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One of the strengths of rough set theory is the fact that an unknown target concept can be
approximately characterized by existing knowledge structures in a knowledge base.
Knowledge structures in knowledge bases have two categories: complete and incomplete.
In this paper, through uniformly expressing these two kinds of knowledge structures, we
first address four operators on a knowledge base, which are adequate for generating new
knowledge structures through using known knowledge structures. Then, an axiom defini-
tion of knowledge granulation in knowledge bases is presented, under which some existing
knowledge granulations become its special forms. Finally, we introduce the concept of a
knowledge distance for calculating the difference between two knowledge structures in
the same knowledge base. Noting that the knowledge distance satisfies the three proper-
ties of a distance space on all knowledge structures induced by a given universe. These
results will be very helpful for knowledge discovery from knowledge bases and significant
for establishing a framework of granular computing in knowledge bases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In 1982, Pawlak proposed a new set theory, the so-called rough set theory [27,29], which is an effective tool for uncer-
tainty management and uncertainty reasoning, and has a wide variety of applications in artificial intelligence
[6,11,12,38,41,56]. In the rough set theory, an attribute set partitions a universe into some knowledge granules or elemental
concepts, which is called a knowledge structure. Partition, granulation and approximation are the methods widely used in
human’s reasoning [53–55]. To date, rough set methodology has been applied in feature selection [44,45], knowledge reduc-
tion [16,21,26,39,47,51,57], rule extraction [2,8,34,46,56,58,59], uncertainty reasoning [9,28,32] and granular computing
[1,13,22,23,31,50–52,54]. In the past 10 years, some extensions of Pawlak’s rough set model have been proposed in terms
of various requirements [5,25,37,42,43,49].

Knowledge bases and indiscernibility relations are two basic concepts in the rough set theory and assessing the uncer-
tainty of a knowledge structure in a knowledge base is an important research issue. According to whether or not there miss-
ing data (null values), knowledge bases are classified into two categories: complete and incomplete [14–17]. In the rough set
theory, there are two main approaches for measuring the uncertainty of a knowledge structure in knowledge bases, which
are information entropy [3,4,6,10,18,24,33,40] and knowledge granulation [7,19,20,33,48].
. All rights reserved.
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For a given knowledge base, one of the tasks in data mining and knowledge discovery is to generate new knowledge
through using known knowledge. However, in rough set theory, the number of knowledge structures is finite in a given
knowledge base, which limits the ability of this knowledge base for approximating an unknown concept. This leads to a task
for acquiring more knowledge structures from a given knowledge base. To date, the mechanism that how to generate new
knowledge structures based on known knowledge structures in knowledge bases have not been widely researched. There-
fore, such a mechanism is desirable and very helpful for rule extraction and knowledge discovery from knowledge bases. In
addition, knowledge granulation can be used to characterize the degree of the coarseness of a knowledge structure. The finer
the knowledge structure is, the smaller the knowledge granulation is. In recent years, several various forms of knowledge
granulations have been given in [19,20,33]. From these existing knowledge granulations, we find that they all satisfy several
same constraints. In other words, there may exist an uniform description for the existing knowledge granulations. In the
view of granular computing, an axiom definition of knowledge granulation may be needed in order to measure the uncer-
tainty of knowledge structures in a knowledge base. It is deserved to point out that when the knowledge granulation (or
information entropy) of one knowledge structure is equal to that of the other knowledge structure, these two knowledge
structures have the same uncertainty. Nevertheless, it does not mean that these two knowledge structures are equivalent
each other. That is to say, information entropy and knowledge granulation cannot characterize the difference between
any two knowledge structures in a given knowledge base. In fact, we often need to distinguish two knowledge structures
for uncertain data processing in some practical applications.

Based on the above these analyses, main objective of this study has three hands, which are establishing a mathematical
framework of granular computing in the context of knowledge bases for acquiring more knowledge structures, constructing
an axiom definition of knowledge granulation and giving a knowledge distance among knowledge structures for character-
izing the difference among knowledge structures from a knowledge base, respectively.

The rest of the paper is organized as follows. Some basic concepts in rough set theory are briefly reviewed in Section 2. In
Section 3, we establish four operators (

T
;
S

, o and �) on a knowledge base and investigate their operation properties. Noting
that ðK;

T
;
S
Þ is an assignment lattice and ðK;

T
;
S
; oÞ is a complemented lattice. In Section 4, an axiom definition of knowl-

edge granulation is constructed, under which several existing forms of knowledge granulations become its special instances.
In Section 5, to characterize the difference among knowledge structures in a knowledge base, the notion of a knowledge dis-
tance is defined and some of its major properties are obtained. Finally, Section 6 concludes this paper with some remarks and
discussions.

2. Preliminaries

In this section, we will review several basic concepts in rough set theory and knowledge bases. Throughout this paper, we
suppose that the universe U is a finite non-empty set.

Let U be a finite and non-empty set (called a universe) and R # U � U an equivalence relation on U, then K ¼ ðU;RÞ is called
an knowledge structure (also called an approximation space) [27,30]. The equivalence relation R partitions the set U into dis-
joint subsets. This partition of the universe is called a quotient set induced by R, denoted by U=R. It represents a very special
type of similarity between elements of the universe. If two elements x; y 2 Uðx–yÞ belong to the same equivalence class, we
say that x and y are indistinguishable under the equivalence relation R, i.e., they are equal in R. We denote the equivalence
class including x by ERðxÞ. For our further development, we denote a knowledge structure induced by U=R on U by KðRÞ. In
fact, the knowledge structure is formally defined as KðRÞ ¼ fERðxÞjx 2 Ug. Each equivalence class ERðxÞðx 2 UÞmay be viewed
as a knowledge granule consisting of indistinguishable elements [35,50]. The granulation structure induced by an equiva-
lence relation is a partition of the universe.

We say K ¼ ðU;RÞ is a knowledge base, where U is a finite and non-empty set and R is a family of equivalence relations.
Through using a given knowledge structure, one can construct a rough set of any subset on the universe in the following
definition.

Definition 1 [27]. Let K ¼ ðU;RÞ be a knowledge base, X a subset of U and R 2 R an equivalence relation, two sets are defined as
RX ¼
[
fERðxÞ 2 U=RjERðxÞ# Xg; ð1Þ

RX ¼
[
fERðxÞ 2 U=RjERðxÞ \ X–;g; ð2Þ
where RX and RX are called R-lower approximation and R-upper approximation with respect to R, respectively. The order
pair hRX;RXi is called a rough set of X with respect to the equivalence relation R.

Let K ¼ ðU;RÞ be a knowledge base, if RðR 2 RÞ is an equivalence relation, then one can get a cover of U by
U=R ¼ fERðxÞjx 2 Ug, i.e., for 8x 2 U, one has that ERðxÞ–; and

S
x2UERðxÞ ¼ U. Obviously, 8x; y 2 Uðx–yÞ, if x, y are partitioned

into the same equivalence class, then ERðxÞ ¼ ERðyÞ, otherwise ERðxÞ \ ERðyÞ ¼ ;. One can define a partial relation � as follows:
P � Q ðP;Q 2 RÞ if and only if, one has EPðxiÞ# EQ ðxiÞ for any i 2 f1;2; . . . ; jUjg [20,36,50]. Here, we denote that P is finer than
Q by P � Q . Obviously, ðR;�Þ is a poset [50].

Another important binary relation is tolerance relation, which satisfies reflexivity and symmetry. For example, in an
incomplete information system S ¼ ðU;AÞ, we define a binary relation on U by SIMðAÞ ¼ fðx; yÞ 2 U � Uj 8a 2 A; aðxÞ ¼ aðyÞ
or aðxÞ ¼ � or aðyÞ ¼ �g, where � is a missing value. Clearly, SIMðAÞ is a tolerance relation on U. Similarly, let R # U � U denote
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a tolerance relation on U, the tolerance relation R classifies the universe U into some subsets, i.e., a cover of U [14,15].
This cover of the universe is called a knowledge structure induced by R, denoted by U=R or KðRÞ. If y belongs to the tolerance
class determined by x with respect to R, we say two elements x and y are indistinguishable under the tolerance relation R, i.e.,
they are similar in R [14–17]. We denote the tolerance class of x by SRðxÞ [14,15,21]. Each tolerance class SRðxÞðx 2 RÞ is viewed
as a knowledge granule [20,33,36]. The granulation structure induced by a tolerance relation is a cover of the universe.
Conveniently, we say K ¼ ðU;RÞ is also a knowledge base, where U is a finite and non-empty set and R is a family of tolerance
relations. The following definition gives a rough set of a subset of the universe based on a tolerance relation.

Definition 2 ([14,15]). Let K ¼ ðU;RÞ be a knowledge base, X a subset of U and R 2 R a tolerance relation, two sets are
defined as
RX ¼
[
fx 2 XjSRðxÞ# Xg; ð3Þ

RX ¼
[
fSRðxÞjx 2 Xg; ð4Þ
where RX and RX are called R-lower approximation and R-upper approximation with respect to R, respectively. The order
pair hRX;RXi is called a rough set of X with respect to the tolerance relation R.

Let K ¼ ðU;RÞ be a knowledge base, if RðR 2 RÞ is a tolerance relation, then we denote a cover of U by U=R ¼ fSRðxÞjx 2 Ug,
i.e., 8x 2 U, one has SRðxÞ–; and

S
x2USRðxÞ ¼ U. In [20], Liang et al. defined a partial relation � as follows: P � QðP;Q 2 RÞ if

and only if, for every i 2 f1;2; . . . ; jUjg, one has that SPðxiÞ# SQ ðxiÞ. Here, we also denote that P is finer than Q by P � Q . It is
easy to see that ðR;�Þ is also a poset.

3. Operators on a knowledge base

In this section, by uniformly representing a complete knowledge structure and an incomplete knowledge structure, we
will propose four operators on a knowledge base and discuss their fundamental algebra properties.

In [20], Liang et al. established the relationship between a complete knowledge structure and an incomplete knowledge
structure in the same knowledge base. Let K ¼ ðU;RÞ be a knowledge structure, R a equivalence relation, U=R ¼ fX1;X2; . . . ;

Xmg, U=R ¼ fSRðx1Þ; SRðx2Þ; . . . ; SRðxjUjÞg and Xi ¼ fxi1; xi2; . . . ; xisi
g, where jXij ¼ si and

Pm
i¼1si ¼ jUj, then
Xi ¼ SRðxi1Þ ¼ SRðxi2Þ ¼ . . . ¼ SRðxisi
Þ: ð5Þ
Through this mechanism, one can denote U=R ¼ fERðxÞjx 2 Ug by using U=R ¼ fSRðxÞjx 2 Ug. The mechanism gives uniform
representations of knowledge structures in a knowledge base. It is illustrated by the following example.

Example 1. Let U ¼ fx1; x2; . . . ; x6g, R a equivalence relation and U=R ¼ ffx1; x2g; fx3; x4; x5g; fx6gg. Then, U=R ¼ fSRðxÞjx 2 Ug
can be represented equivalently as
U=R ¼ fSRðx1Þ; SRðx2Þ; SRðx3Þ; SRðx4Þ; SRðx5Þ; SRðx6Þg ¼ ffx1; x2g; fx1; x2g; fx3; x4; x5g; fx3; x4; x5g; fx3; x4; x5g; fx6gg:
For convenience, we denote the knowledge structure induced by R on U as KðRÞ in the rest of this paper, where R is an
equivalence relation or a tolerance relation.

There are two types of operators to be considered in granular computing based on rough set theory. One is operations
among knowledge granules, the other is operations among knowledge structures in a knowledge base. As operations among
knowledge granules is based on classical sets, we still operate on them by \, [, � and �, i.e., a new knowledge granule can be
generated by \, [, � and � on known knowledge granules. However, operations among knowledge structures are performed
through composing and decomposing known knowledge structures in knowledge bases in essence. Therefore, the operators
on a knowledge base to generate new knowledge structures are very desirable. In the following, we introduce four operators
among knowledge structures in a knowledge base.

Definition 3. Let K ¼ ðU;RÞ be a knowledge base and KðPÞ, KðQÞ 2 K two knowledge structures. Four operators
T

,
S

, � and o
on K are defined as
KðPÞ
\

KðQÞ ¼ fSP\Q ðxÞjSP\Q ðxÞ ¼ SPðxÞ \ SQ ðxÞ; x 2 Ug; ð6Þ
KðPÞ

[
KðQÞ ¼ fSP[Q ðxÞjSP[Q ðxÞ ¼ SPðxÞ [ SQ ðxÞ; x 2 Ug; ð7Þ

KðPÞ � KðQÞ ¼ fSP�Q ðxÞjSP�Q ðxÞ ¼ x [ ðSPðxÞ � SQ ðxÞÞ; x 2 Ug; ð8Þ
o KðPÞ ¼ foSPðxÞj o SPðxÞ ¼ x[ � SPðxÞ; x 2 Ug; ð9Þ
where � SPðxÞ ¼ U � SPðxÞ.

Here, we regard
T

,
S

, � and o as four atomic formulas and finite connection on them are all formulas. Through using these
operators, one can obtain a new knowledge structure via some known knowledge structures on U. Let K(U) denote the set of
all knowledge structures on U, then these four operators

T
,
S

, � and o on K(U) are close. As follows, we investigate several
fundamental algebra properties of these four operators.
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Theorem 1. Let
T

,
S

be two operators on K, then

(1) KðPÞ
T

KðPÞ ¼ KðPÞ, KðPÞ
S

KðPÞ ¼ KðPÞ;
(2) KðPÞ

T
KðQÞ ¼ KðQÞ

T
KðPÞ, KðPÞ

S
KðQÞ ¼ KðQÞ

S
KðPÞ;

(3) KðPÞ
T
ðKðPÞ

S
KðQÞÞ ¼ KðPÞ, KðPÞ

S
ðKðPÞ

T
KðQÞÞ ¼ KðPÞ; and

(4) ðKðPÞ
T

KðQÞÞ
T

KðRÞ ¼ KðPÞ
T
ðKðQÞ

T
KðRÞÞ, ðKðPÞ

S
KðQÞÞ

S
KðRÞ ¼ KðPÞ

S
ðKðQÞ

S
KðRÞÞ.

Proof. They are straightforward from Definition 3. h

Theorem 2. Let
T

,
S

and o be three operators on K, then

(1) oðoKðPÞÞ ¼ KðPÞ,
(2) KðPÞ

T
oKðPÞ ¼ fxijxi 2 Ug,

(3) oðKðPÞ
T

KðQÞÞ ¼ oKðPÞ
S
oKðQÞ, and

(4) oðKðPÞ
S

KðQÞÞ ¼ oKðPÞ
T
oKðQÞ.

Proof. For any xi 2 U, KðPÞ;KðQÞ 2 K , SPðxiÞ is the tolerance class induced by xi in KðPÞ.

(1) From Definition 3, one can easily see that oðSPðxiÞÞ ¼ xi[ � SPðxiÞ and oðoðSPðxiÞÞÞ ¼ xi [ ðxi [ SPðxiÞÞ ¼ SPðxiÞ. Therefore,
oðoKðPÞÞ ¼ KðPÞ.

(2) From Definition 3, it follows that SPðxiÞ \ oðSPðxiÞÞ ¼ xi, 8xi 2 U. Then, KðPÞ
T
� KðPÞ ¼ fxijxi 2 Ug.

(3) According to Definition 3, for 8xi 2 U, it follows that
oðSPðxiÞ \ SQ ðxiÞÞ ¼ xi[ � ðSPðxiÞ \ SQ ðxiÞÞ ¼ xi [ ð� SPðxiÞ[ � SQ ðxiÞÞ ¼ ðxi[ � SPðxiÞÞ [ ðxi[ � SQ ðxiÞÞ ¼ oSPðxiÞ [ oSQ ðxiÞ:
Therefore, one can get that oðKðPÞ
T

KðQÞÞ ¼ oKðPÞ
S
oKðQÞ.

(4) According to Definition 3, for 8xi 2 U, one has that
oðSPðxiÞ [ SQ ðxiÞÞ ¼ xi[ � ðSPðxiÞ [ SQ ðxiÞÞ ¼ xi [ ð� SPðxiÞ\ � SQ ðxiÞÞ ¼ ðxi[ � SPðxiÞÞ \ ðxi[ � SQ ðxiÞÞ ¼ oSPðxiÞ \ oSQ ðxiÞ:
Hence, one can obtain that oðKðPÞ
S

KðQÞÞ ¼ oKðPÞ
T
oKðQÞ. h

Theorem 2 shows that (1) is reflexive, (2) is complementary, and (3) and (4) are two dual principles.

Theorem 3. Let
T

,
S

, � and o be operators on K, then

(1) KðPÞ � KðQÞ ¼ KðPÞ
T
oKðQÞ,

(2) KðPÞ � KðQÞ ¼ KðPÞ � ðKðPÞ
T

KðQÞÞ,
(3) KðPÞ

T
ðKðQÞ � KðRÞÞ ¼ ðKðPÞ

T
KðQÞÞ � ðKðPÞ

T
KðRÞÞ, and

(4) ðKðPÞ � KðQÞÞ
S

KðQÞ ¼ KðPÞ.

Proof. They are straightforward from Definition 3. h

The above three theorems are illustrated by the following example.

Example 2. Let U ¼ fx1; x2; x3; x4g, KðPÞ ¼ ffx1; x2g; fx1; x2g; fx3; x4g; fx3, x4gg and KðQÞ ¼ ffx1; x4g; fx2; x3g; fx2; x3; x4g; fx4gg,
one can acquire some new knowledge structures through using KðPÞ and KðQÞ.

By computing, some new knowledge structures constructed are listed as follows:
o KðPÞ ¼ ffx1; x3; x4g; fx2; x3; x4g; fx1; x2; x3g; fx1; x2; x4gg;
o KðQÞ ¼ ffx1; x2; x3g; fx1; x2; x4g; fx1; x3g; fx1; x2; x3; x4gg;

KðPÞ
\

KðQÞ ¼ ffx1g; fx2g; fx3; x4g; fx4gg;

KðPÞ
[

KðQÞ ¼ ffx1; x2; x4g; fx1; x2; x3g; fx2; x3; x4g; fx1; x4gg;

o KðPÞ
\
oKðQÞ ¼ ffx1; x3g; fx2; x4g; fx1; x3g; fx1; x2; x4gg;

o KðPÞ
[
oKðQÞ ¼ ffx1; x2; x3; x4g; fx1; x2; x3; x4g; fx1; x2; x3g; fx1; x2; x3; x4gg;

KðPÞ � KðQÞ ¼ ffx1; x2g; fx1; x2g; fx3g; fx3; x4gg and

o KðPÞ � oKðQÞ ¼ ffx1; x4g; fx2; x3g; fx2; x3g; fx4gg:
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Suppose K ¼ ðU;RÞ be a knowledge base, P;Q 2 R, and KðPÞ, KðQÞ 2 K be two knowledge structures induced by P, Q,
respectively. To investigate properties of the operations among knowledge structures on a knowledge base, we will denote
KðPÞ � KðQÞ iff P � Q .

Theorem 4. Let
T

,
S

and o be three operators on K, the following properties hold:

(1) If KðPÞ � KðQÞ, then oKðQÞ � oKðPÞ;
(2) KðPÞ

T
KðQÞ � KðPÞ, KðPÞ

T
KðQÞ � KðQÞ; and

(3) KðPÞ � KðPÞ
S

KðQÞ, KðQÞ � KðPÞ
S

KðQÞ.

Proof. The terms (2) and (3) can be easily proved from (6) and (7) in Definition 3, respectively.
From Definition 3, one can obtain that
KðPÞ � KðQÞ ) for 8xi 2 U; SPðxiÞ# SQ ðxiÞ ) for 8xi 2 U;� SQ ðxiÞ# � SPðxiÞ ) for 8xi 2 U; xi[ � SQ ðxiÞ# xi[ � SPðxiÞ
) oKðQÞ � oKðPÞ:
Hence, the term (1) in this theorem holds. h

Definition 4 [57]. Let ðL;6Þ be a poset, if there exist two operators ^;_ on L : L2 ! L such that

(1) a ^ b ¼ b ^ a, a _ b ¼ b _ a,
(2) ða ^ bÞ ^ c ¼ a ^ ðb ^ cÞ, ða _ bÞ _ c ¼ a _ ðb _ cÞ, and
(3) a ^ b ¼ b() b 6 a, a _ b ¼ b() a 6 b.Then we call L is a lattice.

Furthermore, if
(4) a ^ ðb _ cÞ ¼ ða ^ bÞ _ ða ^ cÞ, a _ ðb ^ cÞ ¼ ða _ bÞ ^ ða _ cÞ.Then we call L is an assignment lattice.

We call L a complemented lattice, if for any a 2 L, there exists a0 such that ða0Þ0 ¼ a and a 6 b() b0 6 a0. If there exist
0;1 2 L such that 0 6 a 6 1 for any a 2 L, then we call 0 and 1 its minimal element and maximal element, respectively.

Theorem 5. ðK;
S
;
T
Þ is an assignment lattice.

Proof. At first, we prove ðK;�Þ is a lattice.
From (2) and (4) in Theorem 1, the terms (1) and (2) in Definition 4 are obvious.
Let KðPÞ;KðQÞ;KðRÞ 2 K be three knowledge structures, where KðPÞ ¼ fSPðxÞjx 2 Ug, KðQÞ ¼ fSQ ðxÞjx 2 Ug and

KðRÞ ¼ fSRðxÞjx 2 Ug. One can obtain that
KðPÞ
\

KðQÞ ¼ KðPÞ () for 8xi 2 U; SP\Q ðxiÞ ¼ SPðxiÞ; i 6 jUj () SPðxiÞ \ SQ ðxiÞ

¼ SPðxiÞ () SPðxiÞ# SQ ðxiÞ for 8xi 2 U () KðPÞ � KðQÞ:
According to the dual principle a in lattice, one can easily get that KðPÞ
S

KðQÞ ¼ KðPÞ () KðQÞ � KðPÞ. Thus, the term (3) in
Definition 4 holds.

In addition, for KðPÞ;KðQÞ;KðRÞ 2 K , we know that
SPðxiÞ \ ðSQ ðxiÞ [ SRðxiÞÞ ¼ ðSPðxiÞ \ ðSQ ðxiÞÞ [ ðSPðxiÞ \ SRðxiÞÞ 8xiði 6 jUjÞ:
Hence, KðPÞ
T
ðKðQÞ

S
KðRÞÞ ¼ ðKðPÞ

T
KðQÞÞ

S
ðKðPÞ

T
KðRÞÞ. From the dual principle in a lattice, one can get that
KðPÞ
[
ðKðQÞ

\
KðRÞÞ ¼ ðKðPÞ

[
KðQÞÞ

\
ðKðPÞ

[
KðRÞÞ:
Therefore, ðK;
S
;
T
Þ is an assignment lattice. h

Theorem 6. Let KðUÞ be the set of all knowledge structures on U, then ðKðUÞ;
S
;
T
; oÞ is a complemented lattice.

Proof. From Theorem 5, it is obvious that ðKðUÞ;
S
;
T
; oÞ is an assignment lattice. Furthermore, from (1) in Theorem 2, one

can get that oðoKðPÞÞ ¼ KðPÞ. In addition, from (3) in Definition 3, one has that
KðPÞ � KðQÞ () for 8xi 2 U; SPðxiÞ# SQ ðxiÞ () for 8xi 2 U;� SPðxiÞ �� SQ ðxiÞ () for 8xi 2 U; xi[ � SPðxiÞ
� xi[ � SQ ðxiÞ () for 8xi 2 U; oSPðxiÞ � oSQ ðxiÞ () KðQÞ � KðPÞ:
Hence, ðKðUÞ;
S
;
T
; oÞ is a complemented lattice. h

In a complemented lattice ðKðUÞ;
S
;
T
; oÞ, the knowledge structure KðxÞ ¼ fxijxi 2 Ug and the knowledge structure

KðdÞ ¼ fSPðxiÞjSPðxiÞ ¼ U; xi 2 Ug are two special knowledge structures, where KðxÞ is the discrete classification and KðdÞ is
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the indiscrete classification. For any KðPÞ 2 KðUÞ, one has that KðxÞ � KðPÞ � KðdÞ. Then, we can call KðxÞ and KðdÞ the min-
imal element and the maximal element on the lattice ðKðUÞ;

S
;
T
; oÞ, respectively.

Remark. One of the strengths of rough set theory is the fact that an unknown target concept can be characterized
approximately by existing knowledge structures in a knowledge base. From the above analyses, it is shown that these four
operators (

S
,
T

, o and �) can be applied to generate new knowledge structures on a knowledge base. That is to say, one can
use these new knowledge structures to approximate an unknown target. Therefore, this mechanism may be used to rule
extraction and knowledge discovery from knowledge bases.
4. Knowledge granulation

As we know, knowledge granulation, in a broad sense, is the average measure of knowledge granules of a knowledge
structure in a given knowledge base. It can be used to characterize the classification ability of a given knowledge structure
[19,20,33,50,55].

In recent years, some researchers have discussed and investigated that how to measure the classification ability of a
knowledge structure and what is the essence of knowledge granulation in knowledge bases. Generally, the partial relation
‘‘�” are concerned for investigating various definitions of knowledge granulation. However, the partial relation ‘‘�” may be
not strict in terms of characterizing the properties of knowledge granulation in knowledge bases. In order to discover the
essence of knowledge granulation, we introduce a new binary relation ‘‘�” on KðUÞ in the following.

Let K ¼ ðU;RÞ be a knowledge base, P;Q 2 R, KðPÞ ¼ fSPðxÞjx 2 Ug and KðQÞ ¼ fSQ ðxÞjx 2 Ug. We define a binary relation�
as follows: KðPÞ�KðQÞ ðP;Q 2 RÞ if and only if, for KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg, there exists a sequence K 0ðQÞ of KðQÞ,
where K 0ðQÞ ¼ fSQ ðx01Þ, SQ ðx02Þ; . . . ; SQ ðx0jUjÞg, such that jSPðxiÞj 6 jSQ ðx0iÞj, i 6 jUj.

The following theorem gives some properties of the binary relation �.

Theorem 7. The following properties hold

(1) � is reflexive,
(2) � is transitive,
(3) KðPÞ

T
KðQÞ�KðPÞ, KðPÞ

T
KðQÞ�KðQÞ, and

(4) KðPÞ�KðPÞ
S

KðQÞ, KðQÞ�KðPÞ
S

KðQÞ.

Proof. They are straightforward.
Here, we say that KðPÞ is granulation finer than KðQÞ if KðPÞ�KðQÞ. If KðPÞ�KðQÞ and there exists SQ ðx0iÞ 2 K 0ðQÞ such that

jSPðxiÞj < jSQ ðx0iÞj, we say that KðQÞ is strictly granulation coarser than KðPÞ (or KðPÞ is strictly granulation finer than KðQÞ),
denoted by KðPÞ � KðQÞ. h

Theorem 8. The partial relation � is a special instance of the relation �.

Proof. Let K ¼ ðU;RÞ be a knowledge base, P;Q 2 R, KðPÞ ¼ fSPðxÞjx 2 Ug and KðQÞ ¼ fSQ ðxÞjx 2 Ug. If KðPÞ � KðQÞ, one can
obtain that SPðxiÞ# SQ ðxiÞ for any xi 2 U, i.e., jSPðxiÞj 6 jSQ ðxiÞj. That is to say, one can find an array of all tolerance classes in
KðQÞ such that KðPÞ�KðQÞ. Therefore, the partial relation � is a special instance of the relation �. h

Definition 5. Let K ¼ ðU;RÞ be a knowledge base, if for 8P 2 R, there is a real number GðPÞ with the following properties:

(1) GðPÞP 0 (non-negative);
(2) for 8P;Q 2 R, let KðPÞ ¼ fSPðxiÞjxi 2 Ug and KðQÞ ¼ fSQ ðxiÞjxi 2 Ug, if there is a bijective mapping function

f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSPðxiÞÞj, then GðPÞ ¼ GðQÞ (invariability);
(3) if 8P;Q 2 R and KðPÞ � KðQÞ, then GðPÞ < GðQÞ (monotonicity).

Then G is called a knowledge granulation on K.

As a result of the above discussions, we come to the following three theorems.

Theorem 9 (Extremum). Let K ¼ ðU;RÞ be a knowledge base and 8KðPÞ 2 K, then GðPÞ achieves its minimum value if U=P ¼ x
and GðPÞ achieves its maximum value if U=P ¼ d, where x denotes the identity relation and d denotes the universal relation.

Proof. Let KðxÞ ¼ fSxðxiÞjSxðxiÞ ¼ xi; xi 2 Ug and KðdÞ ¼ fSdðxiÞjSdðxiÞ ¼ U; xi 2 Ug. Hence, for 8R 2 R, KðRÞ ¼ fSRðxiÞjxi 2 Ug,
one has that xi # SRðxiÞ and 1 6 jSRðxiÞj, i.e., KðxÞ � KðRÞ, and SRðxiÞ# U and jSRðxiÞj 6 jUj, i.e., KðRÞ � KðdÞ. Therefore,
KðxÞ � KðRÞ � KðdÞ 8R 2 R. From (3) in Definition 5, one can get that GðxÞ 6 GðRÞ 6 GðdÞ, i.e., GðPÞ achieves its minimum
value if U=P ¼ x (identity relation) and GðPÞ achieves its maximum value if U=P ¼ d (universal relation). h
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From Definition 5 and Theorem 9, it is easy to see that the size of GðPÞ only depends on the cardinality of every class in the
knowledge structure KðPÞ. The minimum value of GðPÞ can be obtained when P ¼ x and the maximum value of GðPÞ can be
approached when P ¼ d.

Theorem 10. Let K ¼ ðU;RÞ be a knowledge base and KðPÞ;KðQÞ two knowledge structures on K, then GðPÞ 6 GðQÞ if
KðPÞ � KðQÞ.

Proof. From the definition of �, one can see that KðPÞ � KðQÞ ðP;Q 2 RÞ if and only if SPðxiÞ# SQ ðxiÞ for every
i 2 f1;2; . . . ; jUjg. Hence, for every SPðxiÞ 2 KðPÞ, there exists SQ ðxiÞ 2 KðQÞ such that jSPðxiÞj 6 jSQ ðxiÞj, i.e., KðPÞ � KðQÞ. There-
fore, one can easily obtain that GðPÞ 6 GðQÞ from (3) in Definition 5. h

Theorem 11. The following properties hold:

(1) GðPÞ ¼ Gðo o PÞ;
(2) GðP

T
QÞ 6 GðPÞ, GðP

T
QÞ 6 GðQÞ;

(3) GðPÞ 6 GðP
S

QÞ, GðQÞ 6 GðP
S

QÞ; and
(4) GðP

T
oPÞ ¼ GðxÞ, GðP

S
oPÞ ¼ GðdÞ.

Proof. They are straightforward. h

In [19,20,33], several different kinds of knowledge granulations have been given, in the following, we prove that these
knowledge granulations are all special forms under Definition 6.

Definition 6 [19]. Let K ¼ ðU;RÞ be a knowledge base, R 2 R and U=R ¼ fX1;X2; . . . ;Xmg. Knowledge granulation of the
knowledge structure KðRÞ is defined as
GKðRÞ ¼ 1

jUj2
Xm

i¼1

jXij2;
1
jUj 6 GKðRÞ 6 1; ð10Þ
where
Pm

i¼1jXij2 is the cardinality of the equivalence relation
Sm

i¼1ðXi � XiÞ determined by R.

Theorem 12. GK in Definition 6 is a knowledge granulation under Definition 5.

Proof

(1) Obviously, it is non-negative.
(2) Let P;Q 2 R, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ; SQ ðx2Þ; . . . ; SQ ðxjUjÞg. Supposing that there be a bijec-

tive mapping function f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSQ ðxiÞÞj and f ðSPðxiÞÞ ¼ SQ ðxji Þ, ji 2 f1;2; . . . ; jUjÞ, then one
has that
GKðPÞ ¼ 1

jUj2
Xm

i¼1

jXij2 ¼
1

jUj2
XjUj
i¼1

jSPðxiÞj ¼
1

jUj2
XjUj
i¼1

jSQ ðxji Þj ¼
1

jUj2
XjUj
i¼1

jSQ ðxiÞj ¼ GKðQÞ:
(3) Let P;Q 2 R with KðPÞ � KðQÞ, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ, SQ ðx2Þ; . . . ; SQ ðxjUjÞg, then there
exists a sequence K 0ðQÞ of KðQÞ, where K 0ðQÞ ¼ fSQ ðx01Þ; SQ ðx02Þ; . . . ; SQ ðx0jUjÞg, such that jSPðxiÞj < jSQ ðx0iÞj. Hence, one
has that
GKðPÞ ¼ 1

jUj2
Xm

i¼1

jXij2 ¼
1

jUj2
XjUj
i¼1

jSPðxiÞj <
1

jUj2
XjUj
i¼1

jSQ ðx0iÞj ¼
1

jUj2
XjUj
i¼1

jSQ ðxiÞj ¼ GKðQÞ:
Therefore, GK in Definition 6 is a knowledge granulation under Definition 5. h

Definition 7 [20]. Let K ¼ ðU;RÞ be a knowledge base, P 2 R and KðPÞ ¼ fSPðx1Þ, SPðx2Þ; . . . ; SPðxjUjÞg. Knowledge granulation
of the knowledge structure KðPÞ is defined as
GðPÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞj
jUj ; ð11Þ
where jSP ðxiÞj
jUj is the probability of tolerance class SPðxiÞ within the universe U.

If KðPÞ ¼ KðxÞ, GðPÞ achieves its minimum value GðPÞ ¼ 1
jUj; if KðPÞ ¼ KðdÞ, GðPÞ achieves its maximum value GðPÞ ¼ 1. It is

obvious that 1
jUj 6 GðPÞ 6 1.
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Theorem 13. G in Definition 7 is a knowledge granulation under Definition 5.

Proof

(1) Obviously, it is non-negative.
(2) Let P;Q 2 R, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ; SQ ðx2Þ; . . . ; SQ ðxjUjÞg. Supposing that there be a bijec-

tive mapping function f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSQ ðxiÞÞj and f ðSPðxiÞÞ ¼ SQ ðxji Þ, ji 2 f1;2; . . . ; jUjÞ, then one
has that
GðPÞ ¼ 1

jUj2
XjUj
i¼1

jSPðxiÞj ¼
1

jUj2
XjUj
i¼1

jSQ ðxji Þj ¼
1

jUj2
XjUj
i¼1

jSQ ðxiÞj ¼ GðQÞ:
(3) Let P;Q 2 R with KðPÞ � KðQÞ, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ; SQ ðx2Þ; . . . ; SQ ðxjUjÞg, then there
exists a sequence K 0ðQÞ of KðQÞ, where K 0ðQÞ ¼ fSQ ðx01Þ; SQ ðx02Þ; . . . ; SQ ðx0jUjÞg, such that jSPðxiÞj < jSQ ðx0iÞj. Hence, one
has that
GðPÞ ¼ 1

jUj2
XjUj
i¼1

jSPðxiÞj <
1

jUj2
XjUj
i¼1

jSQ ðx0iÞj ¼
1

jUj2
XjUj
i¼1

jSQ ðxiÞj ¼ GðQÞ:
Thus, G in Definition 7 is a knowledge granulation under Definition 5. h

Theorem 14. Let K ¼ ðU;RÞ be a knowledge base, P 2 R, KðPÞ ¼ fSPðx1Þ, SPðx2Þ; . . . ; SPðxjUjÞg and oP the relation induced by oKðPÞ,
then GðPÞ þ GðoPÞ ¼ 1þ 1

jUj.

Proof. From Definition 7, it follows that
GðPÞ þ GðoPÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞj
jUj þ

1
jUj

XjUj
i¼1

j o SPðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jSPðxiÞj
jUj þ

1
jUj

XjUj
i¼1

jxi[ � SPðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jUj þ 1
jUj ¼ 1þ 1

jUj :
That is GðPÞ þ GðoPÞ ¼ 1þ 1
jUj. h

Theorem 15. Let KðUÞ be the set of all knowledge structures on U and KðPÞ;KðQÞ 2 KðUÞ two knowledge structures, then
GðPÞ � GðQÞ ¼ GðoðQÞ � GðoPÞ.

Proof. Obviously, we have that
GðoPÞ � GðoQÞ ¼ 1
jUj

XjUj
i¼1

1þ jUj � jSPðxiÞj
jUj � 1

jUj
XjUj
i¼1

1þ jUj � jSQ ðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jSQ ðxiÞj � jSPðxiÞj
jUj ¼ �ðGðPÞ � GðQÞÞ;
i.e., GðPÞ � GðQÞ ¼ GðoQÞ � GðoPÞ. h

Definition 8 [33]. Let K ¼ ðU;RÞ be a knowledge base, R 2 R and U=R ¼ fX1;X2; . . . ;Xmg. Combination granulation of knowl-
edge structure KðRÞ is defined as
CGðRÞ ¼
Xm

i¼1

jXij
jUj

C2
jXi j

C2
jUj
; ð12Þ
where 0 6 CGðRÞ 6 1, jXi j
jUj represents the probability of equivalence class Xi within the universe U, and

C2
jXi j

C2
jUj

denotes the prob-
ability of pairs of elements on equivalence class Xi within the whole pairs of elements on the universe U.

Theorem 16. CG in Definition 8 is a knowledge granulation under Definition 5.

Proof

(1) Obviously, it is non-negative.
(2) Let P;Q 2 R, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ, SQ ðx2Þ; . . . ; SQ ðxjUjÞg. Supposing that there be a bijec-

tive mapping function f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSQ ðxiÞÞj and f ðSPðxiÞÞ ¼ SQ ðxji Þ, ji 2 f1;2; . . . ; jUjÞ. Then,
CGðPÞ ¼
Xm

i¼1

jPij
jUj

C2
jPi j

C2
jUj
¼
XjUj
i¼1

jSPðuiÞj
jUj

C2
jSP ðuiÞj

C2
jUj
¼
XjUj
i¼1

jSQ ðuji Þj
jUj

C2
jSQ ðuji

Þj

C2
jUj
¼
XjUj
i¼1

jSQ ðuiÞj
jUj

C2
jSQ ðuiÞj

C2
jUj
¼
Xn

j¼1

jQ jj
jUj

C2
jQj j

C2
jUj
¼ CGðQÞ:
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(3) Let P;Q 2 R with P � Q , KðPÞ ¼ fSPðu1Þ; SPðu2Þ; . . . ; SPðujUjÞg and KðQÞ ¼ fSQ ðu1Þ, SQ ðu2Þ; . . . ; SQ ðujUjÞg, then for arbitrary
SPðuiÞði 6 jUjÞ, there exists a sequence fSQ ðu01Þ; SQ ðu02Þ; . . . ; SQ ðu0jUjÞg such that jSPðuiÞj < jSQ ðu0iÞj ði ¼ 1;2; . . . ; jUjÞ.
Therefore,
CGðPÞ ¼
Xm

i¼1

jPij
jUj

C2
jPi j

C2
jUj
¼
XjUj
i¼1

jSPðuiÞj
jUj

C2
jSP ðuiÞj

C2
jUj

<
XjUj
i¼1

SQ ðu0iÞ
jUj

C2
jSQ ðu0iÞj

C2
jUj
¼
XjUj
i¼1

SQ ðuiÞ
jUj

C2
jSQ ðuiÞj

C2
jUj
¼
Xn

j¼1

jQ jj
jUj

C2
jQj j

C2
jUj
¼ CGðQÞ:
Hence, CG in Definition 8 is a knowledge granulation under Definition 5. h

Definition 9 [33]. Let K ¼ ðU;RÞ be a knowledge base, P 2 R, KðPÞ ¼ fSPðx1Þ, SPðx2Þ; . . . ; SPðxjUjÞg. Combination granulation of
knowledge structure KðPÞ is defined by
CGðPÞ ¼ 1
jUj

XjUj
i¼1

C2
jSP ðxiÞj

C2
jUj

; ð13Þ
where
C2
jSP ðxi Þj

C2
jUj

denotes the probability of pairs of elements on tolerance class SPðxiÞ within the whole pairs of elements on the

universe U.

Theorem 17. CG in Definition 9 is a knowledge granulation under Definition 5.

Proof

(1) Obviously, it is non-negative.
(2) Let P;Q 2 R, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ, SQ ðx2Þ; . . . ; SQ ðxjUjÞg. Supposing that there be a bijec-

tive mapping function f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSQ ðxiÞÞj and f ðSPðxiÞÞ ¼ SQ ðxji Þ, ji 2 f1;2; . . . ; jUjÞ, one has that
CGðPÞ ¼ 1
jUj

XjUj
i¼1

C2
jSP ðuiÞj

C2
jUj
¼ 1
jUj

XjUj
i¼1

C2
jSQ ðuji

Þj

C2
jUj
¼ 1
jUj

XjUj
i¼1

C2
jSQ ðxiÞj

C2
jUj
¼ CGðQÞ:
(3) Let P;Q 2 R with P � Q , KðPÞ ¼ fSPðu1Þ; SPðu2Þ; . . . ; SPðujUjÞg and KðQÞ ¼ fSQ ðu1Þ; SQ ðu2Þ; . . . ; SQ ðujUjÞg, then for any
SPðuiÞði 6 jUjÞ, there exists a sequence fSQ ðu01Þ; SQ ðu02Þ; . . . ; SQ ðu0jUjÞg such that jSPðuiÞj < jSQ ðu0iÞj ði ¼ 1;2; . . . ; jUjÞ.
Therefore,
CGðPÞ ¼ 1
jUj

XjUj
i¼1

C2
jSP ðuiÞj

C2
jUj

<
1
jUj

XjUj
i¼1

C2
jSQ ðu0iÞj

C2
jUj
¼ 1
jUj

XjUj
i¼1

C2
jSQ ðuiÞj

C2
jUj
¼ CGðQÞ:
Thus, CG in Definition 9 is a knowledge granulation under Definition 5. h

Through using the axiom definition of knowledge granulation, one can construct some new knowledge granulations
according to various opinions. In the following, we show the significance of the axiom definition of knowledge granulation
by constructing a new form of knowledge granulation in a given knowledge base.

Definition 10. Let K ¼ ðU;RÞ be a knowledge base, P 2 R and KðPÞ ¼ fSPðx1Þ, SPðx2Þ; . . . ; SPðxjUjÞg. Knowledge granulation of
the knowledge structure KðPÞ is defined as
GEðPÞ ¼ 1
jUj

XjUj
i¼1

log2jSPðxiÞj: ð14Þ
If KðPÞ ¼ KðxÞ, GðPÞ achieves its minimum value GðPÞ ¼ 0; if KðPÞ ¼ KðdÞ, GðPÞ achieves its maximum value GðPÞ ¼ log2jUj.
It is obvious that 0 6 GEðPÞ 6 log2jUj.

Theorem 18. GE in Definition 10 is a knowledge granulation under Definition 5.

Proof

(1) Obviously, it is non-negative.
(2) Let P;Q 2 R, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ, SQ ðx2Þ; . . . ; SQ ðxjUjÞg. Supposing that there be a bijec-

tive mapping function f : KðPÞ ! KðQÞ such that jSPðxiÞj ¼ jf ðSQ ðxiÞÞj and f ðSPðxiÞÞ ¼ SQ ðxji Þ, ji 2 f1;2; . . . ; jUjÞ. Hence,
GEðPÞ ¼ 1
jUj

XjUj
i¼1

log2jSPðxiÞj ¼
1
jUj

XjUj
i¼1

log2jSQ ðxji Þj ¼
1
jUj

XjUj
i¼1

log2jSQ ðxiÞj ¼ GEðQÞ:
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(3) Let P;Q 2 R with KðPÞ � KðQÞ, KðPÞ ¼ fSPðx1Þ; SPðx2Þ; . . . ; SPðxjUjÞg and KðQÞ ¼ fSQ ðx1Þ; SQ ðx2Þ; . . . ; SQ ðxjUjÞg, then there
exists a sequence K 0ðQÞ of KðQÞ, where K 0ðQÞ ¼ fSQ ðx01Þ; SQ ðx02Þ; . . . ; SQ ðx0jUjÞg, such that jSPðxiÞj < jSQ ðx0iÞj. Hence,
GEðPÞ ¼ 1
jUj

XjUj
i¼1

log2jSPðxiÞj 6
1
jUj

XjUj
i¼1

log2jSQ ðx0iÞj ¼
1
jUj

XjUj
i¼1

log2jSQ ðxiÞj ¼ GEðQÞ:
Therefore, GE in Definition 10 is a knowledge granulation under Definition 5. h
5. Knowledge distance

In rough set theory, information entropy and knowledge granulation are two main approaches to measuring the uncer-
tainty of a knowledge structure in knowledge bases. If the knowledge granulation (or information entropy) of one knowledge
structure is equal to that of the other knowledge structure, we say that these two knowledge structures have the same
uncertainty. However, it does not mean that these two knowledge structures are equivalent each other. In other words,
information entropy and knowledge granulation cannot characterize the difference between any two knowledge structures
in a knowledge base. In this section, we introduce a notion of knowledge distance to differentiate two given knowledge
structures and investigate some of its important properties.

In [50], Yao presented the concept of set closeness between two classical sets to measure the degree of the sameness be-
tween sets. Let A and B be two finite sets, the measure is defined by HðA;BÞ ¼ jA\Bj

jA[Bj ðA [ B–;Þ [50]. Obviously, the formula
1� HðA;BÞ ¼ 1� jA\Bj

jA[Bj ðA [ B–;Þ can characterize the difference between two finite classical sets. To characterize the relation-
ship among knowledge structures, based on the view of set closeness, we introduce an approach called knowledge distance
for measuring the difference between two knowledge structures on the same knowledge base in the following.

Definition 11. Let K ¼ ðU;RÞ be a knowledge base, P;Q 2 R, KðPÞ ¼ fSPðxiÞjxi 2 Ug and KðQÞ ¼ fSQ ðxiÞjxi 2 Ug. Knowledge
distance between KðPÞ and KðQÞ is defined as
DðKðPÞ;KðQÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj ; ð15Þ
where jSPðxiÞ 	 SQ ðxiÞj ¼ jSPðxiÞ [ SQ ðxiÞj � jSPðxiÞ \ SQ ðxiÞj.

The knowledge distance represents the measure of difference between two knowledge structures in the same knowledge
base. Obviously, 0 6 DðKðPÞ;KðQÞÞ 6 1� 1

jUj.

Theorem 19 (Extremum). Let KðU;RÞ be a knowledge base, KðPÞ, KðQÞ two knowledge structures on K. Then, DðKðPÞ, KðQÞÞ
achieves its minimum value DðKðPÞ;KðQÞÞ ¼ 0 iff KðPÞ ¼ KðQÞ and DðKðPÞ;KðQÞÞ achieves its maximum value
DðKðPÞ;KðQÞÞ ¼ 1� 1

jUj iff KðPÞ ¼ oKðQÞð () KðQÞ ¼ oKðPÞÞ.

Proof. For 8P;Q 2 R, one has that 1 6 jSPðxiÞ \ SPðxiÞj 6 jUj and 1 6 jSPðxiÞ [ SPðxiÞj 6 jUj. Therefore, 8P;Q 2 R,
0 6 jSPðxiÞ 	 SQ ðxiÞj 6 jUj � 1, i.e., 0 6 1

jUj
PjUj

i¼1
jSP ðxiÞ	SQ ðxiÞj

jUj 6 1� 1
jUj.

If KðPÞ ¼ KðQÞ, then KðPÞ
T

KðQÞ ¼ KðPÞ and KðPÞ
S

KðQÞ ¼ KðPÞ. Hence,
DðKðPÞ;KðQÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

0
jUj ¼ 0;
i.e., DðKðPÞ, KðQÞÞ achieves its minimum value 0 if and only if KðPÞ ¼ KðQÞ.
If KðPÞ ¼ oKðQÞ, then KðPÞ

T
KðQÞ ¼ KðxÞ and KðPÞ

S
KðQÞ ¼ KðdÞ. Hence,
DðKðPÞ;KðQÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jUj � jxij
jUj ¼ 1� 1

jUj ;
i.e., DðKðPÞ, KðQÞÞ achieves its maximum value 1� 1
jUj if and only if KðPÞ ¼ oKðQÞ or KðQÞ ¼ oKðPÞ. h

In particular, one has that DðKðxÞ;KðdÞÞ ¼ 1� 1
jUj. In fact, we have that KðxÞ ¼ oKðdÞ and KðdÞ ¼ oKðxÞ.

Let KðPÞ ¼ fSPðxiÞjxi 2 Ug, KðQÞ ¼ fSQ ðxiÞjxi 2 Ug and KðRÞ ¼ fSRðxiÞjxi 2 Ug be three knowledge structures on U. For
SPðxiÞ 2 KðPÞ, SQ ðxiÞ 2 KðQÞ and SRðxiÞ 2 KðQÞ, xi 2 U, we note SP[Q[RðxiÞ ¼ SPðxiÞ [ SQ ðxiÞ [ SRðxiÞ. One can give a certain array
of all elements in SP[Q[RðxiÞ and denote the array by Array ¼ ðxi1 ; xi2 ; . . . ; xijSP[Q[R ðxi Þj

Þ. Therefore, one can represent SPðxiÞ by the
following array
xik ¼
1 if xik 2 SPðxiÞ;
0 else;

�

for xik 2 Array, k 6 jSP[Q[RðxiÞj.
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Similarly, the expressions of SQ ðxiÞ and SRðxiÞ can also be obtained. In fact, the expression of Array is various, so the expres-
sion of SPðxiÞ, SQ ðxiÞ and SRðxiÞ should also be changed according to Array, respectively. This kind of representations about the
tolerance classes is illustrated by the following example.

Example 3. Consider three tolerance classes SPðxiÞ ¼ f1;2;3g, SQ ðxiÞ ¼ f2;3;4g and SRðxiÞ ¼ f3;4;5g. Compute the
expressions of SPðxiÞ, SQ ðxiÞ and SRðxiÞ through using the above method.

By computing, one has that SP[Q[RðxiÞ ¼ SPðxiÞ [ SQ ðxiÞ [ SRðxiÞ ¼ f1;2;3;4;5g. Assume that Array ¼ ð1;2;3;4;5Þ.
For SPðxiÞ, one can obtain that SPðxiÞ ¼ ð1;1;1; 0;0Þ. Similarly, it follows that SQ ðxiÞ ¼ ð0;1;1;1; 0Þ and SRðxiÞ ¼ ð0;0;1;1;1Þ.

Let A, B, C be three classical sets, Array ¼ ðt1; t2; . . . ; tjA[B[CjÞ, ti \ tj ¼ ;, ti; tj 2 A [ B [ C. Hence, from the above expression
method, one can get the array expressions of A, B and C as follows:
A0 ¼ fa1; a2; . . . ; ajA[B[Cjg;
B0 ¼ fb1; b2; . . . ; bjA[B[Cjg; and

C 0 ¼ fc1; c2; . . . ; cjA[B[Cjg:
Based on these denotations, we then measure the distance between two classical sets by the following formula
dðA; BÞ ¼
XjA[B[Cj

i¼1

ðai þ biÞ; ai 2 A0; bi 2 B0: ð16Þ
Analogously, one has that dðB;CÞ ¼
PjA[B[Cj

i¼1 ðbi þ ciÞ and dðA;CÞ ¼
PjA[B[Cj

i¼1 ðai þ ciÞ.
From these denotations, we come to the following lemma.

Lemma 1. Let A, B, C be three classical sets, then dðA;BÞ þ dðB;CÞP dðA;CÞ, dðA;BÞ þ dðA;CÞP dðB;CÞ and
dðA;CÞ þ dðB;CÞP dðA;BÞ.

Proof. Suppose that A0 ¼ fa1; a2; . . . ; ajA[B[Cjg, B0 ¼ fb1; b2; . . . ; bjA[B[Cjg and C0 ¼ fc1; c2; . . . ; cjA[B[Cjg. From
ðai þ biÞ þ ðbi þ ciÞP ðai þ ciÞ, it follows that
dðA; BÞ þ dðB;CÞ ¼
XjA[B[Cj

i¼1

ðai þ biÞ þ
XjA[B[Cj

i¼1

ðbi þ ciÞ ¼
XjA[B[Cj

i¼1

ððai þ biÞ þ ðbi þ ciÞÞP
XjA[B[Cj

i¼1

ðai þ ciÞ ¼ dðB;CÞ:
Similarly, dðA;BÞ þ dðA;CÞP dðB; CÞ and dðA; CÞ þ dðB;CÞP dðA;BÞ. h

Theorem 20. Let KðUÞ be the set of all knowledge structures induced by U, then ðKðUÞ;DÞ is a distance space.

Proof

(1) One can obtain easily that DðKðPÞ;KðQÞÞP 0 from Definition 7.
(2) It is obvious that DðKðPÞ;KðQÞÞ ¼ DðKðQÞ;KðPÞÞ.
(3) For the proof of the triangle inequality principle, one only need to prove that DðKðPÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞP

DðKðQÞ;KðRÞÞ, DðKðRÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞP DðKðQÞ;KðPÞÞ and DðKðRÞ;KðQÞÞ þ DðKðPÞ;KðQÞÞP DðKðPÞ;KðRÞÞ for
any KðPÞ, KðQÞ, KðRÞ 2 KðUÞ.From Lemma 1, we know that for xi 2 U, DðSPðxiÞ; SQ ðxiÞÞ þ DðSPðxiÞ; SRðxiÞÞP
DðSQ ðxiÞ; SRðxiÞÞ, DðSPðxiÞ; SQ ðxiÞÞ þ DðSQ ðxiÞ; SRðxiÞÞP DðSPðxiÞ; SRðxiÞÞ and DðSPðxiÞ; SRðxiÞÞ þ DðSQ ðxiÞ; SRðxiÞÞP
DðSPðxiÞ; SQ ðxiÞÞ. Hence,
DðKðPÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj þ 1

jUj
XjUj
i¼1

jSPðxiÞ 	 SRðxiÞj
jUj

¼ 1
jUj

XjUj
i¼1

dðSPðxiÞ; SQ ðxiÞÞ
jUj þ 1

jUj
XjUj
i¼1

dðSPðxiÞ; SRðxiÞÞ
jUj

¼ 1
jUj

XjUj
i¼1

1
jUj ðdðSPðxiÞ; SQ ðxiÞÞ þ dðSPðxiÞ; SRðxiÞÞÞP

1
jUj

XjUj
i¼1

dðSQ ðxiÞ; SRðxiÞÞ
jUj

¼ 1
jUj

XjUj
i¼1

DðKðQÞ;KðRÞÞ:
Similarly, one can obtain that DðKðRÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞP DðKðQÞ;KðPÞÞ, DðKðRÞ;KðQÞÞ þ DðKðPÞ;KðQÞÞP DðKðRÞ;KðPÞÞ.

Therefore, ðKðUÞ;DÞ is a distance space. h
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The above theorem is explained by the following example.

Example 4. Assume that K ¼ fx1; x2; x3; x4; x5g and KðPÞ;KðQÞ;KðRÞ be three knowledge structures induced by equivalence
relations P;Q ;R on K, where KðPÞ ¼ ffx1; x2; x3g; fx1; x2; x3g; fx1; x2; x3g; fx4; x5g; fx4; x5gg, KðQÞ ¼ ffx1, x2g; fx1; x2g; fx3g;
fx4; x5g; fx4; x5gg and KðRÞ ¼ ffx1; x2g; fx1; x3g; fx3g, fx4g; fx5gg.

By computing their knowledge distances, one can obtain that
DðKðPÞ;KðQÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 0þ 0Þ

� �
¼ 4

25
;

DðKðPÞ;KðRÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 1þ 1Þ

� �
¼ 6

25
; and

DðKðQÞ;KðRÞÞ ¼ 1
5

1
5
ð0þ 2þ 0þ 1þ 1Þ

� �
¼ 4

25
:

Hence, one has that 4
25þ 6

25 ¼ 10
25 >

4
25, 4

25þ 4
25 ¼ 8

25 >
6

25. It is easy to see that DðKðPÞ;KðQÞÞ þ DðKðPÞ;KðRÞÞP DðKðQÞ, KðRÞÞ,
DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞP DðKðPÞ;KðRÞÞ and DðKðQÞ;KðRÞÞ þ DðKðPÞ;KðRÞÞP DðKðPÞ;KðQÞÞ. h

For further development, we give the following Lemma 2.

Lemma 2. Let A, B, C be three classical sets with A # B # C or A � B � C, then dðA;BÞ þ dðB;CÞ ¼ dðA;CÞ.

Proof. Suppose that A0 ¼ fa1; a2; . . . ; ajA[B[Cjg, B0 ¼ fb1; b2; . . . ; bjA[B[Cjg and C0 ¼ fc1; c2; . . . ; cjA[B[Cjg. Let A # B # C, thus
A [ B [ C ¼ A and B [ C ¼ B. Therefore,
dðA; BÞ þ dðB; CÞ ¼
XjA[B[Cj

i¼1
ðai þ biÞ þ

XjA[B[Cj

i¼1

ðbi þ ciÞ ¼ ðjA [ Bj � jA \ BjÞ þ ðjB [ Cj � jB \ CjÞ ¼ ðjAj � jBjÞ þ ðjBj � jCjÞ

¼ jAj � jCj ¼
XjA[B[Cj

i¼1
ðai þ ciÞ ¼ dðA;CÞ:
For A � B � C, similarly, one can draw the same conclusion. h

By Definition 11 and Lemma 2, one can obtain the following theorem.

Theorem 21. Let K ¼ ðU;RÞ be a knowledge base, P, Q, R 2 R and KðPÞ � KðQÞ � KðRÞ or KðRÞ � KðQÞ � KðPÞ. Then,
DðKðPÞ;KðRÞÞ ¼ DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞ.

Proof. For KðPÞ, KðQÞ, KðRÞ 2 K and KðPÞ � KðQÞ � KðRÞ, one can easily get that SPðxiÞ# SQ ðxiÞ# SRðxiÞ, xi 2 U. Hence, it fol-
lows from Lemma 2 that
DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj þ 1

jUj
XjUj
i¼1

jSQ ðxiÞ 	 SRðxiÞj
jUj

¼ 1
jUj

XjUj
i¼1

dðSPðxiÞ; SQ ðxiÞÞ
jUj þ 1

jUj
XjUj
i¼1

dðSQ ðxiÞ; SRðxiÞÞ
jUj

¼ 1
jUj

XjUj
i¼1

1
jUj ðdðSPðxiÞ; SQ ðxiÞÞ þ dðSQ ðxiÞ; SRðxiÞÞÞ ¼

1
jUj

XjUj
i¼1

dðSPðxiÞ; SRðxiÞÞ
jUj

¼ 1
jUj

XjUj
i¼1

DðKðPÞ;KðRÞÞ:
For KðRÞ � KðQÞ � KðPÞ, similarly, one can draw the same conclusion. h

Example 5. Let U ¼ fx1; x2; x3; x4; x5g and KðPÞ;KðQÞ;KðRÞ be three knowledge structures induced by equivalence relations
P;Q ;R on K, where KðPÞ ¼ ffx1; x2; x3g; fx1; x2; x3g; fx1; x2; x3g; fx4; x5g; fx4; x5gg, KðQÞ ¼ ffx1; x2g; fx1; x2g; fx3g; fx4; x5g;
fx4; x5gg and KðRÞ ¼ ffx1; x2g; fx1; x2g; fx3g; fx4g; fx5gg.

It is obvious that KðRÞ � KðQÞ � KðPÞ. By computing the knowledge distances among them, one can obtain that
DðKðPÞ;KðQÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 0þ 0Þ

� �
¼ 4

25
;

DðKðQÞ;KðRÞÞ ¼ 1
5

1
5
ð0þ 0þ 0þ 1þ 1Þ

� �
¼ 2

25
; and

DðKðPÞ;KðRÞÞ ¼ 1
5

1
5
ð1þ 1þ 2þ 1þ 1Þ

� �
¼ 6

25
:

It is clear that DðKðPÞ;KðQÞÞ þ DðKðQÞ;KðRÞÞ ¼ 4
25þ 2

25 ¼ 6
25 ¼ DðKðPÞ;KðRÞÞ.
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Theorem 22. Let KðUÞ be the set of all knowledge structures induced by U and KðPÞ;KðQÞ 2 KðUÞ two knowledge structures, then
DðKðPÞ;KðQÞÞ ¼ DðoKðPÞ; oKðQÞÞ.

Proof. It follows from the definition of D that
DðoKðPÞ; oKðQÞÞ ¼ 1
jUj

XjUj
i¼1

jðxi[ � SPðxiÞÞ 	 ðxi[ � SQ ðxiÞÞj
jUj

¼ 1
jUj

XjUj
i¼1

jðxi[ � SPðxiÞÞ [ ðxi[ � SQ ðxiÞÞj � jðxi[ � SPðxiÞÞ [ ðxi\ � SQ ðxiÞÞj
jUj

¼ 1
jUj

XjUj
i¼1

jxi [ ð� SPðxiÞ[ � SQ ðxiÞÞj � jðxi [ ð� SPðxiÞ\ � SQ ðxiÞÞj
jUj

¼ ð1þ jUj � jSPðxiÞ \ SQ ðxiÞjÞ � ð1þ jUj � jSPðxiÞ [ SQ ðxiÞjÞ ¼ jSPðxiÞ [ SQ ðxiÞj � jSPðxiÞ \ SQ ðxiÞj

¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 SQ ðxiÞj
jUj ¼ DðKðPÞ;KðQÞÞ:
That is DðKðPÞ;KðQÞÞ ¼ DðoKðPÞ; oKðQÞÞ. h

As a result of the above discussions and analyses, we come to the following three corollaries.

Corollary 1. Let KðUÞ be the set of all knowledge structures induced by U and KðPÞ;KðQÞ 2 KðUÞ two knowledge structures. If
KðPÞ � KðQÞ, then DðKðPÞ;KðxÞÞ 6 DðKðQÞ;KðxÞÞ.

Proof. From the knowledge structure KðxÞ ¼ fxijxi 2 Ug and KðPÞ � KðQÞ, one has that fxig# SPðxiÞ# SQ ðxiÞ, xi 2 U.
Therefore,
DðKðPÞ;KðxÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 fxigj
jUj ¼ 1

jUj
XjUj
i¼1

jSPðxiÞj � 1
jUj 6

1
jUj

XjUj
i¼1

jSQ ðxiÞj � 1
jUj ¼ 1

jUj
XjUj
i¼1

jSQ ðxiÞ 	 fxigj
jUj

¼ DðKðQÞ;KðxÞÞ;

i.e., DðKðPÞ;KðxÞÞ 6 DðKðQÞ;KðxÞÞ. h

Corollary 2. Let KðUÞ be the set of all knowledge structures induced by U and KðPÞ;KðQÞ 2 KðUÞ two knowledge structures. If
KðPÞ 
 KðQÞ, then DðKðPÞ;KðdÞÞ > DðKðQÞ;KðdÞÞ.

Proof. Since the knowledge structure KðdÞ ¼ fSPðxiÞjSPðxiÞ ¼ U; xi 2 Ug and KðPÞ � KðQÞ, so SPðxiÞ# SQ ðxiÞ# U, xi 2 U. Hence,
DðKðPÞ;KðdÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞ 	 Uj
jUj ¼ 1

jUj
XjUj
i¼1

jUj � jSPðxiÞj
jUj P

1
jUj

XjUj
i¼1

jUj � jSQ ðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jSQ ðxiÞ 	 Uj
jUj

¼ DðKðQÞ;KðdÞÞ;

That is DðKðPÞ;KðdÞÞP DðKðQÞ;KðdÞÞ. h

Corollary 3. Let KðUÞ be the set of all knowledge structures induced by U and KðPÞ a knowledge structure on KðUÞ, then
DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ ¼ 1� 1

jUj.

Proof. Since KðxÞ � KðPÞ � KðdÞ, one can obtain that
DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ ¼ 1
jUj

XjUj
i¼1

jSPðxiÞj � 1
jUj þ 1

jUj
XjUj
i¼1

jUj � jSPðxiÞj
jUj ¼ 1

jUj
XjUj
i¼1

jSPðxiÞj � 1þ jUj � jSPðxiÞj
jUj

¼ 1
jUj

XjUj
i¼1

jUj � 1
jUj ¼ 1� 1

jUj :
Obviously, DðKðPÞ;KðdÞÞ þ DðKðPÞ;KðxÞÞ ¼ 1� 1
jUj. h

Remark. Unlike information entropy and knowledge granulation, the knowledge distance can characterize the difference
between two knowledge structures in knowledge bases. From the definition of knowledge distance, it is easy to see that
it is valid for complete knowledge structures and incomplete knowledge structures. It has some potential applications.
For example, based on the knowledge distance between the knowledge structure induced by each condition attribute and
the knowledge structure induced by the decision attribute, one can construct a heuristic function to extract decision rules
with much higher certainty from a complete/incomplete decision table. Further experimental analysis may be desirable,
but it is beyond the scope of this paper.
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6. Conclusions and discussion

The contributions of this paper have three hands. In this paper, by uniformly representing a complete knowledge struc-
ture and an incomplete knowledge structure, firstly, we have proposed four operators (

S
,
T

, o and �) on a knowledge base,
which can be applied to generate new knowledge structures. For a decision problem in the context of decision tables, these
four operators can be used to extract decision rules with much higher certainty from a given decision table. Then, in this
framework of knowledge representation proposed in this study, we have established an axiom definition of knowledge gran-
ulation and have proved that some existing knowledge granulations are all its special forms. The analysis shows that one can
apply this axiom definition to construct a new knowledge granulation, which can be used to restrict a new definition of
knowledge granulation according to practical demands and user requirements. Finally, we have introduced the definition
of a knowledge distance for calculating the difference between two knowledge structures in the same knowledge base. Not-
ing that the knowledge distance satisfies the three properties of a distance space on all knowledge structures induced by a
given universe and ðKðUÞ;DÞ is a distance space. The knowledge distance can be used to distinguish the difference between
two knowledge structures with the same knowledge granulation and to characterize the essence of uncertainty of knowl-
edge structures in knowledge bases. These results have been shown to be very helpful for knowledge discovery from knowl-
edge bases and significant for establishing a framework of granular computing in knowledge bases.
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