIS

The original rough set approach proved to be very useful in dealing with inconsistency problems following from the
information granulation. The original rough set idea is failing, however, when preference-orders of attributes domains
(criterion) are to be taken into account [19]. In this section, we investigate the problem of set approximation with respect
to a dominance relation R>A in interval ordered information systems.

Definition 4.1. Let S = (U, AT , V , f ) be an IOIS. For any X ⊆ U and A ⊆ AT , the lower and upper approximations of X with
respect to the dominance relation R>A are defined as follows:

R>A (X) = {x ∈ U | [x]>A ⊆ X}

and

R>A (X) = {x ∈ U | [x]>A ∩ X 6= ∅}.
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From Definition 4.1, one can easily notice that R>A (X) is a set of objects that belong to X with certainty and R>A (X) is a set

of objects that possibly belong to X . BnA(X) = R>A (X) − R>A (X) denotes a boundary of the rough set.
Moreover, from Definition 4.1, one can easily obtain the following properties.

Property 4.1. Let S = (U, AT , V , f ) be an IOIS, X ⊆ U, A ⊆ AT and R>A a dominance relation, then

(1) R>A (∅) = R>A (∅) = ∅, R>A (U) = R>A (U) = U;

(2) R>A (X) ⊆ X ⊆ R>A (X);

(3) R>A (R>A (X)) = R>A (X), R>A (R>A (X)) = R>A (X);

(4) R>A (X) =∼ R>A (∼ X), R>A (X) =∼ R>A (∼ X); and

(5) R>A (X) ⊆ R>AT (X), R>A (X) ⊇ R>AT (X), and BnAT (X) ⊆ BnA(X).

Property 4.2. Let S = (U, AT , V , f ) be an IOIS, X, Y ⊆ U, A ⊆ AT and R>A a dominance relation, then

(1) if X ⊆ Y , then R>A (X) ⊆ R>A (Y ), R>A (X) ⊆ R>A (Y );

(2) R>A (X ∩ Y ) = R>A (X) ∩ R>A (Y );

(3) R>A (X ∪ Y ) = R>A (X) ∪ R>A (Y );

(4) R>A (X ∩ Y ) ⊆ R>A (X) ∩ R>A (Y ); and
(5) R>A (X ∪ Y ) ⊇ R>A (X) ∪ R>A (Y ).

The lower and upper approximations of X with respect to the dominance relation R>A can be used to extract dominance
rules by a decision maker, where one can extract dominance rules with certainty by using R>A (X) and can extract possible

dominance rules by using BnA(X) = R>A (X) − R>A (X).

Property 4.3. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . If R>A = R>AT , then R>A (X) = R>AT (X) and R>A (X) = R>AT (X).

Uncertainty of a rough set is due to the existence of a borderline region. The greater the borderline region of a rough set,
the lower is the accuracy of the rough set. In order to measure the imprecision of a rough set induced by dominance relation
R>A (X) in an interval ordered information system, we introduce a concept of accuracy measure in the following.

Definition 4.2. Let S = (U, AT , V , f ) be an IOIS, X ⊆ U and A ⊆ AT . Accuracy measure of X with respect to the dominance
relation R>A is defined as

α(R>A , X) =

|R>A (X)|

|R>A (X)|
=

|R>A (X)|

|U| − |R>A (∼ X)|
.

The accuracymeasure expresses the degree of completeness of the knowledge aboutX , given the granularity ofU/R>A . It is
easy to see that thismeasure not only depends on the lower approximation ofX but also depends on the lower approximation
of ∼ X .

As a direct result of Property 4.3 and Definition 4.2, we come to the following corollary.

Corollary 4.1. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . If R>A = R>AT , then α(R>A , X) = α(R>AT , X).

Property 4.4. Let S = (U, AT , V , f ) be an IOIS, X ⊆ U and B ⊆ A ⊆ AT , then

α(R>AT , X) > α(R>A , X) > α(R>B , X).

Proof. Since A ⊆ AT , it follows from (5) of Property 4.1 that R>A (X) ⊆ R>AT (X) and R>A (X) ⊇ R>AT (X). Thus

α(R>A , X) =

|R>A (X)|

|R>A (X)|
6

|R>AT (X)|

|R>AT (X)|
= α(R>AT , X),

that is α(R>AT , X) > α(R>A , X). Similarly, one can obtain α(R>A , X) > α(R>B , X). This completes the proof. �
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Example 4.1. Consider the interval ordered information system in Table 1. Let A = {a1, a2, a3, a5} ⊂ AT and X =

{x1, x5, x6, x8}, compute the rough sets of X approximated by U/R>AT and U/R>A , respectively.

According to Definition 4.1 and Example 2.2, the rough set (R>AT (X), R>AT (X)) can be obtained as follows:

R>AT (X) = {x5, x6, x8}, R>AT (X) = {x1, x2, x3, x4, x5, x6, x7, x8}.

Then we compute the classification induced by the dominance relation U/R>A . From Table 1, it follows that

U/R>A = {[x1]
>

A , [x2]
>

A , . . . , [x10]
>

A },

where

[x1]
>

A = {x1, x5, x7, x8, x9, x10}, [x2]
>

A = {x1, x2, x3, x5, x6, x7, x8, x9, x10},

[x3]
>

A = {x1, x2, x3, x5, x6, x7, x8, x9, x10}, [x4]
>

A = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x5]
>

A = {x5, x10}, [x6]
>

A = {x5, x6, x8, x9, x10}, [x7]
>

A = {x5, x7, x8, x9, x10},

[x8]
>

A = {x5, x8, x9, x10}, [x9]
>

A = {x9, x10}, [x10]
>

A = {x10}.

Similarly, we can calculate the rough set (R>A (X), R>A (X)) as follows:

R>A (X) = ∅, R>A (X) = {x1, x2, x3, x4, x5, x6, x7, x8}.

Therefore, we have that

α(R>A , X) =

|R>A (X)|

|R>A (X)|
= 0, α(R>AT , X) =

|R>AT (X)|

|R>AT (X)|
=

3
8
.

Thus, α(R>AT , X) > α(R>A , X).

5. Attribute reduction in IOIS

A reduct is a subset of attributes that are jointly sufficient and individually necessary for preserving a particular property
of a given information system [33]. The original concept of attribute reductionwas first proposed by Pawlak [1,2]. Slezak [34,
35] investigated how to obtain approximation reducts from an information system or a decision table. Zhang [32] et al.
examined a distribution reduct and a maximum distribution reduct in decision tables. Zhao et al. [33] presented a general
definition of an attribute reduct, which brings new insight into the problem of reduct construction.

In the context of dominance relations, to simplify knowledge representation it is necessary to reduce some dispensable
attributes in a given interval ordered information system. In this section, an approach to attribute reduction in interval
ordered information systems will be established and an illustrative example is employed to show its validity.

In the first part of this section, we investigate an attribute reduction approach to an interval ordered information system.

Definition 5.1. Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . If R>A = R>AT and R>B 6= R>AT for any B ⊂ A, then we call A an
attribute reduction of S.

Property 5.1. Let S = (U, AT , V , f ) be an IOIS andA ⊆ AT . If A is an attribute reduction, thenDA(xi, xj) = DAT (xi, xj), xi, xj ∈ U.

It is obvious that an attribute reduction of an IOIS is a minimal attribute subset satisfying R>A = R>AT . An attribute a ∈ AT
is called dispensable with respect to R>AT if R>AT = R>(AT−{a}); otherwise a is called indispensable. The set of all indispensable
attributes is called a core with respect to the dominance relation R>AT and is denoted by core(AT ). An attribute in the core
must be in every attribute reduction (like the case in complete/incomplete OIS, an IOIS may have many reductions, denoted
by red(AT )). Thus core(AT ) =

⋂
red(AT ). The core may be an empty set.

Let S = (U, AT , V , f ) be an IOIS and A ⊆ AT . For convenient representation, denoted by

Dis(x, y) = {a ∈ A | (x, y) 6∈ R>a },

then we call Dis(x, y) a discernibility attribute set between x and y, and

Dis = (Dis(x, y) : x, y ∈ U)

a discernibility matrix of an IOIS. Clearly, for ∀x, y ∈ U we have that Dis(x, x) = ∅ and Dis(x, y) ∩ Dis(y, x) = ∅.
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Table 2
The discernibility matrix of Table 1

xi/xj x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 ∅ ∅ ∅ ∅ a1a2a3 a1 · · · a5 a2a5 a1 · · · a5 a1 · · · a5 a1a2a3a5
x2 a1 · · · a5 a4 ∅ a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5
x3 a1a2a3a5 ∅ ∅ ∅ a1 · · · a5 a1 · · · a5 a1a2a3a5 a1 · · · a5 a1 · · · a5 a1a2a3a5
x4 a1 · · · a5 a1a3 a1a3a4 ∅ a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5 a1 · · · a5
x5 ∅ ∅ ∅ ∅ ∅ ∅ ∅ a4 a2a5 a2a5
x6 a1a3 ∅ ∅ ∅ a1a3 ∅ a1a3 a1a3a4 a1a2a3a5 a1a2a3a5
x7 ∅ ∅ ∅ ∅ a1 · · · a5 a1 · · · a5 ∅ a1 · · · a5 a1 · · · a5 a1a2a3a5
x8 ∅ ∅ ∅ ∅ a1a3 ∅ ∅ ∅ a2a5 a1a2a3a5
x9 a4 ∅ a4 ∅ a1a3a4 a4 a4 a4 ∅ a1a3
x10 a4 ∅ a4 ∅ a4 a4 a4 a4 a4 ∅

The following property provides a judgement method of an attribute reduction of an IOIS.

Property 5.2. Let S = (U, AT , V , f ) be an IOIS, A ⊆ AT and Dis(x, y) the discernibility attributes set of S with respect to R>AT .
Then, R>AT = R>A iff A ∩ Dis(x, y) 6= ∅ (Dis(x, y) 6= ∅).

Proof. ‘‘⇒’’ Let R>AT = R>A , from the definition of the dominance relation, one can know that [x]>AT = [x]>A for any x ∈ U . If
some y 6∈ [x]>AT , then y 6∈ [x]>A . Therefore, there exists a ∈ A such that (x, y) 6∈ [x]>

{a}. So one has a ∈ Dis(x, y). Thus, when
Dis(x, y) 6= ∅ we have A ∩ Dis(x, y) 6= ∅.

‘‘⇐’’ From the definition of the discernibility attribute set, one can know that if (x, y) 6∈ [x]>AT for any (x, y) ∈ U ×U , then
Dis(x, y) 6= ∅. And since A ∩ Dis(x, y) 6= ∅, there exists a ∈ A such that a ∈ Dis(x, y), i.e., (x, y) 6∈ [x]>

{a}. So (x, y) 6∈ [x]>A .
Thus R>AT ⊇ R>A . On the other hand, it follows from A ⊆ AT that R>AT ⊆ R>A . Therefore, one has R>AT = R>A .

This completes the proof. �

Definition 5.2. Let S = (U, AT , V , f ) be an IOIS, A ⊆ AT and Dis(x, y) the discernibility attributes set of S with respect to
R>AT . Denoted by

M =

∧{∨
{a : a ∈ Dis(x, y)} : x, y ∈ U

}
,

thenM is referred to as a discernibility function.

Based on the discernibility function, we can design a practical approach to attribute reductions in an IOIS as follows.

Property 5.3. Let S = (U, AT , V , f ) be an IOIS. The minimal disjunctive normal form of discernibility function M is

M =

t∨
k=1

(
qk∧
s=1

ais

)
.

Denoted by Bk = {ais : s = 1, 2, . . . , qk}, then {Bk : k = 1, 2, . . . , t} are the set of all attribute reductions of this system.

Proof. It follows directly from Property 5.2 and the definition of minimal disjunctive normal form of the discernibility
function. �

Property 5.3 provides a practical approach to attribute reduction in an interval ordered information system.
As follows, through employing an illustrative example, we analyze how to obtain attribute reductions from all attributes

of an IOIS.

Example 5.1 (Continued From Example 3.1). Compute all attribute reductions in Table 2.
From the definition of discernibility matrix, we can obtain the discernibility matrix of this system (see Table 2).
Thus, one can obtain that

M = (a1 ∨ a2 ∨ a3) ∧ (a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5) ∧ (a2 ∨ a5) ∧ (a1 ∨ a2 ∨ a3 ∨ a5) ∧ a4 ∧ (a1 ∨ a3) ∧ (a1 ∨ a3 ∨ a4)
= (a2 ∨ a5) ∧ (a1 ∨ a3) ∧ a4
= (a1 ∧ a2 ∧ a4) ∨ (a1 ∧ a4 ∧ a5) ∨ (a2 ∧ a3 ∧ a4) ∨ (a3 ∧ a4 ∧ a5).

Therefore, there are four attribute reductions for this interval ordered information system,which are {a1, a2, a4}, {a1, a4, a5},
{a2, a3, a4} and {a3, a4, a5}. Since the attribute a4 being in every attribute reduction, a4 is the core of this systemwith respect
to the dominance relation R>AT . In otherwords, this attribute (criterion) is indispensable from the point of viewof the ordering
of objects in Table 1.
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6. Interval ordered decision tables and dominance rules

Extracted dominance rules from information systems is another important class of problems in decision-making analysis.
In this section, we investigate interval ordered decision tables and dominance rules extracted from this type of decision
tables.

An interval ordered decision table (IODT) is an interval ordered information system S = (U, C ∪ d, V , f ), where d
(d 6∈ C and f (x, d)(x ∈ U) is single-valued) is an overall preference called the decision and all the elements of C are
criterions. Furthermore, assume that the decision attribute d makes a partition of U into a finite number of classes; let
D = {D1,D2, . . . ,Dr} be a set of these classes that are ordered, that is, for all i, j ≤ r if i > j, then the objects from Di are
preferred to the objects from Dj.

The sets to be approximated are an upward union and a downward union of classes, which are defined as follows

D>i =

⋃
j>i

Dj, D6i =

⋃
j6i

Dj, (i 6 r).

The statement x ∈ D>i means ‘‘x belongs to at least class Di’’, whereas x ∈ D6i means ‘‘x belongs to at most class Di’’.
Analogous to the idea of decision approximation in [25], in the following, we give the definitions of the lower and upper

approximations of D>i (i 6 r) with respect to the dominance relation R>A in an IODT.

Definition 6.1. Let S = (U, C ∪ d, V , f ) be an IODT, A ⊆ C and D = {D1,D2, . . . ,Dr} is the decision induced by d. Lower
and upper approximations of D>i (i 6 r) with respect to the dominance relation R>A are defined as

R>A (D>i ) = {x ∈ U | [x]>A ⊆ D>i }

and

R>A (D>i ) =

⋃
x∈D>

i

[x]>A .

Similarly, we define the lower and upper approximations of D6i (i 6 r) with respect to the dominance relation R>A in an
IODT.

Definition 6.2. Let S = (U, C ∪ d, V , f ) be an IODT, A ⊆ C and D = {D1,D2, . . . ,Dr} is the decision induced by d. Lower
and upper approximations of D6i (i 6 r) with respect to the dominance relation R>A are defined as

R>A (D6i ) = {x ∈ U | [x]6A ⊆ D6i }

and

R>A (D6i ) =

⋃
x∈D6

i

[x]6A .

Naturally, the A-boundaries of D>i (i 6 r) and D6i (i 6 r) can be defined as

BnA(D
>

i ) = R>A (D>i ) − R>A (D>i )

and

BnA(D
6

i ) = R>A (D6i ) − R>A (D6i ).

The lower approximations R>A (D>i ) and R>A (D6i ) can be used to extract certain dominance rules, and the boundaries

BnA(D
>

i ) and BnA(D
6

i ) can be used to mine possible dominance rules from an interval ordered decision table.
In [24], an atomic expression over a single attribute a is defined as either (a, >) (according to increasing preference)

or (a, 6) (according to decreasing preference) in an ordered information system. For any A ⊆ AT , an expression over A in
ordered information systems is defined by

∧
a∈A e(a), where e(a) is an atomic expression over a. The set of all expression

over A in an OIS is denoted by E(A). For instance, AT = {a1, a2, a3}, the set of E(AT ) is as follows

E({a1, a2, a3}) = {(a1, >) ∧ (a2, >) ∧ (a3, >), (a1, >) ∧ (a2, >) ∧ (a3, 6), . . . , (a1, 6) ∧ (a2, 6) ∧ (a3, 6)}.

In an OIS, a ∈ AT , v1 ∈ Va, an atomic formula over a single attribute a ia defined as either (a, >, v1) (according to increasing
preference) or (a, 6, v1) (according to decreasing preference). For any A ⊆ AT , a formula over A in OIS is defined by∧

a∈A m(a), where m(a) is an atomic formula over a. The set of all formulas over A in an OIS is denoted by M(A). Let the
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formula φ ∈ M(A), ‖φ‖ denotes the set of objects satisfying formula φ. For example, (a, >, v1) and (a, 6, v1) are atomic
formulas, then

‖(a, >, v1)‖ = {x ∈ U | f (x, a) > v1}

and

‖(a, 6, v1)‖ = {x ∈ U | f (x, a) 6 v1}.

However, in an interval ordered information system, the domain of each attribute may be not single-valued but interval.
Hence, we modify the definition of a formula over a according to the dominance relation R>A as follows

‖(a, D, v1)‖ = {x ∈ U | f (x, a) D v1}

and

‖(a, E, v1)‖ = {x ∈ U | f (x, a) E v1},

where f (x, a) D v1 denotes that aL(x) > vL
1 and aU(x) > vU

1 , and f (x, a) E v1 represents that aL(x) 6 vL
1 and aU(x) 6 vU

1 ,
v1 = [vL

1, vU
1 ].

Now we consider an IODT S = (U, C ∪ {d}, V , f ) and a subset of attributes A ⊆ C . For two formulas φ ∈ M(A) and
ϕ ∈ M(d), a decision rule, denoted by φ → ϕ, is read ‘‘if φ then ϕ.’’ The formula φ is called the rule’s antecedent, and the
formula ϕ is called the rule’s consequent. We say that an object supports a decision rule if it matches both the condition and
the decision parts of the rule. On the other hand, an object is covered by a decision rule if it matches the condition parts of
the rule. A decision rule states how ‘‘evaluation of objects on attributes A is at least as good as a given level’’ or ‘‘evaluation
of objects on attributes A is at most as good as a given level’’ determines ‘‘objects belong (or possibly belong) to at least a
given class’’ or ‘‘objects belong (or possibly belong) to at most a given class.’’

Like dominance rules in [25], there are four types of dominance rules to be considered as follows
(1) certain D-dominance rules with the following syntax:

if (f (x, a1) D va1) ∧ (f (x, a2) D va2) ∧ · · · ∧ (f (x, ak) D vak) ∧ (f (x, ak+1) E vak+1) ∧ · · · ∧ (f (x, ap) E vap), then
x ∈ D>i ;

(2) possible D-dominance rules with the following syntax:
if (f (x, a1) D va1) ∧ (f (x, a2) D va2) ∧ · · · ∧ (f (x, ak) D vak) ∧ (f (x, ak+1) E vak+1) ∧ · · · ∧ (f (x, ap) E vap), then x

could belong to D>i ;
(3) certain E-dominance rules with the following syntax:

if (f (x, a1) E va1) ∧ (f (x, a2) E va2) ∧ · · · ∧ (f (x, ak) E vak) ∧ (f (x, ak+1) D vak+1) ∧ · · · ∧ (f (x, ap) D vap), then
x ∈ D6i ; and

(4) possible E-dominance rules with the following syntax:
if (f (x, a1) E va1) ∧ (f (x, a2) E va2) ∧ · · · ∧ (f (x, ak) E vak) ∧ (f (x, ak+1) D vak+1) ∧ · · · ∧ (f (x, ap) D vap), then x

could belong to D6i ;
where A1 = {a1, a2, . . . , ak} ⊆ C , A2 = {ak+1, ak+2, . . . , ap} ⊆ C , C = A1 ∪ A2, A1 with increasing preference and A2 with
decreasing preference, and (va1 , va2 , . . . , vap) ∈ Va1 × Va2 × · · · × Vap , i ≤ r .

Therefore, in an IODT, for a given upward or downward union D>i or D6j , i, j 6 r , the rules induced under a hypothesis
that objects belonging to R>A (D>i ) or to R6A (D6i ) are positive and all the others negative suggest the assignment of an object to
‘‘at least classDi’’ or to ‘‘at most classDj’’, respectively. Similarly, the rules induced under a hypothesis that objects belonging

to R>A (D>i ) or to R6A (D6i ) are positive and all the others negative suggest the assignment of an object could belongs to ‘‘at
least class Di’’ or to ‘‘at most class Dj’’, respectively.

Now we employ an example to illustrate interval ordered decision tables and dominance rules extracted from this type
of ODT in the following.

Example 6.1. Let us consider an IODT, constructed from an IOIS in Table 1 and extended by decision attributes d as shown
in Table 3.

From Table 2, it is easy to see that D = {D1,D2}, where

D1 = {x5, x7, x8, x9, x10}, D2 = {x1, x2, x3, x4, x6}.

In this interval ordered decision table, because only two decision classes are considered, one can know that D>1 = D1 and
D62 = D2. From Example 2.2 and Definition 6.1, we have that

R>C (D>1 ) = {x5, x7, x8, x9, x10},

R>C (D>1 ) = {x5, x7, x8, x9, x10} and

BnC (D
>

1 ) = ∅.
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Table 3
An interval ordered decision table

U a1 a2 a3 a4 a5 d

x1 1 [0, 1] 2 1 [1, 2] 1
x2 [0, 1] 0 [1, 2] 0 1 1
x3 [0, 1] 0 [1, 2] 1 1 1
x4 0 0 1 0 1 1
x5 2 [1, 2] 3 [1, 2] [2, 3] 2
x6 [0, 2] [1, 2] [1, 3] [1, 2] [2, 3] 1
x7 1 1 2 1 2 2
x8 [1, 2] [1, 2] [2, 3] 2 [2, 3] 2
x9 [1, 2] 2 [2, 3] [0, 2] 3 2
x10 2 2 3 [0, 1] 3 2

And, it easily follows from Example 2.2 and Definition 6.2 that

R>C (D62 ) = {x1, x2, x3, x4, x6},

R>C (D62 ) = {x1, x2, x3, x4, x6} and

BnC (D
6

2 ) = ∅.

Therefore, we can obtain the following set of dominance rules from the considered interval ordered decision table:
r1 : (a1, D, 1) ∧ (a2, D, 1) ∧ (a3, D, 2) ∧ (a4, D, 1) ∧ (a5, D, 2) → (d, >, 2) //supported by objects x5, x7, x8;
r2 : (a1, D, [1, 2]) ∧ (a2, D, 2) ∧ (a3, D, [2, 3]) ∧ (a4, D, [0, 2]) ∧ (a5, D, 3) → (d, >, 2) //supported by objects x9;
r3 : (a1, D, 2) ∧ (a2, D, 2) ∧ (a3, D, 3) ∧ (a4, D, [0, 1]) ∧ (a5, D, 3) → (d, >, 2) //supported by objects x10;
r4 : (a1, E, 1)∧ (a2, E, [0, 1])∧ (a3, E, 2)∧ (a4, E, 1)∧ (a5, E, [1, 2]) → (d, 6, 1) //supported by objects x1, x2, x3, x4;

and
r5 : (a1, E, [0, 2]) ∧ (a2, E, [1, 2]) ∧ (a3, E, [1, 3]) ∧ (a4, E, [1, 2]) ∧ (a5, E, [2, 3]) → (d, 6, 1) //supported by objects

x2, x3, x4, x6
where the rules r1, r2, r3 are certain D-dominance rules and the rules r4, r5 are certain E-dominance rules. �

For any dominance rule r : φ → ϕ, its certainty factor, support factor and coverage factor can be defined respectively as
follows:

cer(φ → ϕ) =
card(‖φ ∧ ϕ‖)

card(‖φ‖)
,

sup(φ → ϕ) =
card(‖φ ∧ ϕ‖)

card(|U|)

and

cov(φ → ϕ) =
card(‖φ ∧ ϕ‖)

card(‖ϕ‖)
.

The certainty factor can be interpreted as the frequency of objects having the property ϕ in the set of objects having the
propertyφ and the coverage factor as the frequency of objects having the propertyφ in the set of objects having the property
ϕ. And, the support factor denotes the probability of objects having both the property φ and the property ϕ within the
universe U .

Example 6.2. Compute three factors of the dominance rule r1 in Example 6.1.

r1 : (a1, D, 1) ∧ (a2, D, 1) ∧ (a3, D, 2) ∧ (a4, D, 1) ∧ (a5, D, 2) → (d, D, 2).

Computing these factors,wehave that card(‖φ‖) = 3, card(‖φ∧ϕ‖) = 3, card(‖ϕ‖) = 5 and |U| = 10; thus cer(r1) = 1,
sup(r1) = 0.3 and cov(r1) = 0.6.

7. Attribute reduction in IODT

To extract more briefer dominance rules it is necessary to reduce some dispensable attributes in the condition part of a
given interval ordered decision table. In this section, an practical approach to attribute reduction in interval ordered decision
tables is established and an illustrative example is employed to show its mechanism.

Let S = (U, C ∪ {d}, V , f ) be an IODT and d is an overall preference of objects. Denoted by

R>
{d} = {(x, y) : f (x, d) > f (y, d)},

where R>
{d} is a dominance relation of decision attribute d. If R>C ⊆ R>

{d}, then S is called consistent; otherwise it is called
inconsistent. For example, Table 3 is a consistent interval ordered decision table, where C = {a1, a2, a3, a4, a5} is the
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Table 4
The discernibility matrix of Table 3

xi/xj x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 ∅ ∅ ∅ ∅ ∅ a1 · · · a5 ∅ ∅ ∅ ∅
x2 a1 · · · a5 a4 ∅ a1 · · · a5 ∅ a1 · · · a5 ∅ ∅ ∅ ∅
x3 a1a2a3a5 ∅ ∅ ∅ ∅ a1 · · · a5 ∅ ∅ ∅ ∅
x4 a1 · · · a5 a1a3 a1a3a4 ∅ ∅ a1 · · · a5 ∅ ∅ ∅ ∅
x5 ∅ ∅ ∅ ∅ ∅ ∅ ∅ a4 a2a5 a2a5
x6 a1a3 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
x7 ∅ ∅ ∅ ∅ a1 · · · a5 a1 · · · a5 ∅ a1 · · · a5 a1 · · · a5 a1a2a3a5
x8 ∅ ∅ ∅ ∅ a1a3 ∅ ∅ ∅ a2a5 a1a2a3a5
x9 a4 ∅ a4 ∅ a1a3a4 a4 a4 a4 ∅ a1a3
x10 a4 ∅ a4 ∅ a4 a4 a4 a4 a4 ∅

condition attribute set and {d} is the decision attribute set. In other words, any pair (x, y) ∈ R>C belongs to the relation
R>

{d} in this ordered decision table. In this paper, we only deal with attribute reduction of a consistent IODT.

Definition 7.1. Let S = (U, C ∪ {d}, V , f ) be a consistent IODT and A ⊆ C . If R>A ⊆ R>
{d} and R>B 6⊆ R>

{d} for any B ⊂ A, then
we call A a relative attribute reduction of S.

Similar to the idea of reducts of incomplete ODT in [25], we denote by D∗
= {(x, y) : f (x, d) < f (y, d)}, and denote by

Dis∗(x, y) =

{
{a ∈ C : (x, y) 6∈ R>

{a}}, (x, y) 6∈ D∗
;

∅, (x, y) ∈ D∗.

Then Dis∗(x, y) is called a discernibility set for objects x and y and Dis∗ = (Dis∗(x, y) : x, y ∈ U) is called a discernibility
matrix for this IODT.

Similar to complete ordered decision tables and incomplete ordered decision tables, we can get the following property.

Property 7.1. Let S = (U, C ∪ {d}, V , f ) be an IODT, A ⊆ C and Dis∗(x, y) the discernibility attributes set of S with respect to
R>

{d}. Then, R
>

A ⊆ R>
{d} iff A ∩ Dis∗(x, y) 6= ∅ (Dis∗(x, y) 6= ∅).

Proof. This proof is similar to the proof of Property 5.2. �

Definition 7.2. Let S = (U, C ∪ {d}, V , f ) be an IODT, A ⊆ C and Dis∗(x, y) the discernibility attributes set of S with respect
to R>

{d}. Denoted by

M∗
=

∧{∨
{a : a ∈ Dis∗(x, y)} : x, y ∈ U

}
,

thenM∗ is referred to as a discernibility function.

From the definition of discernibility function, we can design a practical approach to relative attribute reduction in an
IODT as follows.

Property 7.2. Let S = (U, C ∪ {d}, V , f ) be an IODT. The minimal disjunctive normal form of discernibility function M∗ is

M∗
=

t∨
k=1

(
qk∧
s=1

ais

)
.

Denoted by Bk = {ais : s = 1, 2, . . . , qk}, then {Bk : k = 1, 2, . . . , t} are the set of all relative attribute reductions of this system.

Proof. It follows directly from Property 7.1 and the definition of minimal disjunctive normal form of the discernibility
function. �

Property 7.2 provides a practical approach to relative attribute reduction in an interval ordered decision table.

Example 7.1. Compute all relative attribute reductions in Table 3.
Table 4 is a discernibility matrix of this consistent ordered decision table, where values of Dis∗(xi, xj) for any pair (xi, xj)

of objects from U are placed.
From Table 4, one can obtain that

M∗
= (a1 ∨ a2 ∨ a3 ∨ a4 ∨ a5) ∧ a4 ∧ (a2 ∨ a5) ∧ (a1 ∨ a2 ∨ a3 ∨ a5) ∧ (a1 ∨ a3) ∧ (a1 ∨ a3 ∨ a4)
= (a2 ∨ a5) ∧ (a1 ∨ a3) ∧ a4
= (a1 ∧ a2 ∧ a4) ∨ (a1 ∧ a4 ∧ a5) ∨ (a2 ∧ a3 ∧ a4) ∨ (a3 ∧ a4 ∧ a5).
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Table 5
An interval ordered decision table about venture investment [29]

Projects Market Technology Management Environment Production Finance Venture

x1 [3, 4] [4, 5] [3, 4] [3, 4] [2, 3] [4, 5] High
x2 [1, 2] [1, 2] [1, 3] [1, 3] [2, 3] [1, 3] Low
x3 [3, 4] [4, 5] [3, 5] [3, 4] [3, 5] [4, 5] High
x4 [2, 3] [4, 5] [2, 3] [2, 4] [2, 3] [3, 5] High
x5 [1, 2] [1, 2] [1, 3] [1, 2] [2, 3] [1, 3] Low

Hence, there are four relative attribute reductions {a1, a2, a4}, {a1, a4, a5}, {a2, a3, a4} and {a3, a4, a5} in this consistent
interval ordered decision table. From this result, we know that the condition attribute a4 is indispensable for this decision
table. Through a relative attribute reduction, one can obtain more briefer dominance rules. For example, by taking the
relative attribute reduction {a1, a2, a4}, the five dominance rules in Example 6.1 can be simply represented as follows.

r1 : (a1, D, 1) ∧ (a2, D, 1) ∧ (a4, D, 1) → (d, >, 2) //supported by objects x5, x7, x8;
r2 : (a1, D, [1, 2]) ∧ (a2, D, 2) ∧ (a4, D, [0, 2]) → (d, >, 2) //supported by objects x9;
r3 : (a1, D, 2) ∧ (a2, D, 2) ∧ (a4, D, [0, 1]) → (d, >, 2) //supported by objects x10;
r4 : (a1, E, 1) ∧ (a2, E, [0, 1]) ∧ (a4, E, 1) → (d, 6, 1) //supported by objects x1, x2, x3, x4; and
r5 : (a1, E, [0, 2]) ∧ (a2, E, [1, 2]) ∧ (a4, E, [1, 2]) → (d, 6, 1) //supported by objects x2, x3, x4, x6

where the rules r1, r2, r3 are certain D-dominance rules and the rules r4, r5 are certain E-dominance rules. �

8. Case study

Venture capital has become an increasingly important source of financing for new companies, particularly when
such companies are operating on the frontier of emerging technologies and markets. It plays an essential role in the
entrepreneurial process [36]. For an investor or decision maker, he may need to adopt a better one from some possible
investment projects or find some directions from existing successful investment projects before investing. The purpose of
this section is, through a venture investment issue, to illustrate how to make a decision by using the approaches proposed
in this paper.

Let us consider an investment issue of a venture investment company [29]. There are five investment projects xi
(i = 1, 2, . . . , 5) can be considered. They can be evaluated from the view of venture factors. Venture factors are classified
into six factors, which are market venture, technology venture, management venture, environment venture, production
venture and finance venture. These six factors are all increasing preference and the value of each project under each factor
is given by a evaluation expert through an interval number. Table 5 is a evaluation table about venture investment given by a
expert [29], where U = {x1, x2, x3, x4, x5}, C = {Market, Technology, Management, Environment, Production, Finance} and
d = {Venture}. For convenience, in the sequel, M1, T ,M2, E, P, F and V will stand for Market, Technology, Management,
Environment, Production, Finance and Venture, respectively.

From Table 5, we have that

U/R>C = {[x1]
>

C , [x2]
>

C , [x3]
>

C , [x4]
>

C , [x5]
>

C },

where [x1]
>

C = {x1, x3}, [x2]
>

C = {x1, x2, x3, x4}, [x3]
>

AT = {x3}, [x4]
>

AT = {x1, x3, x4} and [x5]
>

AT = {x1, x2, x3, x4, x5}.
From the definition of dominance degree, we can get the dominance relation matrix of this table with respect to U/R>C

as 
1 1 0.8 1 1
0.6 1 0.4 0.8 1
1 1 1 1 1
0.8 1 0.6 1 1
0.4 0.8 0.2 0.6 1

 .

Therefore, one can obtain that

DC (x1) = 0.95, DC (x2) = 0.70, DC (x3) = 1.00, DC (x4) = 0.85 and DC (x5) = 0.60.

In what follows, we rank these five projects according to the number of DC (xi). A project with whole dominance degree
implies that it has higher investment venture.

x3 < x1 < x4 < x2 < x5.

Thus, the investment venture of project x3 is highest and that of project x5 is lowest. The decision maker may select the
project x5 to invest.

From Table 5, it is easy to see that d = {D1,D2}, where

D1 = {x2, x5}, D2 = {x1, x3, x4}.
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Table 6
The discernibility matrix of Table 5

xi/xj x1 x2 x3 x4 x5

x1 ∅ ∅ {M2, P} ∅ ∅
x2 ∅ ∅ ∅ ∅ ∅
x3 ∅ ∅ ∅ ∅ ∅
x4 {M1,M2, E, F} ∅ {M1,M2, E, F} ∅ ∅
x5 ∅ {E} ∅ ∅ ∅

In this interval ordered decision table, because only two decision classes are considered, one can know that D>1 = D1 and
D62 = D2. From Definition 6.1, we have that

R>C (D>1 ) = {x1, x3, x4}, R>C (D>1 ) = {x1, x3, x4} and BnC (D
>

1 ) = ∅.

And, we have that

U/R6C = {[x1]
6

C , [x2]
6

C , [x3]
6

C , [x4]
6

C , [x5]
6

C },

where [x1]
6

C = {x1, x2, x4, x5}, [x2]
6

C = {x2, x5}, [x3]
6

AT = {x1, x2, x3, x4, x5}, [x4]
6

AT = {x2, x4, x5} and [x5]
6

AT = {x5}.
Thus, it easily follows from Definition 6.2 that

R>C (D62 ) = {x2, x5}, R>C (D62 ) = {x2, x5} and BnC (D
6

2 ) = ∅.

Therefore, we can obtain the following set of dominance rules from the considered interval ordered decision table:
r1 : (M1, D, [2, 3]) ∧ (T , D, [4, 5]) ∧ (M2, D, [2, 3]) ∧ (E, D, [2, 4]) ∧ (P, D, [2, 3]) ∧ (F , D, [3, 5]) → (V , >,High)

//supported by objects x1, x3, x4;
r2 : (M1, E, [1, 2]) ∧ (T , E, [1, 2]) ∧ (M2, E, [1, 3]) ∧ (E, E, [1, 3]) ∧ (P, E, [2, 3]) ∧ (F , E, [1, 3]) → (V , 6, Low)

//supported by objects x2, x5.
To extract much simpler dominance rules, we compute relative attribute reductions of this decision table. From the

definition of consistency of a decision table, one can know that Table 5 is consistent. Therefore, the relative attribute
reductions of this decision table can be obtained by the proposed attribute-reduction approach in Section 7. Table 6 is the
discernibility matrix of this consistent decision table, where values of Dis∗(xi, xj) for any pair (xi, xj) of projects are placed.

From Table 6, one can obtain that

M∗
= (M2 ∨ P) ∧ (M1 ∨ M2 ∨ E ∨ F) ∧ E
= (M2 ∧ E) ∨ (P ∧ E).

Hence, there are two relative attribute reductions in this consistent interval ordered decision table about venture
investment, which are {Management, Environment} and {Production, Environment}. From this result, we know that the
venture factor Environment is indispensable for this decision problem. Through these two relative attribute reductions, one
can obtain two sets ofmore briefer dominance rules. By taking the relative attribute reduction {Management, Environment},
the two dominance rules in the above part can be simply represented as follows:

r ′

1 : (M2, D, [2, 3]) ∧ (E, D, [2, 4]) → (V , >,High)//supported by objects x1, x3, x4;
r ′

2 : (M2, E, [1, 3]) ∧ (E, E, [1, 3]) → (V , 6, Low)//supported by objects x2, x5.
where the rule r ′

1 is a certain D-dominance rule and the rule r ′

2 is a certain E-dominance rule. And, by taking the relative
attribute reduction {Production, Environment}, the two dominance rules in the above part can be simply represented as
follows:

r ′′

1 : (E, D, [2, 4]) ∧ (P, D, [2, 3]) → (V , >,High) //supported by objects x1, x3, x4;
r ′′

2 : (E, E, [1, 3]) ∧ (P, E, [2, 3]) → (V , 6, Low) //supported by objects x2, x5
where the rule r ′′

1 is a certain D-dominance rule and the rule r ′′

2 is a certain E-dominance rule. Therefore, management
venture, environment venture and production venture are three important venture factors for this investment issue.

9. Conclusions

Rough set theory has been proved to be a useful mathematical tool for classification and prediction. However, as many
real-world problems deal with ordering objects instead of classifying objects, one of the extensions of the classical rough set
approach is the dominance-based rough set approach, which is mainly based on substitution of the indiscernibility relation
by a dominance relation. Interval information systems are an important type of data tables, which are generalizedmodels of
single-valued information systems. We deal with interval ordered information systems and interval ordered decision tables
in present research.

In this paper, we have introduced a dominance relation to interval information systems and have given a rankingmethod
for all objects by using whole dominance degree of each object. Based on this dominance relation, we have established a
rough set approach in this type of OIS,which ismainly based on substitution of the indiscernibility relation by the dominance
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relation R>A . For extracting dominance rules, we have discussed interval ordered decision tables and dominance rules
extracted from this types of decision tables. In order to extract much simpler dominance rules, based on the discernibility
matrices, we have proposed attribute reductions of interval ordered information systems and interval ordered decision
tables that eliminate only information that are not essential from the view of the ordering of objects or dominance rules.
The approaches show how to simplify an interval ordered information system and find much simpler dominance rules
directly from an interval ordered decision table.
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