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Abstract

Cross-validation (CV) is a simple and universal tool to estimate generaliza-
tion ability, however, existing CVs do not work well for periodicity, over-
lapping or correlation of series. The corresponding three criteria aimed at
describing these properties are presented. Based on them, we put forward a
novel Markov cross-validation (M-CV), whose data partition can be seen as
a Markov process. The partition ensures that samples in each subset are nei-
ther too close nor too far. In doing so, overfitting model or information loss
of series, which may result in underestimation or overestimation of the error,
can be avoided. Furthermore, subsets from M-CV partition could well repre-
sent the original series, and it may be extended to time series or stream data
sampling. Theoretical analysis shows that M-CV is the unique one which
meets all of above criteria among current CVs. In addition, the error estima-
tion on subsets is proved to have less variance than that on original series,
therefore it ensures the stability of M-CV. Experimental results demonstrate
that the proposed M-CV has lower bias, variance and time consumption than
other CVs.
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1. Introduction

Time series appears in many fields, e.g. economics, meteorology, finance,
medicine and many others. Time series processing techniques mainly in-
clude prediction, smoothing, regression and others. Time series prediction
(auto-regression) aims to forecast future values by the past series. Time series
smoothing is to build an approximating function that attempts to capture im-
portant patterns of series. And time series regression is to create a functional
relation between the response series and exogenous variables. Evaluating the
performance of models of time series is an important problem when choosing
the better one among various available models or parameters. Many aspects
of models, e.g. generalization ability or error, complexity, interpretability,
should be considered. For time series models, generalization error may be
the most important factor, so most literatures about comparing time series
models focus on it. The key problem for comparison of generalization ability
is how to estimate generalization error.

There are some traditional approaches to estimate generalization error at
present. Hold-out is an estimator with low computational complexity. Its
downside is that the results are highly dependent on the choice for data split
[20]. The bootstrap estimator is known to have better performance on small
samples. However, in all situations of severe overfit, the estimator is down-
wardly biased [6]. Cross-validation is an estimator widely used to estimate
generalization error for its practicability and flexibility. The above estimators
have been compared in related researches [10,11]. Kohavi [11] studied above
methods, and the results indicated that the best method for model selec-
tion is 10-fold stratified cross-validation. Kim [10] performed an empirical
study to compare the 0.632C bootstrap estimator with the repeated 10-fold
cross-validation and the repeated one-third hold-out estimator, and the re-
sults showed that the repeated CV estimator is recommended for general use.
Currently, cross-validation is widely accepted in data analysis and machine
learning, and serves as a standard procedure for performance estimation and
model selection.

There are some new CVs for time series in recent years. Bergmeir [4]

proposed blocked cross-validation (BCV) in evaluating prediction accuracy.
Opsomer [17] found that cross-validation will fail when the correlation be-
tween errors of time series exists. To solve the correlation, three new CVs
called modified cross-validation (MCV), partitioned cross-validation (PCV)
and hv-blocked cross-validation (hvBCV) were presented [7,19].
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How to measure the generalization error is crucial for comparing time
series models because different measurements may provide opposite results,
e.g., models with low mean absolute error could have large mean relative
error. Salzberg [23] proposed using k-fold CV followed by appropriate hy-
pothesis test to compare models rather than the average accuracy. Many
subsequent studies about comparing algorithms are in the schema of cross-
validation and hypothesis test (CV & HT)[8]. The variance of error esti-
mation is needed in most hypothesis tests. In addition, Rodriguez [21,22]

compared the estimator for different folds of CV and concluded that if the
aim is to compare classifiers with similar bias, 2-fold CV is advocated be-
cause it has the lowest variance. Therefore, the variance of estimator is very
important for comparing models.

The variance of errors is usually estimated before hypothesis tests. On
the one hand, the classical variance estimator would be grossly underesti-
mated due to the overlap between training and testing sets [2,3,23]. On the
other hand, if series autocorrelation is present, the test error will also be
underestimated, but CV is not able to detect this [19]. Existing CVs do not
solve above problems at the same time.

This paper aims to design an effective error estimation method for time se-
ries models. Considering the periodicity, overlapping or correlation of series,
M-CV with Markov property is proposed. Its randomness and independence
could overcome the above problems, and the equiprobability and represen-
tativeness could balance CV subsets. Furthermore, its low variance could
promote the error estimation. These characters ensure that M-CV could
provide an effective and accurate estimation of generalization error.

The paper is organized as follows. In Section 2 three criteria are summa-
rized for model evaluation of time series. Based on them, M-CV methodology
is proposed. In Section 3 and section 4, some sound properties of M-CV are
subsequently illustrated and it is compared with other CVs in theory and
experiments. Section 5 concludes.

2. M-CV methodology

2.1. Time series model

This paper focuses on time series smoothing model. Time series smooth-
ing or fitting is a basic representation technique which can be used for dis-
tance measures, time series compression, clustering and so on [24].
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For a common time series S = {yti}, (i = 1, 2, · · · , n), the conventional
time series smoothing aims to estimate a function f(·) which could reflect the
real series to some extent. It is essentially single-input regression. Time series
could be expressed as: yti = f(ti) + εi, where εi denotes noise component.

2.2. CV criteria

2.2.1. Randomness of partition

Seasonal and cyclical components usually exist in time series. If series
is partitioned periodically in CV procedure, models are likely to learn bi-
ased information and may produce inaccurate error estimation. This can be
illustrated by the following example.

Fig. 1 shows monthly series of carbon dioxide content in Mauna Loa
within 16 years (1965.1∼1980.12) [9]. Two sub-series (series in April and
October) and smoothed curves are plotted in Fig. 1. It can be observed that
the original series has an obvious seasonal component. The values in April
and October are peaks and valleys of series, respectively. Obviously, the two
smoothed curves are biased for the whole series. Moreover, if a model is
trained on peak points and tested on valley points, the prediction error will
be overestimated. Thus periodic partition should be avoided. This can be
achieved by the partition with randomness.
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Fig. 1. Smoothed curves on periodical sub-series
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2.2.2. Independence of test errors

The variance of test errors is usually estimated by sample variance. How-
ever, if we do not take into account the error correlations due to the overlap
between training or test sets, naive variance estimator will seriously underes-
timate the variance [2,20]. There is no overlap between test sets because each
example of the original data set is used once and only once as a test example
[2]. For most k-fold CVs, there are additional dependencies between training
sets. An exception is 2-fold CV whose test errors are independent since the
training sets do not overlap [1,2,8].

2.2.3. Independence between training set and test set

If a series is autocorrelated, the model is easily overfitted and the test
error will be underestimated [19]. Independence can be assured by leaving
a certain distance between training and test samples. In other words, if a
sample appears in test set, all other correlated samples have to be removed
from the training set to avoid overfitting on the sample. Thus CV partition on
time series has to leave a certain distance to keep the independence between
training set and test set [4,5,12].

2.3. M-CV

To meet the above criteria, we proposed a novel Markov cross-validation.
The main idea is to partition dataset into a few subsets which could well
represent the original series, and complete 2-fold CV on each subset. Here
come three questions. (1) How many subsets would be suitable? (2) How
to partition dataset to obtain representative subsets? (3) How to complete
2-fold CV?

To leave a certain distance between training set and test set, the original
series S = {yt}, (t = 1, 2, · · · , n) is split into positive subset S+ and negative
subset S− firstly. Just a random split is far away from meeting above criteria.

On one hand, if the distance of adjacent samples in the same subset (S+

or S−) is too large, the representativeness of the subset will be damaged.
Thus we set a rule for the split that three adjacent samples of S cannot
belong to the same subset. The rule can be achieved by the following design.

yt ∈





S+ if yt−1, yt−2 ∈ S−
S− if yt−1, yt−2 ∈ S+

S+ or S− otherwise
(1)
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On the other hand, the partition of positive and negative subsets couldn’t
meet the third criterion because samples in the same subset may be adjacent.
Thus further split is needed for the two subsets. To keep the balance, each
subset is split into m sub-subsets. Here m is a parameter related to series
autocorrelation order p, i.e. large p needs large distance between training set
and test set which can be produced by large m. More precisely, M-CV with
too little m couldn’t meet the third criterion, and too large m will damage
the representativeness of each sub-subset. The calculation of the minimal m
which meets the third criterion is given by

m =

{
2p/3 if p%3 = 0
2 bp/3c+ 2 otherwise

(2)

where % is modulo operation, and b·c denotes round down function.
After partitioning S to S+/S− and finding m, the following steps become

easy. As the first partition (S+/S−) is partly random, the second partition
can be periodic. Every m-th sample in S+ is selected as an element of a
sub-subset, then S+ is split into m sub-subsets (Nos. 1∼ m) just like the
systematic sampling. S− can be split into m sub-subset (Nos. (m + 1) ∼
2m) in the same way. So we have

⋃m
u=1 Su = S+,

⋃2m
u=m+1 Su = S− and

S+
⋃
S− = S. After the two steps, the original series S is partitioned into

2m sub-subsets, and thus it is named 2m partition.
For the third question, the training set and test set of 2-fold CV are

selected from a sub-subset according to whether the ordinal number of each
sample in the sub-subset is odd or even. 2-fold CV is completed on all 2m
sub-subsets in this way.

The above steps show the way of partitioning the original series into 2m
sub-subsets and the way of completing 2-fold CV on each set. As the key
first partition has the property that the attribution of any sample depends
only upon those of the former two, the new CV is named Markov CV. The
detailed implement is shown in Algorithm 1.

To show M-CV intuitively, an example is given below. Fig. 2 shows that
100 equal spaced samples in a series are partitioned into four subsets as p = 2.
It can be seen that samples of subsets are not circularly selected from the
original series. Each sample is trained and tested only once and there is no
overlap between training set and test set. Generally, the time distance of yti
and ytj is |ti − tj|. And the time distance (hereafter called distance simply)
between solid line and dash line in each subset, i.e., the distance between
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Algorithm 1 The procedure of M-CV.

Require:
Time series S = {yt}, (t = 1, 2, · · · , n) with autocorrelation order p;

Ensure:
Prediction errors êu;

1: if p%3 = 0 then
2: m = 2p/3 + 1;
3: m = 2 bp/3c+ 2.
4: end if // end the calculation of partition number 2m
5: i=1, j=-1;
6: The state (d) is randomly initialized by one of the following four cases:
7: d1 = i++, d2 = i++;
8: d1 = i++, d2 = j−−;
9: d1 = j−−, d2 = i++;

10: d1 = j−−, d2 = j−−.
11: for t = 3, · · · , n do
12: if (dt−1 > 0)&(dt−2 > 0) then
13: dt = j−−;
14: else {(dt−1 < 0)&(dt−2 < 0)}
15: dt = i++;
16: else {rd > 0.5}
17: //rd is a random number from a uniform distribution on [0,1]
18: dt = j−−;
19: else
20: dt = i++;
21: end if
22: end for // end Markov iteration
23: Id = d%m+ 1 + I(d > 0) ·m; //I(·) is indicator function
24: Su = {yt|Idt = u}, u = 1, 2, · · · , 2m. // end 2m subsets partition
25: for u = 1, 2, · · · , 2m do
26: Divide Su into two groups or folds Suo and Sue according to whether

the ordinal number of a sample in Su is odd or even.
27: Obtain prediction errors êu by completing 2-fold CV with Suo and Sue.
28: end for // end 2-fold CV on each subset

7
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training set and test set, is beyond the autocorrelation order. In a word,
M-CV satisfies the above three criteria in this case.

Index of series
0 10 20 30 40 50 60 70 80 90 100

S4e

S4o

S3e

S3o

S2e

S2o

S1e

S1o

Fig. 2. An example of M-CV (p=2, 2m=4)

3. Properties discussion and comparison

3.1. Properties of M-CV

3.1.1. Randomness and equiprobability of partition

When the former two samples do not belong to the same subset (S+ or
S−), the next one is partitioned into any subset randomly (see Eq. (1)). So
M-CV has randomness and meets the first criterion. The following propo-
sition shows that the M-CV partition has not only randomness but also
equiprobability, so the subsets are relatively balanced.

Proposition 1. Each sample has the same probability of belonging to any
subset in M-CV, i.e. P{yt ∈ Su} = 1

2m
, (u = 1, 2, · · · , 2m) for any t (t =

1, 2, · · · , n).
Proof. Suppose that subset pair of any two adjacent samples yt, yt+1 has four
cases or states: St1(S+S+), St2(S−S−), St3(S+S−) and St4(S−S+) . Let αt
be the probability vector of four states for yt, yt+1.

8
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Considering the partition of positive and negative subsets (see Eq. (1)),
the data partition can be seen as a Markov process. The initial state prob-
abilities of being one of above four states can be denoted as a vector α1 =(

1
4

1
4

1
4

1
4

)
, i.e., the subsets including y1, y2 have the same probability of

being any one of the four states. From the iteration step, the state transition
probability matrix is:

M =




0 0 1 0
0 0 0 1
0 1

2
0 1

2
1
2

0 1
2

0


 . (3)

We will prove the proposition by mathematical induction. It is obvious
α1(1) = α1(2) = α1(3) = α1(4). Assume αt(1) = αt(2) and αt(3) = αt(4), αt
can then be denoted as

(
c c 1

2
− c 1

2
− c

)
, where c is a constant between

0 and 0.5.
αt+1 = αt · M =

(
1−2c

4
1−2c

4
1+2c

4
1+2c

4

)
. It can be observed that

αt+1(1) = αt+1(2) and αt+1(3) = αt+1(4) still hold. We can conclude that
αt(1) = αt(2) and αt(3) = αt(4) hold for any t. Thus P{yt ∈ S+} =
αt(1) + αt(3) = αt(2) + αt(4) = P{yt ∈ S−} = 1

2
.

Both S+ and S− are split into m balanced sub-subsets, so P{yt ∈ Su} =
1

2m
holds for any t.

The above property indicates that each sample randomly belongs to a
subset under Markov constraint. The randomness of 2m partition in M-CV
solves the drawbacks of periodic partition.

3.1.2. Boundedness of sample distance

Without loss of generality, assume the time distance between any two
adjacent samples in original series to be 1. The bound of distance between
samples of a subset is discussed in Proposition 2.

Proposition 2. The distance between any two adjacent samples yuk , yuk+1

of a subset Su = {yuk}, k = 1, 2, · · · , n/2m,u ∈ {1, 2, · · · , 2m}, is bounded.
That is 3m−1

2
≤ |uk − uk+1| ≤ 3m.

Proof. Assume that Su ⊂ S+. In S+ , there must be m− 1 samples between
any two adjacent samples of Su. For any m, there are at most two samples of
S− between any two adjacent samples of S+. It means that the maximal dis-
tance between any two adjacent samples of S+ is 3. When any two adjacent

9
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samples of S+ are separated by two samples of S−, the distance between any
two adjacent samples of Su reaches the maximum, i.e. max|uk−uk−1| = 3m.

When any two adjacent samples of S− are separated by two samples of
S+, S+ is the most compact, and the distance between any two adjacent
samples of Su reaches the minimum. If m%2 = 0, the minimal distance
between any two adjacent samples of Su is 3m

2
; otherwise it is 3(m−1)

2
+ 1.

Therefore, |uk − uk+1| ≥ 3m−1
2

.
It gives the same result when Su ⊂ S−.

To illustrate this proposition, two examples are given. Let Id be a vector
about subsets, and Id(t) = u means yt ∈ Su.

For m = 4, S1

⋃
S2

⋃
S3

⋃
S4 = S+ and S5

⋃
S6

⋃
S7

⋃
S8 = S−. When

Id = (· · · , 1, 2, 5, 3, 4, 6, 1, · · · ), any two adjacent samples of S− are separated
by two samples of S+. Now two examples in S1 have the minimal distance
(3m/2 = 6); When Id = (· · · , 1, 5, 6, 2, 7, 8, 3, 5, 6, 4, 7, 8, 1, · · · ), any two
adjacent samples of S+ are separated by two samples of S−, and two examples
in S1 have the maximal distance (3m = 12).

For m = 5, S1

⋃
S2

⋃
S3

⋃
S4

⋃
S5 = S+ and S6

⋃
S7

⋃
S8

⋃
S9

⋃
S10 =

S−. When Id = (· · · , 1, 2, 6, 3, 4, 7, 5, 1, · · · ), any two adjacent samples of S−

are separated by two samples of S+ and two examples in S1 have the minimal
distance ((3m − 1)/2 = 7); When Id = (· · · , 1, 6, 7, 2, 8, 9, 3, 10, 6, 4, 7, 8, 5,
9, 10, 1, · · · ), any two adjacent samples of S+ are separated by two samples
of S− and two examples in S1 have the maximal distance (3m = 15).

The boundedness of sample distance shows that any two adjacent samples
in any M-CV sub-subset will be neither too close nor too far. As 2-fold CV
is applied on each sub-subset, the distance between training sample and test
sample is also bounded.

If samples in training and test sets have a short distance, the model will
be easily overfitted. If they have a long distance, the test errors are usually
overestimated. The boundedness of M-CV prevents the above two situations.
Furthermore, the lower bound makes M-CV satisfying criterion 3, and the
upper bound helps each subset to represent the original series well.

3.1.3. Independences

The independences described in criteria 2 and 3 are discussed in the
following propositions.

Proposition 3. There is no overlap between training or test sets of M-CV.

10
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The result obviously holds as it is a special case of 2-fold CV on each
subset. Therefore, M-CV meets criterion 2.

Proposition 4. The distance between any two samples in a subset is beyond
the autocorrelation order, i.e., |uk − uk′| > p.

Proof. According to Eq. (2), for yuk , yuk′ in subset Su, when m%2 = 1 (or
p%3 = 0), |uk − uk′ | ≥ min{|uk−1 − uk|, |uk − uk+1|} ≥ 3m−1

2
= p + 1 > p;

When m%2 = 0 (or p%3 6= 0), |uk − uk′ | ≥ min{|uk−1 − uk|, |uk − uk+1|} ≥
3m
2

= 3 · bp
3
c+ 3 > p.

And thus |uk − uk′ | > p holds for any p.

It means that the distance between any training sample and test sample
in a subset is larger than the autocorrelation order p. So M-CV satisfies
criterion 3.

From the above analysis, M-CV matches all three criteria summarized in
subsection 2.2. Two more good properties will be described in the following
subsections.

3.1.4. Representativeness

Proposition 2 shows that the distance between any two samples in a
subset is not larger than 1.5 times of the partition number (2m), and each
sample in a subset is related to samples within the distance p. So any subset
contains information of more than n/2m samples as series autocorrelation.
The upper bound of distance ensures that M-CV could well represent the
original series.

A definition which reflects the representativeness of a subset in relation
to original series is given here.

Definition 1. Coverage rata (CR) of a subset Su in relation to S = {yt}, (t =
1, 2, · · · , n):

CR(Su) =

∑n
t=1 I

(
min
yuk∈Su

|uk − t| ≤ p

)

n
.

CR denotes how many samples in the original series are related to samples
of the subset (within a distance p). It measures the capability of retaining
the information of the original series. Fig. 3 shows an example. The original
series is partitioned into four subsets as p=2. Fig. 3 plots the first subset S1

11
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and its coverage information. The solid lines denote the indexes of samples
of S1. The dash lines denote the indexes of samples uncovered by S1. And
dash dot lines denote the indexes of samples covered by S1. There are three
uncovered samples whose minimal distance from any samples of S1 is larger
than p. In this case, CR(S1) = 97%.

Index of series
0 10 20 30 40 50 60 70 80 90 100

Covered

S1

Unconverd

Fig. 3. Coverage of S1 in relation to the original series

Why the partition number is 2m, but not 2(m− 1) or 2(m + 1)? It will
be answered by the third criterion and representativeness.

Table 1 lists the autocorrelation order and three kinds of partition num-
ber. By the lower bound in Proposition 2, it is not hard to find that 2m
is the minimal partition number in M-CV which could make the minimal
distance between samples of subsets be larger than p. It means that M-CV
with partition number less than 2m may not meet criterion 3.

Fig. 4 shows the minimal gaps between samples of subsets with 2(m −
1), 2m, and 2(m + 1) partitions. In Fig. 4, the minimal gaps have the
following sequence: 2(m+ 1) > 2m > 2(m− 1). In other words, the minimal
gap increases with the partition number. And the minimal gaps with 2(m+1)
and 2m partitions are beyond p, but it is not for 2(m−1) partition. So M-CV
with 2(m− 1) partition doesn’t meet criterion 3.

12
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Table 1. Different partition numbers for p
p 2(m-1) 2m 2(m+1)

1 2 4 6
2 2 4 6
3 4 6 8
4 6 8 10
5 6 8 10
6 8 10 12
7 10 12 14
8 10 12 14
9 12 14 16
10 14 16 18

p
1 2 3 4 5 6 7 8 9 10

M
in

im
al

 g
ap

0

2

4

6

8

10

12

14
2(m-1) partition
2m partition
2(m+1) partition
Minimal gap=p

Fig. 4. Minimal gaps of different partitions

The representativeness helps M-CV find the best partition number. The
average CRs of M-CV with 2(m−1), 2m, and 2(m+1) partitions are displayed
in Fig. 5. It can be observed that CR increases with p for each partition
and is very close or equal to 100% when p > 4. The average CRs have
the following sequence: 2(m − 1) > 2m > 2(m + 1). So M-CV subsets
with less partition number have better representativeness. It also shows that
subsets from 2m partition still retain almost all of the information in the
original series except for p=1 in which situation CR is not bad (75%). In
general, considering criterion 3 and the representativeness, 2m partition is

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the best balance for M-CV. The test errors are usually overestimated if the
model is trained on part of original dataset. While it prevents M-CV from
overestimating error that CRs of M-CV subsets approach to 100%.

Fig. 5. Average CRs of different partitions (simulated on 10000 samples,
repeated 10 times)

3.1.5. Low variance

As most subsets could well represent the original data set, it can be
assumed that the performance of model trained on all data set is similar to
that on any subset. Or particularly, test errors from all data and any subset
have the same distribution, i.e., V ar(ê) = V ar(êu), where V ar(·) is variance

14
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function, ei and euk are test errors of models trained on S and subset Su,

and ê = 1
2

∑n
i=1 ei, êu = 2m

n

∑n/2m
k=1 euk , êM−CV = 1

2m

∑2m
u=1 êu.

Proposition 5. The variance of M-CV: êM−CV = V ar(ê)
2m

.

Proof. As Su
⋂
Su′ = ∅ for u 6= u′, êu is independent of êu′ .

V ar(êM−CV ) = V ar( 1
2m

∑2m
u=1 êu) = 1

4m2

∑2m
u=1 V ar(êu) = V ar(êu)

2m
= V ar(ê)

2m
.

It means that the variance of M-CV is less than that of CV on the original
data set. In other words, 2-fold CV after 2m partition is better than a direct
2-fold CV on original data set from the view of variance. The variance
difference between them will be more notable for larger m or p because the
variance of M-CV is inversely proportional to m. Note that m and p are fixed
values for a given series. M-CV variance cannot be regulated by changing m
or p.

3.2. Comparisons of time series CVs

M-CV is compared with other four time series CVs (BCV, MCV, PCV,
hvBCV). Their main ideas are listed in Table 2.

Table 2. CVs for time series
CVs Parameter Full name Main idea

BCV b Blocked CV Samples are partitioned into b continues subset or block.
MCV l Modified CV Leaving out the 2l+1 samples surrounding the test observation.
PCV g Partitioned CV Samples are partitioned into g subsets by taking every g-th sam-

ples and CV is performed for each subset.
hvBCV h,v h-v Blocked CV Remove v samples around 2h+1 test samples.
M-CV p/m Markov CV The partition of each sample is independent of others except for

the former two.

Take the case of a series with autocorrelation order 2, the procedures of
above CVs (in a round) are displayed in Fig. 6. It can be observed that test
samples keep a certain distance for all CVs except BCV. Most samples are
trained on each train-test round for BCV, MCV and hvBCV, and their time
complexities are larger than those of the other two.

Some theoretical properties and time complexity are listed in Table 3. ’
√

’
and ’×’ denote whether CVs meet three criteria in subsection 2.2. Because
samples are partitioned or validated randomly in M-CV and PCV, both of
them meet criterion 1. As samples in all CVs except for M-CV could be
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Fig. 6. Five CVs in one train-test round (solid line: training set; dash line:
test set)

overlapped between training sets, only M-CV meets criterion 2. The minimal
distance between training and test sets could be set by parameters of CVs
except for BCV, thus only BCV doesn’t meet criterion 3. Table 3 indicates
that only M-CV meets all three criteria. Assume that the time complexity
of a smoothing model is n2, we could conclude that PCV and M-CV don’t
raise the complexity.

Table 3. Comparisons of five CVs

CVs Criterion 1 Criterion 2 Criterion 3
Complexity

(for n2 model)

BCV × × × n3

MCV × × √
n3

PCV
√ × √

n2

hvBCV × × √
n3

M-CV
√ √ √

n2
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4. Experiments and analysis

In this section, five CVs are compared in respect of accuracy, efficiency
and stability. And M-CV errors of four time series models are compared by
statistical test.

4.1. Data sets, models and evaluation indicators

Ten synthetic or real-world time series (see Table 4) are smoothed by four
models with relatively good parameters (see Table 5) in our experiments.

Table 4. Datasets

Dataset
Sampling

Size Start End Source
interval

1 Sinc data (1) 0.012 1000 -6 6 sin(πt)/(πt) + ε, ε ∼ N(0, 0.052)
2 Sinc data (2) 0.012 1000 -6 6 sin(πt)/(πt) + ε, ε ∼ AR(2), V ar(ε) = 0.052

3 Sinc data (3) 0.012 1000 -6 6 sin(πt)/(πt) + ε, ε ∼ N(0, 0.32)
4 Sinc data (4) 0.012 1000 -6 6 sin(πt)/(πt) + ε, ε ∼ AR(1), V ar(ε) = 0.32

5 Gold price Month 426 1978/12 2014/5 World Gold Council: https://www.gold.org/
6 Gold price Day 1000 2010/8/13 2014/6/12 World Gold Council: https://www.gold.org/
7 Count of total rental bikes Day 730 2011/1/1 2012/12/30 UCI: http://archive.ics.uci.edu/ml/index.html
8 EER in China Month 248 1994/1 2014/8 BIS: http://www.bis.org/
9 Unemployment Month 728 1954/1 2014/8 https://datamarket.com/
10 Dow-Jones industrial index Month 290 1968/8 1992/9 https://datamarket.com/

Table 5. Parameters of time series smoothing models

Model Parameter
Values on series Nos.

1 2 3 4 5 6 7 8 9 10

BS Smoothing parameter 0.1 0.5 1 5 10 20 50 100 200 500
LPR Bandwidth 0.1 0.5 1 5 10 20 50 100 200 500
GS Bandwidth 0.01 0.1 0.5 1 2 5 10 20 30 50
EP Bandwidth 0.01 0.05 0.1 0.5 1 2 5 8 10 15

B-spline smoothing (BS) model is a combination of polynomial pieces and
difference penalties. The smoothness is controlled by a penalty parameter
[13]. For local polynomial regression (LPR), a low-degree polynomial is fitted
to a subset of the data, with explanatory variable values near the point whose
response is estimated [16]. In Nadaraya-Watson kernel regression, smoothing
function is a weighted estimate with kernel functions like Gaussian kernel
(GS) and Epanechnikov kernel (EP) [14,18].

A small part (20% in our experiments) of time series is randomly selected
as out-set. The remaining part called in-set is partitioned according to each
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CV procedure. Time series smoothing models are trained and tested on in-
set, then the estimate of prediction error (P̂E) could be calculated from
test error. P̂E in the mean squared error (MSE) form is calculated in the
following way:

P̂E =
1

n1

n1∑

i=1

[yi − f(ti)]
2 (4)

where f(·) denotes a trained model, yi is a sample in testing set, and n1 is
the size of testing set. The variance is calculated by estimations of all folds.
The true prediction error (PE) is obtained by validating a well-trained model
fin−set(·) on out-set which consists of n2 samples.

PE =
1

n2

n2∑

i=1

[yi − fin−set(ti)]2 (5)

P̂E of a good CV should be close to PE. To be consistent with Ref. [5],
here we adopt mean absolute predictive accuracy error (MAPAE) which is
defined as:

MAPAE =
1

r

r∑

i=1

|P̂Ei − PEi| (6)

where r is the number of out-set. In the following experiments, out-set is
randomly selected 10 times for each series. Generally, the less MAPAE is,
the better the CV estimator is.

The accuracy, efficiency and stability of M-CV are measured by MAPAE,
time consumption and variance, respectively.

4.2. Performances of CVs

Five CVs, including BCV(b = 5), MCV(l = p), PCV(g = 3), hvBCV(h =
p, v = 5) and M-CV, are compared in this subsection. Here p is estimated by
autocorrelation function of series. Tables 6-8 show MAPAE, time consump-
tion and variance of five CVs with four models on ten series, respectively.
The least values are in bold font. They are sorted in ascending order among
different CVs, then we can obtain their ranks. Figs. 7-9 show the ranks of
MAPAE, time consumption and variance, respectively.

From Table 6, the frequencies of having least MAPAE for five CVs are
0/40, 5/40, 4/40, 5/40 and 26/40, respectively. They are 6/10, 8/10, 7/10,
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Fig. 7. Rank of five CVs’ MAPAEs

5/10 for M-CV on four models, respectively. For ten series, there are 4/4 on
two series, 3/4 on three series, 2/4 on four series and 1/4 on one series for
M-CV. When M-CV does not have the least MAPAE, its result is comparable
with the least (less than 110% of the least MAPAE) in 6 cases. It means that
the real frequency of being accurate CV for M-CV reaches 80% (32/40).

In Fig. 7, mean ranks have the following sequence: M-CV<MCV<PCV
<hvBCV<BCV. BCV has the largest rank in most cases. MCV, PCV and
hvBCV usually have median ranks. M-CV is more likely to have the least
rank (minimal MAPAE). Thus it is more accurate than other CVs.

In Table 7, the frequencies of having least time consumptions for five CVs
are 6/40, 0/40, 3/40, 1/40 and 30/40, respectively. They are 9/10, 10/10,
6/10, 5/10 for M-CV on four models, respectively. So M-CV with BS or LPR
tends to have the least time consumption. There are 4/4 on three series, 3/4
on four series and 2/4 on three series for M-CV. It means M-CV has the least
time consumption on most series. When M-CV does not have the least time
consumption, its result is comparable with the least (less than 110% of the
least time consumptions) in 8 cases. So the real frequency of being efficient
CV for M-CV reaches 95% (38/40).

In Fig. 8, mean ranks have the following sequence: M-CV<PCV<BCV
<hvBCV <MCV. The least rank appears more frequently in M-CV and PCV
because they have less complexity (see Table 3). MCV and hvBCV usually
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Fig. 8. Rank of five CVs’ time consumptions

spend more time as models are trained almost n times on most samples.
Generally speaking, M-CV has less time complexity in most cases and it is
an efficient CV.

In Table 8, the frequencies of having the least variance for five CVs are
0/40, 12/40, 6/40, 1/40 and 21/40, respectively. They are 2/10, 7/10, 7/10,
5/10 for M-CV on four models, respectively. So M-CV with LPR or GS tends
to have the least variance. There are 4/4 on one series, 3/4 on two series, 2/4
on four series and 1/4 on three series for M-CV. Generally, M-CV is superior
to others in respect of variance.

In Fig. 9, mean ranks have the following sequence: M-CV<MCV<hvBCV
<PCV<BCV. BCV has the largest variance in most cases. MCV, PCV and
hvBCV usually have median variances. M-CV is more likely to have minimal
variance. Thus it is a stable error estimator.

Above experimental results indicate that M-CV is advocated for estimat-
ing the error of time series model.

4.3. Model comparisons and top models

As M-CV errors of any two models are paired results, their comparison
is completed by paired tests. The detailed procedures are as follows.

1) Normality test. Test whether the two sets of errors are normal dis-
tributed by Kolmogorov-Smirnov (K-S) test [15];
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Fig. 9. Rank of five CVs’ variances

2) Paired test. If they pass the normality test, compare them by paired
t-test. If not, compare them by Wilcoxon signed-rank test [15].

Although there is only one smoothing model with minimal error for a
series, good models may not be unique because the errors of two models
may have no significant difference. Top models are some models which have
no significant difference with minimal error model (MEM) by above tests.
Usually we choose the model with least prediction error, such as model with
minimal root of mean square error (RMSE), and ignore other top models.
However, top models are worth exploration. For example, we could select a
more efficient model among top models. These models also could be used for
ensemble learning to improve the accuracy as their good performance and
different modelling mechanisms.

Table 9 shows M-CV errors (in RMSE form) and the results of model
comparison on each series. There is more than one top model on five series
(Nos. 1, 2, 4, 7, 10).

The time consumptions of top models are listed in Table 10. It can be
seen that the top models with minimal time consumption on series Nos. 1,
2, 4, 7 (EP, GS, EP, EP) could save a lot time expense than MEM on the
premise of no loss in accuracy from statistical perspective.
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Table 9. Comparison of M-CV errors
Series BS LPR GS EP MEM Top models

1 0.022 0.025 0.023 0.023 BS BS, GS, EP
2 0.014 0.014 0.014 0.02 BS BS, LPR, GS
3 0.055 0.064 0.053 0.056 GS GS
4 0.067 0.072 0.07 0.066 BS BS, EP
5 54.68 43.44 47.73 42.73 EP EP
6 13.03 10.84 19.45 17.36 LPR LPR
7 1138 1207 1085 1099 GS GS, EP
8 2.392 10.031 2.298 1.942 EP EP
9 0.327 0.273 0.424 0.25 EP EP
10 25.33 22.75 22.85 22.69 EP LPR, GS, EP

a. RMSEs of top models are shown in bold font.

Table 10. Time consumptions (seconds) of top models
Series BS LPR GS EP MEM Recommended

1 0.343 - 0.027 0.016 0.343 0.016
2 0.334 0.127 0.025 - 0.334 0.025
4 0.387 - - 0.014 0.387 0.014
7 - - 0.018 0.013 0.018 0.013
10 - 0.019 0.01 0.009 0.009 0.009

5. Conclusions

Traditional cross-validation may be inaccurate in estimating the error of
time series model when facing periodicity, overlapping or correlation. M-CV
is proposed to tackle these problems. In M-CV, a series is divided into 2m
subsets. The distances between samples in each subset are within the spe-
cific limits, and thus it can avoid overfitting model or information loss of
original series. In view of the representativeness of M-CV subset, it may pro-
vide a novel way for data stream sampling. Moreover, the partition number
(2m) is determined automatically by the autocorrelation order of series, so
it does not suffer from subjective interference in parameter tuning. Numeri-
cal experiments support that M-CV is an accurate, efficient and stable error
estimation for time series smoothing.

The good properties of M-CV are based on accurate estimation of auto-
correlation order. If not, its performance will be discounted and M-CV needs
to be repaired or improved. In addition, time series regression faces problems
similar to time series smoothing on dependence series. And M-CV provides
a useful reference for the error estimation of time series regression models.
These will be part of our future works.
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