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Abstract

In this paper, the concept of a granulation order is proposed in an information system. The converse approximation of a
target concept under a granulation order is defined and some of its important properties are obtained, which can be used to
characterize the structure of a set approximation. For a subset of the universe in an information system, its converge degree
is monotonously increasing under a granulation order. This means that a proper family of granulations can be chosen for a target
concept approximation according to user requirements. As an application of the converse approximation, an algorithm based on the
converse approximation called REBCA is designed for decision-rule extraction from a decision table, which has a time complexity
of 0(% |C |2|U [logy|U|), and its practical applications are illustrated by two examples.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, rough set theory developed by Pawlak in [1] has become a popular mathematical framework for the
analysis of vague descriptions of objects. The focus of rough set theory is on the ambiguity caused by limited
discernibility of objects in the domain of discourse. Its key concepts are those of object indiscernibility and set
approximation, and its main perspectives are information view and algebra view [2]. The primary use of rough set
theory has so far mainly been in generating logical rules for classification and prediction using information granules;
thereby making it a prospective tool for pattern recognition, image processing, feature selection, data mining and
knowledge discovery process from large data sets [3-5].

As a recently renewed research topic, granular computing (GrC) is an umbrella term to cover any theories,
methodologies, techniques, and tools that make use of granules in problem solving [6-8]. Basic ideas of GrC
have appeared in related fields, such as interval analysis, rough set theory, cluster analysis, machine learning,
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databases, and many other. As follows, for our further development, we briefly review research on GrC. L.A. Zadeh
identified three basic concepts that underlie the process of human cognition, namely, granulation, organization, and
causation. “Granulation involves decomposition of whole into parts, organization involves integration of parts into
whole, and causation involves association of causes and effects”. A general framework of granular computing was
presented by Zadeh [6] in the context of fuzzy set theory. Some authors [9-11] examined granular computing in
connection with the theory of rough sets. Yao [12] suggested the use of hierarchical granulations for the study of
stratified rough set approximations. Lin [13] and Yao [14] studied granular computing using neighborhood systems.
Klir [15] investigated some basic issues of computing with granular computing with granular probabilities. The
theory of quotient space had been extended into the theory of fuzzy quotient space based on fuzzy equivalence
relation [16]. Liang and Shi [17] established the relationship among knowledge granulation, information entropy,
granularity measure and rough entropy in rough set theory. Liang and Qian [18,19] studied rough sets approximation
based on dynamic granulation (positive approximation) and its application for rule extracting. In the view of
granular computing, a general concept described by a set is always characterized via the so-called upper and
lower approximations under static granulation in rough set theory, and a static boundary region of the concept is
induced by the upper and lower approximations. However, in rough sets approximation under dynamic granulation,
a general concept described by using the positive approximation is characterized via variational upper and lower
approximations under dynamic granulation, which is an aspect of people’s comprehensive solving ability at some
different granulations.

In recent years, rough set theory has been widely applied to extracted from decision tables. Decision tables have two
cases: consistent decision tables and inconsistent decision tables. Ziarko [20] proposed a method of rule extracting
from decision tables by reducing boundary area in decision tables. There are at least three approaches to reducing
boundary area. The first and simplest technique is to try to increase the decision table “resolution” by adding more
attributes or by increasing the precision of existing ones. The second approach is to provide another layer of decision
tables, by treating each subdomain of objects matching the description of an elementary set of the boundary area of
the original decision tables as a domain (the universe) by itself. The third proposed method of boundary area reduction
is based on the idea of treating the subdomain of the original domain corresponding to the whole boundary area as the
new domain by itself. However, in fact, the classification accuracy (the approximation measure) [21] is constrained
according to decision requirements or preference of decision makers in general. An obvious question is how to extract
much simpler decision rules on the basis of keeping an approximation measure. Liang and Qian [18,19] presented
the notion of positive approximation and applied it for rule extracting from consistent decision tables in rough set
theory. In [21], a given relative knowledge reduction determines a family of decision rules for a decision table. That
is to say, relative knowledge reduction must be obtained before rule extracting from decision tables. Many types of
knowledge reductions have been proposed [22-33] in the area of rough set and each of the reductions aimed at some
basic requirement. However, the complexity of these attribute reductions are much worse, which is inconvenient to
extract decision rules from decision tables. Our research aims to find a method for rule extracting without computing
relative attribute reduction of a decision table in rough set theory. Based on these studies, the main objectives of this
paper are to establish the structure of the approximation of a target concept by introducing a notion of a granulation
order, investigate some of its important properties, and apply it to rule extracting from decision tables.

The rest of this paper is organized as follows. In Section 2, we review some basic concepts and properties of the
positive approximation. The definitions of converse approximations of a target concept and a target decision (target
partition) based on dynamic granulation are presented respectively, and some of their very useful properties are educed
in Section 3. In Section 4, a new rule-extracting method of decision tables based on converse approximation in rough
set theory is proposed and time complexity of this algorithm is analysed. And we show how the algorithm to extract
decision rules by two illustrative examples (a consistent decision table and an inconsistent decision table). Finally,
Section 5 concludes the whole paper.

2. Positive approximation

In this section we briefly introduce some existing basic concepts and properties of the positive approximation that
are relative to the research in this paper. These concepts and properties will be helpful for us to understand the notion
of a granulation order and set approximation under dynamic granulation and to establish converse approximation in
this paper.
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Let S = (U, A) be an information system, where U is a non-empty, finite set of objects and A is a non-empty finite
set of attributes. Let P, Q € 24 be two attribute subsets, where 24 is a power set of A. By IND(P) and IND(Q), we
denote the indiscernible relations induced by P and Q, respectively. A partial relation < on 24 is defined in [25] as
follows: P < Q (Q > P)if and only if, for every P; € U/IND(P), there exists Q; € U/IND(Q) such that P; C Q;,
where U/IND(P) = {Py, P>, ..., Py} and U/IND(Q) = {Q1, O, ..., O} are partitions induced by IND(P) and
IND(Q), respectively. A partition induced by an equivalence relation provides a granulation world for describing a
target concept. Thus, a sequence of granulation worlds from coarse to fine can be determined by a sequence of attribute
sets with granulations from coarse to fine in the power set of A. The positive approximation gives the definition of the
upper and lower approximations of a target concept under a given granulation order [18]. It can be used to extract from
a given decision table decision rules with granulations from coarse to fine. The definition of the positive approximation
is as follows.

Definition 2.1 (/18]). Let S = (U, A) be an information system, X € U and P = {Ry, Rz, ..., R,} a family of
a_ttribute sets with Ry > Ry > --- > R, (R; € 2%). Let P, = {Ry, Ry, ..., R;}, we define P;-upper approximation
P;(X) and P;-lower approximation P;(X) of P;-positive approximation of X as

Pi(X) = Ri(X),
i
PX) = ReXa,
k=1
where X| = X and X; = X — U\Z{ R X fork =2,3,....ni=1,2,....n.

Theorem 2.1 ([18]). Let S = (U, A) be an information system, X € U and P = {R1, R, ..., R,} a family of
attribute sets with Ry > Ry > --- > R, (R; € 2A). Let P, ={Ry, R, ..., R;}, thenVP; (i =1,2,...,n), we have

Pi(X) S X C P(X),
Pi(X) S Py(X) C - C Pu(X).

Theorem 2.1 states that the lower approximation of the positive approximation of a target concept enlarges as a
granulation order becomes longer through adding an equivalence relation, which will help to exactly describe the
target concept.

Theorem 2.2 ([18]). Let S = (U, A) be an information system, X C U and P = {R1, R>, ..., R,} a family of
attribute sets with Ry > Ry > --- > R, (R; € 2A). Let P, ={R{,R2,..., R;}, thenVP; (i=1,2,...,n), we have

ap (X)) <ap,(X) <--- <ap,(X),
1P (X)] . . . .
o0 S the approximation measure of X with respect to P.

The approximation measure was introduced to the positive approximation in order to describe the uncertainty of
a target concept under a granulation order [18]. From this theorem, one can see that the approximation measure of a
target concept enlarges as a granulation order becomes longer through adding an equivalence relation.

The main motivation of the positive approximation is to extend rough set approximation under static granulation to
rough set approximation under dynamic granulation and to approach a target concept by the change in a granulation
order. Through the positive approximation, one can extract from a given decision table a family of decision rules with
granulations from coarse to fine. In some practical issues, however, we need to mining decision rules on the basis of
keeping the approximation measure of a target concept. Obviously, the positive approximation appears not to be suited
for rule extracting from decision tables on the basis of keeping the approximation measure of every decision class in
decision partition on the universe. Therefore, in the next section, we introduce a notion of converse approximation in
rough set theory.

where ap,(X) =

3. Converse approximation

In this section, we introduce a new set-approximation approach called a converse approximation and investigate
some of its important properties.
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Let S = (U, A) be an information system and R € 24. A partition induced by the equivalence relation
IND(R), provides a granulation world for describing a target concept X. So a sequence of attribute sets R; € 24
i=1,2,...,n)with Rf < R, < --- < R, can determine a sequence of granulation worlds from fine to coarse.

A converse approximation can give the definition of the upper and lower approximations of a target concept under
a granulation order. In the following, we introduce the definition of the converse approximation of a target set under
dynamic granulation.

Definition 3.1. Let S = (U, A) be an information system, X € U and P = {Ry, R2, ..., R,} a family (iattribute
setswith R < Ry < --- < R, (R; € 24). Let P; = {R1, Ry, ..., R;}, we define P;-upper approximation P;(X) and
P;-lower approximation P; (X) of P;-converse approximation of X as

Pi(X) = Ri(X),

i—1
Pi(X)=RiX; U <U(&Xk - Rk+1xk)) :
k=1

whereX1=Xanka+1=&kaork=1,2,...,n,i=1,2,...,n.

Definition 3.1 shows that a target concept can be approached by the change in the lower approximation P;(X)
and the upper approximation P;(X). In particular, we call P,(X) = R;(X) and Py(X) = Ry X, U (UZ;%(&X;C —
Ri+1Xx)) P-upper approximation and P-lower approximation of P-converse approximation of X, respectively.

Theorem 3.1. Let S = (U, A) be an information system, X C U and P = {Ry, Ry, ..., R,} afamily of attribute sets
with Ry < Ry <--- <R, (R; € 2A). Let P, ={R1,Ry,...,R;}, thenVP; (i =1,2,...,n), we have that

Pi(X) S X C P(X),
Pi(X)=Py(X) == Py(X).

Proof. If follows from Definition 3.1 that RiX; CX; and X;4+1 € X, hold for RiX;. Therefore, one can obtain that

i—1
Pi(X) = RiX; U (U(&Xk - Rk+lxk>)
k=1

= RiX;UR X| =R X| =R|X,

ie. PI(X) = Py(X) = - = Py(X) = Ri(X).
Moreover, it is clear from Definition 3.1 that

Pi(X) = Ri(X) S X C Pi(X) = Pi(X).
Thus P;(X) € X € P;(X). This completes the proof. [

Theorem 3.1 states that the lower approximation and the upper approximation of P-converse approximation of a
target concept do not change as a granulation order becomes longer through adding equivalence relations, which gives
a new method of describing a target concept. In particular, the number of equivalence classes in P;(X) decreases as
the granulation order become longer. In other words, some new equivalence classes under different granulations are
induced by combining some known equivalence classes in the lower approximation of the target concept.

In order to illustrate the essence that the converse approximation is concentrated on the changes in the construction
of the target concept X (equivalence classes in lower approximation of X with respect to P), we can redefine
P-converse approximation of X by using some equivalence classes on U. Therefore, the structure of P-upper
approximation P (X) and P-lower approximation P (X) of P-converse approximation of X are represented as follows:

[P(X)] = {[x]g, | [x]r, N X # B},

n i—1
[P(X)] = {U[x]R,. | [x]g, € RiX; U (U(&Xk - Rk+1xk>)} :

i=1 k=1
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where X| = X, Xy41 = RgXy fori = 1,2,...,n and [x]g, represents the equivalence class obtaining x in the
partition U/R;. It follows from the structure of [ P(X)] that

Ry Xp — Rpr1Xx = {[x]r, | [x]R, € Rk Xk Nbng, (Xp), x € U},

where bng,_ (X)) = Ri+1(Xx) — Rk+1(Xk). That is to say, these objects in Ry Xy — Ry41 Xy will result in a new
boundary region if they are described by Ryy1. We only research new lower approximation induced by dynamic
granulation order every time for describing the target concept.

Example 3.1. Let U = {e1, e2, €3, e4, €5, 6, €7, 8}, X = {e1,e2,e3,¢e4,¢€7,e8} and U/R; = {{e1}, {e2}, {e3, e4},
{es, ec}, {e7, est), U/Ra = {{e1}, {e2}, {es, ec}, {e3, e4, €7, es}} be two partitions on U
Obviously, Ry < R» holds. Thus one can construct two granulation orders (a family of equivalence relations)
Py ={Ri}and P, = {R1, Ry}.
By computing the converse approximation of X with respect to P, one can easily obtain that
[P1(X)] = {{e1}. {ea}. {e3. ea}. {e7, es}),
[P1(X)] = {{e1}, {e2}, {e3, ea}, {7, es}},
[P2(X)] = {{e1}. {ea}. {e3. ea}. {e7, es}}

and

[P2(X)] = {{e1}, {ea}, {e3, e4, €7, es}},

where {e1}, {e2} can be induced by both equivalence relation R and equivalence relation R, {e3, e4, €7, eg} is only
obtained by equivalence relation R;. That is to say, the target concept X is described by using granulation P; = {R}
and P, = {R(, R;}. O

In order to discuss the properties of the converse approximation based on dynamic granulation, we need to
introduce the definition of C. Assume A, B be two families of classical sets, where A = {Aj, Ao, ..., Au},
B = {B1,By,...,B,}. Wesay A C B if and only if, for any A; € A, there exists B; € B such that A; C B;
(i <m, j < n). From this denotation, we can obtain the following theorem.

Theorem 3.2. Let S = (U, A) be an information system, X C U and P = {R1, R, ..., Ry} a family of attribute sets
with Ry < Ry < -+ < R, (R; € 24). Let P; = {R1,Ry,...,R;}, thenVP; (i =1,2,...,n), we have

[PIX)] E [P2(X)] E - E [Pa(X)].

Proof. It follows from Definition 3.1 and Theorem 3.1 that
Pi(X) = P(X) =--- = Py(X) = Ri(X).
Suppose 1 <i < j < n, then R; < R;. Therefore, one can get that

i—1
[Pi(X)] = R X; U <U(ﬁxk - Rkﬂxk))

k=1

i—1 j=1
C (U(&Xk ~ Rk+1Xk)) U (U(&Xk —~ RkHXk)) UR;X,
k=1 k=i T
j—1
=R;X; U (U(&Xk - Rk+1Xk)>
k=1
= [P;(X)].

Therefore [P (X)] C [P2(X)] E - - - E [P,(X)]. This completes the proof. [

Theorem 3.2 states that the number of classes in the lower approximation of P-converse approximation of a
target concept decreases as the granulation order become longer through adding equivalence relations, and some new
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equivalence classes are induced by combining known equivalence classes in the lower approximation of the target
concept. This mechanism can reduce the number of equivalence classes for describing a target concept on the basis
IP(X)| . . . —
PO which can simply the construction of the approximation of a
target concept. In fact, through the converse approximation, we can more clearly understand the rough approximation
of a target concept.

Let § = (U, A) be an information system, R € 24 a subset of attributes on A and I = {X1,X2,...., X} a

partition on U. Lower approximation and upper approximation of I" with respect to R are defined by

of keeping the approximation measure «p (X) =

={RX|,RX2, ..., RXp},
= {Exl,EXQ, .. ,ﬁXm}

In the view of describing the target concept by using equivalence classes, we need to define a new measure
to discuss the converge situation about equivalence classes in a lower approximation, which will be helpful in
understanding the construction of the target concept in rough set theory. For this objective, we introduce the following
notion called a converge degree.

Definition 3.2. Let S = (U, A) be an information system, R € 24 a subset of attributes on A and I’ =
{X1, X2, ..., X;n} apartition on U. Converge degree of I" with respect to R as

- |Xz| o 2 Jj
c(R,I') = E ol E p (X;),
i=1 j=1

where s; is the number of equivalence classes in RX;, p(X l] ) = ‘|X_| and X; J (1 < j <s;)is an equivalence class in
RX;.

Obviously, 0 < ¢(R, I') < 1. In particular, _

(Dif I' = {X}, then ¢(R, ") = Y_1", I‘){j‘l Z P (X]) = Zs’_l p (X]) i.e., the converge degree of I" with
respect to R degenerates into the converge degree of X with respect to R, denoted by c¢(R, X);

(2)if U/R=w={{x}|x € U}, thenc(R, ") = 37", 'l’{]l‘ x ‘l;‘llz =

(3)if U/R = § = {U}, then ¢(R, I') achieves its minimum value ¢(R, ') = ) /L % x 0 = 0; and

(4)if U/R = T, then c(R, I') achieves its maximum value c(R, I') = Y/, % x1=1.

Let S = (U, A) be an information system, P = {Ry, Rz, ..., R,} a family of attribute sets with R < R, <--- <
R, (R; € 2*)and I' = {X1, X3, ..., X,,} be a partition on U. Lower approximation and upper approximation of I’
with respect to P are defined by

= ={£Xl’£xzv"'9£Xm}’
PI' ={PXy,PX>,..., PX,).

Similar to Definition 3.2, we can define a converge degree of I" with respect to P by
ZXil RN )
e(P.I) =3 T D P,
i=1 j=1

. J .
where s; is the number of equivalence classes in [P X;], p(Xl.]) = % and Xl.] (1 < j < sj)is an equivalence

class in [PX;]. It is clear that 0 < ¢(P, I") < 1. In particular, c(P, I") degenerates into C(P, X) if I' = X, i.e.,

c(P, I = ijl %, where s is the number of equivalence classes in [P (X)], which represents the converge degree
of X with respect to P.

In the following, we investigate two important properties of converge degree.

Theorem 3.3. Let S = (U, A) be an information system, X C U and P = {Ry, Ra, ..., Ry} afamily of attribute sets
with Ry < Ry <--- <X R, (R; € ZA). Let P, ={R1{, Ry, ..., R;}, thenVP; (i=1,2,...,n), we have

C(P19X)SC(P2»X)SSC(PH7X)
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Proof. From Theorem 3.2, it is clear that
[PIXO]E [PAX)] E -+ E [P(X)].
Suppose 1 <i < j <n, [ﬁ(X)] ={A, Ay, ..., Ay} and [ﬁ(X)] = {By, By, ..., By}, then [P;(X)] E [P;(X)]

and m > n. That is to say, there may exist a partition {Cy, C3, ..., C,} of {1,2, ..., m} such that B; = Ulec, Aj,
t=1,2,...,n. Therefore, one can obtain that
c(Pj, X) = |X|2 Z'

WZ(;C' )
|X|2 ZZ' |X|2 Z'

t=11eC;
= c(P;, X).

Thus c(P1, X) < c(P2, X) <--- < c(Py, X). This completes the proof. [

Theorem 34. Let S = (U, A) be an information system, I' = {X1, X2, ..., X} a partition on U and P =
{R1, Ra, ..., Ry} a family of attribute sets with Rf < R, <X --- < R, (R; € 2A). Let P; = {R{,R2,...,R;},
thenVP; (i=1,2,...,n), we have

C(Plap)SC(P27F)§'SC(PIDF)

Proof. It follows that from Theorem 3.3 that c(Py, X;) < c(P2, X;) < --- < c(Py, X;) for any X; (i < m). Suppose
1 <k <t <n,thenc(P, X;) < c(P;, X;). Therefore, one can obtain that

(P, T) = Z T Z 2(x}) = Z—xc(Pk,X)
- <rq

— X
B i=1 |U|
=c(P, I).

c(Pr, Xi)

Thus c(P1, I") < c(Pp, ') <--- < c(Py,, I'). This completes the proof. [

Theorems 3.3 and 3.4 show that the converge degree of X; € I' with respect to P; increases and the number of
equivalence classes for describing the target concept X; decreases as a granulation order becomes longer through
adding equivalence relations. Since the converse approximation can clearly describe and simply the structures of
the lower and upper approximation of a target concept on the basis of keeping the approximation measure, it may
have some potential applications in rough set theory, such as description of multi-targets concepts, approximation
classification and rule extraction from decision tables.

4. Rule extracting based on the converse approximation

Rough set theory is always used to mine some patterns in the form of “if ..., then ...” decision rules from decision
tables. More exactly, the decision rules say that if some condition attributes have given values, then some decision
attributes have other given values. In this section, as an application of the converse approximation, we apply this
approach for decision-rule extracting from two types of decision tables (consistent decision tables and inconsistent
decision tables). A rule-extracting algorithm based on the converse approximation called REBCA is designed to
extract decision rules from a decision table, its time complexity is analysed and two illustrative examples are also
employed to show the mechanism of algorithm REBCA.
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Let S = (U, CUD) with CN D # @ be an information system with decision attributes, we always call S a decision
table, where C and D are condition and decision attribute sets respectively. If C < D (U/IND(C) € U/IND(D)),
then § is a consistent decision table, otherwise we call it an inconsistent decision table [24,32]. In general, we
design different rule-extracting algorithms according to these two kinds of decision tables. In the view of the
converse approximation based on dynamic granulation, the decision classification induced by decision attributes can
be regarded as the target classification (some target concepts) and the condition attribute sets can be used to construct
a granulation order.

Let S = (U, C U D) be a decision table, the significance of c € C — C’ (C’ C C) with respect to D is defined by

Sigg/ () = ycrugey(D) — yer (D),

where yc/(D) = il posc/ (D) = 7l Uxev/mpep) €' X |-

Generally, we can obtain some more useful decision rules by combining rules through deleting some condition
attributes in decision tables. Based on the target classes, the converse approximation gives a mechanism that can be
used to combine decision rules on the basis of keeping the confidence of each decision rule. One can know how the
mechanism works from the following algorithm.

Algorithm. REBCA (for extracting decision rules from a decision table)
Input: decision table S = (U, C U D);
Output: decision rules Rule.
(1) Compute decision classes U/IND(D) = {X1, X2, ..., X}
(2) From j =1tom Do
Let Cy < C, P(1) < {{C1}}.
(2.1) Fromk =1to |C|—1Do
For any ¢ € Cy, compute the significance siggk (c).
Let Cx41 < Cy — co, where ¢ : siggk (cg) = min{siggk (c), c € Ci}.
Let P(k+ 1) < P(k) U {{Crs+1}};// P(k + 1) is the granulation order induced
by Cr and Cy41;
(2.2) Compute [P(IC)(X)];
(2.3) Put every decision rule des([x]) — des(X ;) into the rule base rule(j), where
[x] € [P(CD(X )]

(3) Output Rule = UT:] rule(j).

Obviously, the generation of decision rules is not based on a reduct of a decision table but X; € U/IND(D) and
a granulation order P; induced by X ; and C in algorithm REBCA. Furthermore, the number of decision rules can be
largely reduced on the basis of keeping that all decision rules are all certain rules in a decision table.

By using REBCA algorithm, the time complexity to extract decision rules from a decision table is polynomial.

At step (1), the time complexity for computing a decision partition is O (|U|?).

At step (2), we need to compute the complexity of each of three steps respectively.

For (2.1), Since |C| — 1 is the maximum value for the circle times, the time complexity for constructing P; is

2

For (2.2), the time complexity for computing [P (|C|)(X;)]is O(|C||U 1)
For (2.3), the time complexity for putting each decision rule into rule base is O (| X;|);

Therefore, the time complexity of step (2) is
m(CP+ICD 0 |~
0(—2 U+ 1x;

m clc] —1
3 (0 (%w) +o(CUP) + 0<|le>>
j=l "~

cl(C| -1
O(IC| = DIUP +(C| = DIUP +---+|UPH = 0 (MW);

_0 (m<|C|22+ €D

U + |U|) :

At step (3), the time complexity is O (|U|).
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Table 1

A consistent decision table [18]

U Attributes

a b d e f

1 3 2 3 0 2 1
2 2 2 3 0 2 1
3 1 0 2 0 1 1
4 3 1 3 0 2 1
5 2 0 3 0 2 1
6 0 0 1 0 0 0
7 3 2 0 1 1 0
8 1 0 1 0 0 0
9 2 0 2 1 1 0

10 1 1 3 1 0 0

11 1 0 2 0 1 1

12 3 2 0 1 1 0

Thus the time complexity of algorithm REBCA is

m(|C1> + |C|)

2
mwn+o< .

2 m. 272
W|+w0+omm=0(5wuw).
In fact, the time complexity of this algorithm can be reduced as O (%5 |C|?|U|log>|U)) if we compute a classification
by adopting ranking technique.

Remark. Algorithm REBCA is different from existing algorithms based on attribute reduct for extracting decision
rules from decision tables. The time complexity of a rule-extracting algorithm based on attribute reduct is
o(CPIUP). Obviously, the time complexity of algorithm REBCA is much smaller than those of the existing
algorithms based on attribute reduct. In particular, its size partially depends on the number of decision classes m.
In many practical applications, m is always smaller than the number of condition attributes |C|. Therefore, the time
complexity of algorithm REBCA is largely reduced relative to those of the existing algorithms based on attribute
reduct for extracting decision rules from decision tables.

In order to discuss applications of this algorithm, two types of decision tables will be examined, which are
consistent decision tables and inconsistent decision tables, As follows, we show how algorithm REBCA to extract
decision rules from decision tables by two illustrative examples. Firstly, we focus on a consistent decision table.

Example 4.1. A consistent decision table S = (U, C U D) is given by Table 1 [18], where C = {a, b, c,d} is
condition attribute set and D = {f} is decision attribute set. By using algorithm REBCA, we can extract decision
rules from Table 1.

By computing, it follows that

U/D ={{1,2,3,4,5,11},{6,7,8,9, 10, 12}}.
Let Xy = 1{1,2,3,4,5,11} and X, = {6,7,8,9,10,12}. From REBCA, we have that P =
{{a,b,c,d, e}, {a,b,c, e}, {a,c, e}, {a, e}, {e}}. From the definition of converse approximation, one can obtain that
[P(XD]={{3, 11}, {1,2,4,5}}, [P(X2)] = {{7, 12}, {9}, {6, 8, 10}}.
Therefore, several decision rules can be extracted as follows:
des({1, 2,4,5}) — des(X1), ie.,(e=2)— (f=1);
des({3, 11}) — des(Xy), ie,(a=1,e=2)— (f=1);
des({6, 8, 10}) — des(X3), 1i.e.,(e=0)— (f =0);
des({9}) — des(X»), ie.,(@a=2,e=1)— (f=0);
des({7, 12}) — des(X3), ie.,(a@a=3,e=1)— (f=0).

For intuition, these five decision rules extracted by REBCA from the decision table S are listed in Table 2.
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Table 2
Decision rules extracted from the decision table Sy
Rule Attributes
a e f

r 2 1
r 1 1 1
r3 0 0
r4 3 1 0
rs 2 1 0
Table 3
An inconsistent decision table
U Attributes

ay ap as ay d
1 1 0 0 0 1
2 0 1 1 1 2
3 0 1 0 0 2
4 0 1 2 0 2
5 0 1 0 0 1
6 0 1 0 0 1

This example shows the mechanism of the decision-rule extracting algorithm based on the converse approximation
in a consistent decision table. In fact, attribute set {a, e} is a relative reduct of condition attribute set C in decision
table S; (the notion of relative reduct is from the literature [32]) and these decision rules in Table 2 are also the same
as the rule sets extracted from the algorithm based on attribute reduct. However, the time complexity of rule extracting
algorithm based on the converse approximation is much smaller than the time complexity of the algorithm based on
attribute reduct. [

Then, we investigate how to extract decision rules from an inconsistent decision table through using algorithm
REBCA. The following example will be helpful in understanding its mechanism.

Example 4.2. An inconsistent decision table S, = (U, C U D) is given by Table 3, where C = {ay, a2, a3, a4} is
condition attribute set and D = {d} is decision attribute set. By using algorithm REBCA, we can extract decision
rules from Table 3.

By computing, it follows that

U/D = {{1,5,6},{2,3,4}}.
Let X1 = {1, 5,6} and X, = {2, 3, 4}. From REBCA, we have that

P ={{a1, a2, a3, as}, {az, a3, as}, {az, az}, {as}}.

From the definition of converse approximation, one can obtain that
[P(X1)] = {1}}, [P(X2)] = {{2,4}}.

Therefore, two certain decision rules can be extracted as follows:
des({1}) — des(Xy), 1i.e.,(a=0,a3=0)— (d=1);
des({2,4}) — des(X3), ie,(ax=1, a3=1)— (d =2).

And two uncertain decision rules are also acquired from the construction of [F(X D] —[P(X1)] and [F(Xz)] —
[P(X>)] as follows:

’

des({3, 5, 6}) — des(X;), 1ie.,(a =1, a3=0)— (d =2)withu =

’

des({3, 5, 6}) — des(X3), 1ie.,(a =1, a3=0)— (d=1)withu =

W[ N W —
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Table 4
Decision rules extracted from the decision table S,
Rule Attributes

ay as d
r 0 0 1
1) 1 1 2
r3 1 0 2
ry4 1 0 1

where p denotes the uncertain measure of a decision rule [15]. For intuition, these four decision rules extracted by
REBCA from the decision table S, are listed in Table 4.

This example shows the mechanism of the decision-rule extracting algorithm based on the converse approximation
in inconsistent decision tables. In fact, attribute set {a;, a3} is a relative reduct of condition attribute set C in this
decision table (the notion of relative reduct is from the literature [32]), and these decision rules are also the same
as rule sets obtained from the algorithm based on attribute reduct. Therefore, we can extract decision rules from an
inconsistent decision table through using REBCA algorithm with smaller time complexity. [

From the above analyses, it is easy to see that by using algorithm REBCA one can extract decision rules from
both a consistent decision table and an inconsistent decision table. Unlike some rule-extracting approaches based on
attribute reduct, the time complexity of this algorithm is only O(%|C 12|U |log,|U|). Hence, this approach may be
used to effectively extract decision rules from practical data sets.

5. Conclusions

In this paper we have extended rough set approximation under static granulation to rough set approximation
under dynamic granulation, which is called the converse approximation of a target concept. The concept of converse
approximation is mainly based on a granulation order from fine to coarse. For a subset of the universe, its converge
degree is monotonously increasing as a granulation order becomes longer. This means that a target concept or a target
classification can be approximated by the change in the converse approximation induced by a granulation order. As
an application of the converse approximation, an algorithm called REBCA has been proposed for extracting decision
rules from a decision table. Two illustrative examples (a consistent decision table and an inconsistent decision table)
have been employed to show the validity of this algorithm. Moreover, the time complexity of algorithm REBCA is
much smaller than those of existing rule-extracting approaches based on attribute reduct. These results will be helpful
in efficiently extracting decision rules from practical large-scale data sets.
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