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Abstract Attribute reduction (feature selection) has

become an important challenge in areas of pattern recog-

nition, machine learning, data mining and knowledge dis-

covery. Based on attribute reduction, one can extract fuzzy

decision rules from a fuzzy decision table. As consistency

is one of several criteria for evaluating the decision per-

formance of a decision-rule set, in this paper, we devote to

present a consistency-preserving attribute reduction in

fuzzy rough set framework. Through constructing the

membership function of an object, we first introduce a

consistency measure to assess the consistencies of a fuzzy

target set and a fuzzy decision table, which underlies a

foundation for attribute reduction algorithm. Then, we

derive two attribute significance measures based on the

proposed consistency measure and design a forward greedy

algorithm (ARBC) for attribute reduction from both

numerical and nominal data sets. Numerical experiments

show the validity of the proposed algorithm from search

strategy and heuristic function in the meaning of consis-

tency. Number of the selected features is the least for a

given threshold of consistency measure.

Keywords Fuzzy rough set � Fuzzy decision tables �
Consistency measure � Attribute reduction

1 Introduction

Data mining and knowledge discovery from large-scale

data sets is a challenging problem. In recent years, we

encounter databases in which both the number of objects

becomes higher and their dimensionality (number of attri-

butes) gets larger as well. Tens, hundreds, and even thou-

sands of attributes are stored in many real-world

application databases. Attributes that are irrelevant to

knowledge discovery tasks may deteriorate the perfor-

mance of learning algorithms [19, 24, 25, 32, 43]. In other

words, storing and processing all attributes (both relevant

and irrelevant) could be computationally very expensive

and impractical. To deal with this issue, as was pointed out

by Hu et al. [12], some attributes can be omitted, which

will not seriously impact the resulting classification (rec-

ognition) error, cf. Therefore, the omission of some attri-

butes could not only be tolerable but even desirable

relatively to the costs involved in such cases [26]. This task

is often called attribute reduction or feature selection.

Rough set theory proposed by Pawlak is a popular

mathematical framework for pattern recognition, image

processing, feature selection, neuro computing, conflict

analysis, decision support, data mining and knowledge

discovery from large data sets [9, 30, 31, 32, 39, 42, 45].

Rough-set-based data analysis starts from a data table,

called information systems. The information systems con-

tain data about objects of interest, characterized by a finite

set of attributes. It is often interesting to discover some

dependency relationships (patterns). An information sys-

tem where condition attributes and decision attributes are

distinguished is called a decision table (or a decision

information system). From a decision table one can induce

some patterns in form of ‘‘if . . .; then. . .’’ decision rules.

More exactly, the decision rules say that if some condition
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attributes have given values, then some decision attributes

have other given values.

In Pawlak’s rough set model, incompletion, fuzziness

and probability are not taken into consideration. Pawlak’s

rough set model just works in nominal data domain, for

crisp equivalence relations and equivalence classes are the

foundation of the model [27]. However, there are usually

incompletion, fuzziness and probability of data in real-

world applications. To deal with these cases, in the past

10 years, several extensions of the rough set model have

been proposed in terms of various requirements, such as

variable precision rough set (VPRS) model [1, 24, 54],

rough set model based on tolerance relation [17, 18],

Bayesian rough set model [37], fuzzy rough set model [3,

5, 40, 41, 49, 51], rough fuzzy set model [5], covering

generalized rough sets [46, 52, 53], rough set model under

dynamic granulation [21, 32], and multi-granulations rough

set model (MGRS) [28, 29]. In a recently published paper,

Hu et al. [11] established a new rough set framework called

fuzzy probabilistic approximation spaces, which introduces

probability into fuzzy rough set model and leads to a tool

for dealing with randomness, roughness and fuzziness in

real-world applications. In the fuzzy rough set model, for a

fuzzy approximation space, if condition attributes and

decision attributes are distinguished, then it is called a

fuzzy decision table (or a fuzzy decision information

system).

Attribute reduction in rough set theory offers a sys-

tematic theoretic framework for consistency-based feature

selection, which does not attempt to maximize the class

separability but rather attempts to retain the discernible

ability of original features for the objects from the universe

[15, 39] . Through using various attribute reductions, one

can obtain the corresponding feature subsets and discover

corresponding knowledge. Therefore, how to evaluate the

decision performance of an attribute reduction approach

becomes a very important issue. The solution of this

problem may be helpful for determining which of knowl-

edge discovery approaches is preferred for a practical

problem in the context of fuzzy decision tables.

In this paper, from the viewpoint of decision perfor-

mance evaluation, we will construct an attribute reduction

approach in the framework of fuzzy rough sets, which can

preserve the consistency of a given fuzzy decision table.

We will also perform a series of experimental analyses for

illustrating the validity of the proposed approach from

search strategy and heuristic function.

In the next section, we summarize existing research on

decision performance evaluation and attribute reduction in

the context of rough set theory. In Sect. 3, some pre-

liminary concepts are briefly reviewed. In Sect. 4, a con-

sistency measure is defined in the context of a general

fuzzy decision table and the relationship between the

consistency measure and inclusion degree is established. In

Sect. 5, based on the consistency measure, we develop a

consistency-preserving attribute reduction approach in

fuzzy rough set framework. In Sect. 6, we present a series

of experimental studies that focus on the quantification of

consistency of the selected attributes from search strategy

and heuristic function on six public data sets. Finally,

Sect. 7 concludes this paper by bring some remarks and

discussions.

2 Relative works

Generally speaking, a set of decision rules can be generated

from a decision table by adopting any kind of rule

extraction methods [7, 8, 10, 14]. In recent years, how to

evaluate the decision performance of a decision rule has

become a very important issue in rough set theory [14].

Based on information entropy, Düntsch and Gediga [4]

suggested some uncertainty measures of a decision rule and

proposed three criteria for model selection. Greco, Pawlak

and Slowinski applied some well-known confirmation

measures within the rough set approach to discover rela-

tionships in data in terms of decision rules. For a decision

rule set consisting of every decision rule induced from a

decision table, three parameters are traditionally associ-

ated: the strength, the certainty factor and the coverage

factor of the rule [9]. In many practical decision problems,

we always adopt several rule-extraction methods for the

same decision table. In this case, it is very important to

check whether or not each of the rule-extraction approa-

ches adopted is suitable for the given decision table. In

other words, it is desirable to evaluate the decision per-

formance of the decision-rule set extracted by each of the

rule-extraction approaches. This strategy can help a deci-

sion maker to determine which of rule-extraction methods

is preferred for a given decision table. However, all of the

above measures for this purpose are only defined for a

single decision rule and are not suitable for evaluating the

decision performance of a decision-rule set. There are two

more kinds of measures [27], which are approximation

accuracy for decision classification and consistency degree

for a decision table. Although these two measures, in some

sense, could be regarded as measures for evaluating the

decision performance of all decision rules generated from a

complete decision table, they have some limitations. For

instance, the certainty and consistency of a rule set could

not be well characterized by the approximation accuracy

and consistency degree when their values reaches zero. To

overcome the shortcomings of the existing measures, [30,

31, 33] systemically investigate how to calculate the con-

sistency of each of three kinds of decision tables, which are

complete decision tables, incomplete decision tables and
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the decision tables in the context of maximal consistent

blocks. To date, however, how to assess the decision per-

formance of a decision-rule set extracted from a fuzzy

decision table has not been reported. Like the measures

(a; b and c), the certainty, consistency and support of a

decision-rule set extracted from a fuzzy decision table

should be also studied to assess their decision performance.

In fact, the approximation accuracy and approximation

quality can be extended for evaluating the decision per-

formance of a fuzzy decision table. Nevertheless, these two

extensions have the same limitations, which still cannot

give elaborate depictions of decision performance of a

decision-rule set extracted from a fuzzy decision table. To

overcome this drawback, this paper will present a new

consistency measure for evaluating the decision perfor-

mance of a fuzzy decision table.

As we know, the basic idea of rough set theory is to

unravel an optimal set of decision rules from a decision

table via an objective knowledge induction process which

determines the necessary and sufficient attributes consti-

tuting the rules for decision making [44]. Attribute reduc-

tion is thus an outstanding contribution made by rough set

research to data analysis. For further developments, as

follows, we briefly review some attribute reduction

approaches from decision tables. Many types of attribute

reduction have been proposed in the analysis of informa-

tion systems and decision tables, each of them aimed at

some basic requirements. The concept of the b-reduct

proposed by Ziarko provides a suite of reduction methods

in the variable precision rough set model [54]. An attribute

reduction method was proposed for knowledge reduction in

random information systems [42]. Five kinds of attribute

reducts and their relationships in inconsistent systems were

investigated by Kryszkiewicz [18], Li et al. [20] and Mi

et al. [24], respectively. By eliminating some rigorous

conditions required by the distribution reduct, a maximum

distribution reduct was introduced by Mi et al. [24]. In

order to obtain all attribute reducts of a given data set,

Skowron proposed a discernibility matrix method [34], in

which any two objects determine one feature subset that

can distinguish them. According to the discernibility matrix

viewpoint, Qian et al. [29] provided a technique of feature

selection for multi-granulation rough set model. The above

feature selection methods are usually time consuming and

intolerable to process large-scale data. To support efficient

feature selection, many heuristic attribute reduction meth-

ods have been developed in rough set theory, cf. [12, 13,

22, 23, 38]. Each of these methods preserves a particular

property of a given information system. For convenience,

we review only four representative heuristic attribute

reduction methods. Hu and Cercone [13] proposed a heu-

ristic feature selection method, called positive-region

reduction, which keeps the positive region of target

decision unchanged. Shannon’s information entropy also

can be used to search reducts in the classical rough set

model. Liang et al. [22, 23] defined new information

entropy to measure the uncertainty of an information sys-

tem and applied the entropy to reduce redundant features.

In fuzzy rough set framework, heuristic attribute

reduction have been also examined by several researchers.

These attribute reduction approaches are mainly based on

two strategies: fuzzy positive region and fuzzy information

entropy. Shen and Jensen [15] generalized the dependency

function defined in classical rough set model into the fuzzy

case and presented a series of attribute reduction algo-

rithms. Bhatt and Gopal [2] gave the concept of fuzzy

rough sets on compact computational domain, which is

then utilized to improve computational efficiency. As

Shannon’s information entropy was introduced to search

reducts in classical rough set model, Hu et al. [11, 12]

extended the entropy to measure the information quantity

in fuzz sets, called fuzzy information entropy, and applied

the proposed measure to attribute reduction of hybrid data.

The attribute reduction proposed by Shen and Jensen is

based on the concept of fuzzy positive region, which can

keep the fuzzy positive region of a given fuzzy decision

table in a corresponding attribute reduct. From the view-

point of consistency, this approach only keeps the consis-

tency of fuzzy positive region, not but that of the entire

fuzzy decision table. As to fuzzy information entropy, it

only reflects that the information quality of a fuzzy deci-

sion table is changeless in the attribute reduction process

and can not ensure the invariability of consistency of the

fuzzy decision table.

Since the concept of consistency can characterize the

decision performance of a fuzzy decision table, the issue of

attribute reduction that preserves the consistency is of par-

ticular importance for data analysis using fuzzy rough set

technique. Moreover, based on the proposed consistency

measure, we also need to construct a heuristic attribute

reduction algorithm (ARBC) such that the generating fea-

ture subset keeps the consistency of a given fuzzy decision

table. To verify the validity of ARBC algorithm, we will

present a series of experimental studies that focus on the

quantification of consistency of the selected attributes from

search strategy and heuristic function on six public data

sets. To facilitate our discussion, we first discuss relevant

notions in fuzzy rough set framework in Sect. 3.

3 Preliminaries

In this section, we briefly introduce basic concepts and

denotations related to fuzzy rough set model, which include

fuzzy equivalence relations, fuzzy approximation spaces,

fuzzy decision tables and fuzzy rough approximation.
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Given a nonempty finite set U; ~R is a fuzzy binary

relation over U, denoted by a matrix

Mð ~RÞ ¼

r11 r12 � � � r1n

r21 r22 � � � r2n

� � � � � � � � � � � �
rn1 rn2 � � � rnn

0
BBB@

1
CCCA; ð1Þ

where rij 2 ½0; 1� is the relation value between xi and xj.

We say ~R is a fuzzy equivalence relation if 8x; y; z 2
U; ~R satisfies

1. Reflexivity: ~Rðx; xÞ ¼ 1;

2. Symmetry: ~Rðx; yÞ ¼ ~Rðy; xÞ;
3. Transitivity: ~Rðx; zÞ�minyf ~Rðx; yÞ; ~Rðy; zÞg.
Some operations of relation matrices are defined as

1. ~R1 ¼ ~R2 , ~R1ðx; yÞ ¼ ~R2ðx; yÞ;
2. ~R ¼ ~R1 [ ~R2 , ~R ¼ maxf ~R1ðx; yÞ; ~R2ðx; yÞg;
3. ~R ¼ ~R1 \ ~R2 , ~R ¼ minf ~R1ðx; yÞ; ~R2ðx; yÞg;
4. ~R1 � ~R2 , ~R1ðx; yÞ� ~R2ðx; yÞ.
A fuzzy equivalence relation generates a fuzzy partition of

the universe and a series of fuzzy equivalence classes,

which are also called fuzzy knowledge granules [6, 11, 35].

The fuzzy partition of the universe generated by a fuzzy

equivalence relation ~R is defined as

U
~R
¼ f½xi� ~Rg

n
i¼1; ð2Þ

where ½xi� ~R ¼ fðri1=x1Þ þ ðri2=x2Þ þ � � � þ ðrin=xnÞg. ½xi� ~R
is the fuzzy equivalence class containing xi and rij is the

degree of xi equivalent to xj. Here, ‘‘?’’ means the union of

elements.

The cardinality of the fuzzy equivalence class ½xi� ~R can

be calculated with

j½xi� ~Rj ¼
Xn

j¼1

rij; ð3Þ

which appears to be a natural generalization of the cardi-

nality of a crisp set.

In this case, ½xi� ~R is a fuzzy set and the family of ½xi� ~R
forms a fuzzy concept system of the universe. This system

will be used to approximate the object subset of the

universe.

Definition 1 A two-tuple hU; ~Ri is a fuzzy approxima-

tion space or a fuzzy information system, where U is a

nonempty and finite set of objects, called the universe, and
~R is a family of fuzzy equivalence relations defined on U.

Let ~X be a fuzzy set. Then, it can be represented as

~X ¼ l ~Xðx1Þ
x1

þ l ~Xðx2Þ
x2

þ � � � þ l ~XðxnÞ
xn

� �
; ð4Þ

where l ~XðxjÞ denotes the membership degree of the object

xj in X.

For convenience, we give another denotation of a fuzzy

information system. From now, denoted by S ¼ ðU; ~AÞ be a

fuzzy information system and ~A a fuzzy attribute set in U.

It can generates a fuzzy equivalence relation ~RA on U. The

fuzzy relation matrix Mð ~RAÞ is denoted by

Mð ~RAÞ ¼

r11 r12 � � � r1n

r21 r22 � � � r2n

� � � � � � � � � � � �
rn1 rn2 � � � rnn

0
BBB@

1
CCCA; ð5Þ

where rij 2 ½0; 1� is the relation value between xi and xj.

A fuzzy decision table is a fuzzy information system

S ¼ ðU; ~C [ ~dÞ, where ~C is called a fuzzy condition attri-

bute set and ~d is called a fuzzy decision attribute. In

practical decision-making issues, in general, the decision

attribute ~d can induce an equivalence partition, i.e., a crisp

classification. In this paper, we only focus on this kind of

fuzzy decision tables.

Definition 2 [5] Let hU; ~Ri be a fuzzy approximation

space and ~X a fuzzy subset of U. The lower approximation

and upper approximation are denoted by ~R ~X and ~R ~X,

respectively. Then, the membership degree of x to ~X are

defined as

l ~R ~XðxÞ ¼ ^fl ~XðyÞ _ ð1� ~Rðx; yÞÞ : y 2 Ug; x 2 U

l ~R ~X
ðxÞ ¼ _fðl ~XðyÞ ^ ~Rðx; yÞÞ : y 2 Ug; x 2 U

(
:

ð6Þ

where ^ and _ mean min and max operators, respectively,

and l ~XðyÞ means the membership of y to ~X. The order pair

h ~R ~X; ~R ~Xi is called a fuzzy rough set.

If ~R ~X ¼ ~R ~X, then we say the fuzzy set ~X is a definable

set on the fuzzy approximation space. In fact, if ~X is a

definable set, then l ~R ~XðxÞ ¼ l ~R ~X
ðxÞ; 8x 2 U.

It is easy to see that the fuzzy approximation space can

degrade to the corresponding Pawlak’s approximation

space when the equivalence relation and the object subset

to be approximated are both crisp.

4 Consistency measures in fuzzy decision tables

As we know, fuzziness exists in many real-world applica-

tions. However, Pawlak’s approximation spaces only work

on the domain where crisp equivalence relations are

defined. To overcome this shortcoming, Dübois et al. [5]

presented the definitions of fuzzy approximation spaces,
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which integrates fuzziness and roughness together. In this

section, we discuss how to measure the consistencies of a

fuzzy target concept and a fuzzy decision table, and

establish the relationships between the consistency mea-

sure and the inclusion degree in fuzzy decision tables.

4.1 A fuzzy partial relation

For our further investigation, we define a fuzzy partial

relation � on the fuzzy attribute set as follows:

~P � ~Q, ~RP � ~RQ;

that is ~RPðx; yÞ� ~RQðx; yÞ; 8x; y 2 U.

For a fuzzy decision table S ¼ ðU; ~C [ ~dÞ, if ~C � ~d, we

say that S is consistent; if ~d � ~C, we say that S is con-

versely consistent; otherwise, it is called a mixed fuzzy

decision table.

From the definition of partial relation �, one can obtain

the following theorem.

Theorem 1 Denoted by Pð ~AÞ be the power set of fuzzy

attribute set ~A in a fuzzy information system S ¼ ðU; ~AÞ.
Then, ðPð ~AÞ;�Þ is a poset.

Proof Let ~P; ~Q; ~T 2 Pð ~AÞ;U= ~P ¼ f½x� ~P; x 2 Ug;U= ~Q ¼
f½x� ~Q; x 2 Ug and U= ~T ¼ f½x� ~T ; x 2 Ug.

1. For any x 2 U, it is obvious that ~RPðx; yÞ�
~RPðx; yÞ; 8x; y 2 U. That is, ~RP � ~RP. Hence, ~P � ~P.

2. Suppose that ~P � ~Q and ~Q � ~P. When ~P � ~Q, it

follows from the definition of � that for any x; y 2 U,

one has that ~RPðx; yÞ� ~RQðx; yÞ. When ~Q � ~P, one

also can obtain that ~RQðx; yÞ� ~RPðx; yÞ; 8x; y 2 U.

Therefore, for any x; y 2 U, we have that

~RPðx; yÞ ¼ ~RQðx; yÞ. Hence, ~P ¼ ~Q.

3. Suppose that ~P � ~Q and ~Q � ~T . When ~P � ~Q, it

follows from the definition of � that for any x; y 2 U,

one has that ~RPðx; yÞ� ~RQðx; yÞ. When ~Q � ~T , one can

obtain that ~RQðx; yÞ� ~RTðx; yÞ; 8x; y 2 U. Therefore,

for any x; y 2 U, we have that ~RPðx; yÞ� ~RQðx; yÞ�
~RTðx; yÞ. Hence, ~P � ~T .

Thus, ðPð ~AÞ;�Þ is a poset. This completes the proof.

4.2 Consistency measure of a fuzzy decision table

As follows, we discuss the consistency of a fuzzy target

concept ~X in a given fuzzy decision table.

In the rough set literature, rough membership function

introduced in can be used to measure degrees of inclusion

of decision classes into subsets of the universe [27]. Let

S ¼ ðU;C [ DÞ be a complete decision table, X an

equivalence class and U=D ¼ f½x�D : x 2 Ug. For any

object x 2 U, the membership function of x in X is denoted

by

dXðxÞ ¼
jX \ ½x�Dj
jXj ; ð7Þ

where dXðxÞ (0� dXðxÞ� 1) represents a fuzzy concept.

In fact, if dXðxÞ ¼ 1, then X can be said to be consistent

with respect to ½x�D. In other words, if X is a consistent set

with respect to ½x�D, then one has X � ½x�D. It can generate

a fuzzy set FD
X ¼ fðx; dXðxÞÞ j x 2 Ug on the universe U.

Like the above discussion, one can define the rough

membership function of an object x in a fuzzy target con-

cept ~X in a fuzzy decision table.

Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision table, ~X ¼
fl ~Xðx1Þ

x1
þ l ~Xðx2Þ

x2
þ � � � þ l ~XðxnÞ

xn
g a fuzzy target concept and

U=~d ¼ f½x�~d : x 2 Ug. For any object x 2 U, the rough

membership function of x in the fuzzy target concept ~X is

defined as

d ~XðxÞ ¼
j ~X \ ½x�~dj
j ~Xj

¼
Pn

i¼1ðl ~XðxiÞ ^ l½x�~dðxiÞÞPn
i¼1 l ~XðxiÞ

; ð8Þ

where l½x�~dðxiÞ is the membership function of xi within the

fuzzy equivalence class ½x�~d and d ~XðxÞ ð0� d ~XðxÞ� 1Þ
represents a fuzzy concept.

As we know, a fuzzy equivalence class also can be

regarded as a fuzzy target concept. In the following, we

investigate the consistency of a fuzzy equivalence class

½xi� ~C ði 2 f1; 2; . . .; jUjgÞ included in the condition part

U= ~C in a fuzzy decision table.

Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision table, ½xi� ~C 2
U= ~C a fuzzy equivalence class and U=~d ¼ f½x�~d : x 2 Ug.
For any object x 2 U, the rough membership function of x

in the fuzzy equivalence class ½xi� ~C is defined as

d½xi� ~C ðxÞ ¼

Pn

j¼1
ðrij^l½x�~d ðxjÞÞPn

j¼1
rij

; if x ¼ xi;

0; if x 6¼ xi:

8<
: ð9Þ

where rij is the relation value between xi and xj in the fuzzy

equivalence class ½xi� ~C 2 U= ~C and rij ^ l½x�~d ðxjÞ is equiva-

lent to minfrij; l½x�~dðxjÞg. It is clear that d½xi� ~C ðxÞ ð0�
d½xi� ~CðxÞ� 1Þ denotes a fuzzy concept.

If d½xi� ~C ðxÞ ¼ 1, then the fuzzy equivalence class ½xi� ~C
can be said to be consistent with respect to the decision

attribute ~d. In other words, if ½xi� ~C is a consistent set with

respect to ~d, then ½xi� ~C � ½xi�~d. It can generate a fuzzy set

F
~d
½xi� ~C
¼ fðx; d½xi� ~C ðxÞÞ j x 2 Ug on the universe U. Through

using the concept of a consistent set, in the following, we

give a definition of consistency measure of a fuzzy

equivalence class in fuzzy decision tables.
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Definition 3 Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision

table, ½xi� ~C 2 U= ~C a fuzzy equivalence class and

U=~d ¼ f½x�~d : x 2 Ug. A consistency measure of ½xi� ~C with

respect to ~d is defined as

CðF ~d
½xi� ~C Þ ¼

X
x2U

d½xi� ~C ðxÞ; ð10Þ

where 0�CðF ~d
½xi� ~C
Þ� 1.

It is easy to see that the following theorem holds.

Theorem 2 The consistency measure of a consistent

fuzzy equivalence class in a fuzzy decision table is one.

In the following, based on the above discussion, we

research the consistency between two fuzzy attribute sub-

sets in a fuzzy decision table.

Definition 4 Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision

table, U= ~C ¼ f½xi� ~C j xi 2 U; i� jUjg and U=~d ¼ f½x�~d :

x 2 Ug. A consistency measure of ~C with respect to ~d is

defined as

Cð ~C; ~dÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

d½xi� ~C ðxÞ; ð11Þ

where 0�Cð ~C; ~dÞ� 1 and d½xi� ~C ðxÞ is the rough member-

ship function of x 2 U in the fuzzy equivalence class ½xi� ~C.

This consistency measure can be seen as an extension of

the consistency from the literature [33], which is used to

evaluate the consistency degree of a decision-rule set. From

the definition, it is seen that this kind of consistencies are

different with traditional consistencies in rough set theory.

This definition is illustrated by the following example.

Example 1 Consider a fuzzy decision table S ¼
ðU; ~C [ ~dÞ, the relation matrix induced by the condition

attribute set ~C is Mð ~RCÞ ¼
1 0:9 0

0:9 1 0

0 0 1

0
@

1
A, and that

induced by the decision attribute set ~d is Mð ~RdÞ ¼
1 0 0

0 1 1

0 1 1

0
@

1
A.

From the formula (10), it can be calculated that

CðF ~d
½x1� ~C Þ ¼

1þ 0þ 0

1þ 0:9þ 0
¼ 10

19
; CðF ~d

½x2� ~CÞ ¼
0þ 1þ 0

0:9þ 1þ 0
¼ 10

19
and

CðF ~d
½x3� ~C Þ ¼

0þ 0þ 1

0þ 0þ 1
¼ 1:

According to the formula (11), we have that

Cð ~C; ~dÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

d½xi� ~C ðxÞ ¼
1

3

10

19
þ 10

19
þ 1

� �
¼ 0:6842:

Therefore, the consistency measure of ~C with respect to ~d

in this decision table S is 0.6842.

Theorem 3 Let S ¼ ðU;C [ dÞ be an incomplete deci-

sion table, U=SIMðCÞ ¼ fSCðx1Þ; SCðx2Þ; . . .; SCðxjUjÞg
and U=SIMðdÞ ¼ fSdðxÞ : x 2 Ug. Then, the consistency

measure of C with respect to d degenerates into the

following formula [31]

CðC; dÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

dSCðxiÞðxÞ: ð12Þ

This implies that the proposed consistency measure in

the context of fuzzy decision tables also can measure the

consistency of an incomplete/complete decision table,

which is the natural generalization of those measures in

classical decision tables.

From Definition 3, one can obtain the following Theo-

rem 4 and Corollary 1.

Theorem 4 The consistency measure of a consistent

fuzzy decision table is one.

Proof Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision table,

U= ~C ¼ f½xi� ~C j xi 2 U; i� jUjg and U=~d ¼ f½x�~d : x 2 Ug.
If S is consistent, then, for any x 2 U, one has ½xi� ~C � ½xi�~d,

i.e., rij� l½x�~d ðxjÞ; 8j� jUj. Hence, when x ¼ xi, we have

d½xi� ~C ðxÞ ¼
Pn

j¼1ðrij ^ l½x�~dðxjÞÞPn
j¼1 rij

¼
Pn

j¼1 rijPn
j¼1 rij

¼ 1;

otherwise, d½xi� ~C ðxÞ ¼ 0. Therefore,

Original data set Fuzzy decision table Attribute subset Fuzzy decision rules

Knowledge representation Attribute reduction Rule extraction
Fig. 1 Knowledge discovery

process from a data set using

fuzzy rough set approach
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Cð ~C; ~dÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

d½xi� ~C ðxÞ

¼ 1

jUj
XjUj

i¼1

ð1	 1þ ðjUj � 1Þ 	 0Þ

¼ 1:

Thus, the consistency measure of a consistent fuzzy deci-

sion table is one. This completes the proof.

Theorem 5 If Cð~d; ~CÞ ¼ 1, then the fuzzy decision table

S is conversely consistent.

Proof It can be proved from the definition of converse

consistency in fuzzy decision tables and Definition 3.

Consequently, the consistency of a fuzzy decision table

can be measured through using some fuzzy concepts and it

also can be induced to a fuzzy measure.

In order to establish the relationship between the con-

sistency measure and inclusion degree [47, 49, 50], we

introduce three existing types of definitions of inclusion

degrees as follows.

Definition 5 Let ðX; �Þ be a poset. A corresponding

number Dðy=xÞ ð8x; y 2 XÞ is called the inclusion degree—

if the following conditions hold

1. 0�Dðy=xÞ� 1; ðx; y 2 XÞ;
2. x� y) Dðy=xÞ ¼ 1; ðx; y 2 XÞ;
3. z� x� y) Dðz=yÞ�Dðz=xÞ; ðx; y; z 2 XÞ:

If we modify condition (3) as

(30) x� y) 8z 2 X;Dðz=yÞ�Dðz=xÞ; ðx; y 2 XÞ;
D is called a strong inclusion degree denoted as type

S1 [34]. If D is an inclusion degree and further

satisfies the condition

4. x� y) 8z 2 X;Dðx=zÞ�Dðy=zÞ; ðx; y 2 XÞ,
then D is a strong inclusion degree denoted as type S2

[34].

Generally, type S1 and type S2 are special cases of

inclusion degrees; type S1 is not all type S2 and type S2 is

not all type S1.

The following theorem establishes the relationship

between the type 2 inclusion degree and the consistency

measure proposed by this paper.

Theorem 6 Let S ¼ ðU; ~AÞ be a fuzzy information system

and ~P; ~Q 2 Pð ~AÞ, where Pð ~AÞ is the power set of ~A. Then,

Dð ~Q= ~PÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

d½xi� ~PðxÞ ð13Þ

is a type 2 inclusion degree on the poset ðPð ~AÞ;�Þ.

Proof From the definition of inclusion degree, we have that:

1. Let ~P; ~Q 2 Pð ~AÞ. From 0�
Pn

j¼1
ðrij^l½x� ~Q ðxjÞÞPn

j¼1
rij

� 1, it

follows that d½xi� ~PðxÞ ¼ 0 (x 6¼ xi) or d½xi� ~PðxÞ ¼Pn

j¼1
ðrij^l½x� ~Q ðxjÞÞPn

j¼1
rij

(x ¼ xi). Hence, 0�
P

x2U d½xi� ~PðxÞ

� 1. Thus, 0�Dð ~Q= ~PÞ� 1.

2. When P � Q, one can obtain that ½xi� ~P � ½xi� ~Q,

8i 2 f1; 2; � � � ; jUjg. So, for any i� jUj, if x ¼ xi, then

d½xi� ~PðxÞ ¼ 1; otherwise d½xi� ~PðxÞ ¼ 0. Hence,
P

x2U

d½xi� ~PðxÞ ¼ 1þ ðjUj � 1Þ � 0 ¼ 1. Therefore, one has

that Dð ~Q= ~PÞ ¼ 1
jUj
PjUj

i¼1 1 ¼ 1.

3. Let ~P; ~Q; ~R 2 Pð ~AÞ with ~P � ~Q. Hence, it follows

that ½xi� ~P � ½xi� ~Q, i.e., l½xi� ~PðxjÞ� l½xi� ~QðxjÞ, 8i; j 2
f1; 2; � � � ; jUjg. Thus,

Dð ~P= ~RÞ ¼ 1

jUj
XjUj

i¼1

X
x2U

d½xi� ~RðxÞ

¼ 1

jUj
XjUj

i¼1

Pn
j¼1ðl½xi� ~RðxjÞ ^ l½xi� ~PðxjÞÞPn

j¼1 l½xi� ~RðxjÞ

� 1

jUj
XjUj

i¼1

Pn
j¼1ðl½xi� ~RðxjÞ ^ l½xi� ~QðxjÞÞPn

j¼1 l½xi� ~RðxjÞ

¼ Dð ~Q= ~RÞ:

Therefore, Dð ~Q= ~PÞ is a type S2 inclusion degree on the

poset ðPð ~AÞ;�Þ. This completes the proof.

5 Consistency-preserving attribute reduction

Rule extraction from real-world data sets is one kind of

important knowledge discovery task. If we adopt fuzzy

rough set model for this purpose, it first needs to transform

original data sets into fuzzy information decision tables.

Then, through using attribute reduction and rule extraction,

one can extract a set of fuzzy decision rules. The overall

procedure for a knowledge discovery method from a given

data set is displayed in Fig. 1.

Given an attribute set, in rough set theory, the task of

attribute reduction can be seen as a search for an ‘‘optimal’’

attribute subset through the competing candidate subsets.

The definition of what an optimal subset is may vary

depending on the problem to be solved. Although an

exhaustive method may be used for this purpose in theory,

this is quite impractical for most data sets. Usually attribute

reduction algorithms involve heuristic or random search

strategies in an attempt to avoid this prohibitive complexity.
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As we know, it is very important to keep the consistency

of a given data set for efficient knowledge discovery.

Recent researches showed that a well-devised feature

selection algorithm would significantly improve the effi-

ciency of knowledge discovery because attribute reduction

lessens the impact of the ‘‘curse of dimensionality’’ and

speeds up the training and test process [15]. The key

problem of this task is how to get a subset of attributes that

keeps the consistency of an original data set.

Let S ¼ ðU; ~C [ ~dÞ be a fuzzy decision table, where ~C

and ~d be the condition attribute set and decision attribute.

~B � ~C; 8~a 2 ~B, we define a coefficient

Siginð~a; ~B; ~dÞ ¼ Cð ~B; ~dÞ � Cð ~B� ~a; ~dÞ ð14Þ

as the significance of attribute ~a in ~B relative to decision ~d.

Siginð~a; ~B; ~dÞ reflects the changes of the consistency if

attribute ~a is eliminated from ~B. Accordingly, we also can

define

Sigoutð~a; ~B; ~dÞ ¼ Cð ~B [ ~a; ~dÞ � Cð ~B; ~dÞ; ð15Þ

8~a 2 ~C � ~B. Sigoutð~a; ~B; ~dÞ measures the increment of the

consistency if attribute ~a is introduced in ~B. This measure

can be used in a forward feature selection algorithm, while

Siginð~a; ~B; ~dÞ is applicable to determine the significance of

every attribute in the context of consistency.

Starting with the attribute with maximal consistency, we

take the attribute with the maximal significance into the

attribute subset in each loop until the entire consistency of

this feature subset satisfies the target requirement (or is

over a given threshold), and then we can get a feature

subset. Formally, a forward greedy feature selection algo-

rithm can be written as follows.

Through using ARBC algorithm, the time complexity to

obtain a feature subset from a fuzzy decision table is

polynomial. At step 1, the time complexity for computing

the significance of each of attributes Oðj ~CjjUj2Þ. For steps

3–7, since j ~Cj � 1 is the maximum value for the circle

times, the time complexity is

Oððj ~Cj � 1ÞjUj2 þ ðj ~Cj � 2ÞjUj2 þ � � � þ jUj2Þ ¼ Oðj ~Cj2jUj2Þ

Therefore, the time complexity of ARBC is Oðj ~Cj2jUj2Þ.
This algorithm is a forward search algorithm. Figure 2

shows the process of attribute reduction in ARBC algo-

rithm, which is helpful for us more clearly understanding

the mechanism of the algorithm.

Generation EvaluationEvaluation

A attribute 
reduct

A attribute 
reductConsistencyConsistenc yConsistency

Attribute
set

Candidate
Attribute

Continue

Attribute
suitbility

EvaluationEvaluation

A attribute 
reduct

A attribute 
reductConsistencyConsistenc yConsistency

Candidate
Attribute

Continue

Attribute
suitbility

Output

Generation

Fig. 2 The attribute reduction process in ARBC algorithm

Algorithm 1 Forward attribute reduction based onthe consistency

measure (ARBC)

Table 1 Data description
Data sets Samples Features Data type Classes

1 Pima-indians-diabetes (Pima) 768 8 Numeric 2

2 Glass (Glass) 214 9 Numeric 7

3 Yeast (Yeast) 1,484 8 Numeric 10

4 E.coli (Ecoli) 336 7 Numeric 8

5 Zoo (Zoo) 101 16 Nominal 7

6 Breast-cancer-wisconsin

(Cancer)

683 9 Nominal 2

Table 2 Variation of consistencies with four forward search methods

on six data sets

Search methods

Data sets Heuristic MAX–

MIN

Random MIN–

MAX

1 Pima 0.6784 0.6761 0.6629 0.6108

2 Glass 0.5251 0.5148 0.4675 0.4163

3 Yeast 0.3501 0.3484 0.3058 0.2799

4 Ecoli 0.7138 0.6912 0.6221 0.5067

5 Zoo 0.9586 0.9240 0.8298 0.7079

6 Cancer 0.9844 0.9798 0.9375 0.9346

Average 0.7017 0.6891 0.6376 0.5670
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6 Experimental analysis

Six data sets from the University of California at Irvine

(UCI) Machine Learning Repository are used in the

empirical study. The information about these six data sets

is shown in Table 1. The objective of these experiments is

to show the power of the proposed method to select

numerical or nominal attributes.

For numeric data, firstly, we normalize the numerical

attribute x into the interval ½0; 1� with [12]

(a) (b)

(c) (d)

(e) (f)

Fig. 3 Variation of consistencies with four forward search methods on six data sets
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a0 ¼ a� amin

amax � amin
:

The value of the fuzzy similarity degree rij between objects

xi and xj with respect to numerical attribute a is computed

as

rij ¼
1� 4	 jxi � xjj; jxi � xjj � 0:25;

0; otherwise:

�

As rij ¼ rji and rii ¼ 1; 0� rij� 1, the matrix M ¼ ðrijÞn	n

is a fuzzy similarity relation. We can get a fuzzy equiva-

lence relation from M with max–min transitivity operation.

In practice the operation cannot be conducted and we

directly search a feature subset with a similarity relation

[12].

For nominal data, given a nominal decision table

S ¼ ðU;C [ dÞ, we have that

rij ¼
1; f ðxiÞ ¼ f ðxjÞ; 8a 2 C

0; otherwise:

�

The matrix M ¼ ðrijÞn	n is clearly an equivalence relation.

As to consistency-based feature selection, in this sec-

tion, we perform experimental analysis for numeric data

sets (Pima, Glass, Yeast and Ecoli) and nominal data sets

(Zoo and Cancer), respectively. In order to emphasize the

advantage of ARBC algorithm, three kind of search

methods (MAX–MIN, Random and MIN–MAX) are

employed to comparison analysis. MAX–MIN starts with

an empty set, and adds one attribute with maximum sig-

nificance Siginð~a; ~C; ~dÞ into a pool each time until the

consistency does not increase, MIN–MAX presents a

sequence of attributes with the increasing order of signifi-

cance, and Random gives a rank of attributes randomly.

Table 2 shows the comparisons of consistencies with

four search strategies on six data sets. In this table, the

value from each lattice is the mean value of sum of con-

sistencies on various features, and the last row displays the

mean value of consistencies induced by each search strat-

egy on six data sets. More detailed change trendline of each

search strategy on each of these six data sets is displayed in

Fig. 3. Note that the consistency measure of a numeric

decision table may not achieve the maximum value one

(see sub-figures a, b, c and d in Fig. 3), while a consistent

nominal decision table can achieve the maximum value one

(see sub-figures e and f in Fig. 3).

From Table 2 and Fig. 3, we can find that the forward

search strategy based on the consistency measure is con-

sistently better than the other three as to the six data sets

(numerical data sets and nominal data sets). What is more,

the MAX–MIN (descend) strategy is far better than random

and MIN–MAX (ascending) strategy, which shows the

search strategy greatly influences the result of feature

selection. Without considering the dependency degree

between two attributes subsets, selecting the attribute with

bigger consistency as a selected attribute will be a good

solution. Whereas, forward search heuristic algorithm

ARBC is consistently better than MAX–MIN strategy in

the experiments.

Interestingly, in the above four search strategies, it can

be seen that the consistencies of attribute sets monoto-

nously increase with the number of selected features

becoming bigger. This monotonicity provides us an

approach to selecting a feature subset according to user’s

requirements in real applications. As we know, the con-

sistency measure of a numerical decision table is always

less than the maximum value one. In this situation, a

decision maker can give a threshold d as the target of

feature selection. For example, considering feature selec-

tion from Pima, let d ¼ 0:6696. For this feature selection

issue, ARBC gets four features, MAX–MIN obtains five

features, Random needs six features, and MIN–MAX

requires all features for satisfying the threshold. From the

other five data sets, we can scan the advantage of ARBC

algorithm. In particular, for a consistent decision table, we

can set the threshold equals one. From the consistent

nominal data set Zoo, we can find that ARBC only selects

five features, MAX–MIN needs thirteen features, Random

gets fifteen features, and MIN–MAX obtains sixteen fea-

tures. ARBC algorithm demonstrates the great advantage.

From the data set Cancer, it also can been verified.

Table 3 shows the comparisons of consistencies with

three heuristic functions (consistency, fuzzy information

entropy and positive region) on six data sets. Fuzzy

information entropy and positive region are two often

heuristic functions for feature selection from high-dimen-

sional data [2, 11, 15]. In this experiment, forward search

strategy is employed to investigate the performance of each

of consistency measure, fuzzy information entropy and

positive region feature selection. In this table, the value

Table 3 Variation of consistencies with three heuristic functions on

six data sets

Heuristic functions

Data

sets

Consistency Fuzzy information

entropy

Positive

region

1 Pima 0.6784 0.6624 0.6579

2 Glass 0.5251 0.4989 0.4845

3 Yeast 0.3501 0.3278 0.3010

4 Ecoli 0.7138 0.6418 0.5609

5 Zoo 0.9586 0.9446 0.7496

6 Cancer 0.7017 0.6744 0.9474

Average 0.7017 0.6891 0.6169
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from each lattice is the mean value of sum of consistencies

on various features, and the last row presents the mean

value of consistencies induced by each heuristic function

on six data sets. More detailed change trendline of each

heuristic function on each of these six data sets is displayed

in Fig. 4.

From Table 3 and Fig. 4, we can find that the ARBC

algorithm based on the consistency measure is consistently

better than that based on the fuzzy information entropy and

that based on positive region as to the six data sets in the

meaning of consistency. Furthermore, the feature selection

based on the fuzzy information entropy is better than that

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Variation of consistencies with three heuristic functions on six data sets
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based on the positive region, which illustrates the heuristic

function also greatly influences the result of feature

selection. From the viewpoint of consistency-preserving,

the proposed algorithm based on the consistency measure

outperforms the other heuristic functions.

It is deserved that for these three heuristic functions, the

consistencies of attribute sets monotonously increase with

the number of selected features becoming bigger. Consid-

ering feature selection from Pima, let d ¼ 0:6696, we know

that ARBC gets four features, the fuzzy information

entropy obtains five features, and the positive region

requires seven features for satisfying the threshold. From

the other five data sets, we also can draw the advantage of

feature selection based on the consistency measure. In

particular, for a consistent decision table, let the threshold

equals one. From the consistent nominal data set Zoo, we

can find that ARBC only selects five features, the fuzzy

information entropy needs thirteen features, and the posi-

tive region obtains sixteen features. ARBC algorithm

demonstrates the great advantage in the meaning of con-

sistency. From the data set Cancer, we can draw the same

conclusion.

7 Conclusions

Fuzzy rough set framework is a rational generalization of

Pawlak’s rough set theory, which integrates two types of

uncertainties (roughness and fuzziness) into one rough set

framework. Through fuzzy knowledge representation, both

numerical data and nominal data can be uniformly repre-

sented as a fuzzy decision table. Using fuzzy rough set

method, one can acquire fuzzy decision rules and make a

fuzzy rough decision from a fuzzy decision table. Attribute

reduction (feature selection) plays an important role in this

purpose.

Considering consistency is one of several criteria for

evaluating the decision performance of a decision-rule set,

in this paper, we have introduced a consistency measure to

assess the consistencies of a fuzzy target set and a fuzzy

decision table, which underlies a foundation for attribute

reduction algorithm. Using the proposed consistency

measure, we have defined two attribute significance mea-

sures which are used to select candidate attributes in

attribute reduction process. Based on these strategies,we

have presented a consistency-preserving attribute reduction

in fuzzy rough set framework. This approach does not

require discretizing the numerical data in fuzzy rough set

framework, called ARBC, and can select an attribute subset

from both numerical and nominal data.

We have employed 6 UCI data sets for evaluating the

proposed method, in which four data sets are numerical and

two data sets are nominal. series of experiments have been

also conducted from search strategy and heuristic function

in the meaning of consistency. he results show that in terms

of search strategy, the forward greedy search strategy is

consistently better than each of MAX–MIN, Random and

MIN–MAX, and in terms of heuristic function, the pro-

posed ARBC algorithm is much better than each of attri-

bute reduction based on fuzzy information entropy and that

based on fuzzy positive region. We can draw such a con-

clusion that number of the selected features using ARBC

algorithm is the least for a given threshold of consistency

measure.
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