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This paper proposes a new method to trend analysis of categorical data streams. A data
stream is partitioned into a sequence of time windows and the records in each window
are assumed to carry a number of concepts represented as clusters. A data labeling algo-
rithm is proposed to identify the concepts or clusters of a window from the concepts of
the preceding window. The expression of a concept is presented and the distance between
two concepts in two consecutive windows is defined to analyze the change of concepts in
consecutive windows. Finally, a trend analysis algorithm is proposed to compute the trend
of concept change in a data stream over the sequence of consecutive time windows. The
methods for measuring the significance of an attribute that causes the concept change
and the outlier degrees of objects are presented to reveal the causes of concept change.
Experiments on real data sets are presented to demonstrate the benefits of the trend anal-
ysis method.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Many real world applications generate continuously arriving data, such as business transactions, network event logs and
social networks. This type of data is known as data streams [23]. In data stream mining, most research has been focused on
numerical data streams [2,1,5,12,13,18]. Recently, the mining of categorical data streams has become a research topic of
growing interest [4,10,11,14,19,20].

A data stream can be considered as a sequence of data records, each representing an object with a timestamp. Given a
time window, we assume that the objects represented by these records within the time window are distributed in different
clusters and each cluster represents a concept. As new data records arrive over time, the structure of clusters changes, which
results in change of concepts represented in the clusters. In this context, a concept change is called concept drift [23].

Two types of concept drift are illustrated in [17]. One is sudden (abrupt) concept drift and the other is gradual concept
drift. Sudden concept drift is described as that the structure of clusters is changed dramatically in short time. Gradual con-
cept drift is considered that the change of a concept occurs gradually over time. For example, in social network analysis, peo-
ple in a social group or cluster are interested in a particular topic at certain time period. Some people gradually change their
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interest in the topic and some suddenly change their interests from the current topic to a new topic. The former represents a
gradual concept drift and the later is a sudden concept drift.

In [6], we have defined a difference measure to compute the change of concepts between two consecutive windows. With
this measure, we are able to analyze the trend of concept change over time through the change of clusters in consecutive
windows. However, this measure cannot reveal the relative concept change between two time windows. To solve this prob-
lem, we have defined in [8] the new concept emerging degree and the old concept fading degree to measure the relative con-
cept change between two consecutive windows.

In this paper, we propose a new method to trend analysis of categorical data streams by extending the work of [6,8]. In
this method, we partition a data stream into a sequence of time windows. The data records in each window are assumed to
carry a number of concepts represented as clusters. We propose a data labeling algorithm to identify the concepts or clusters
in a window from the concepts of the preceding window. We express concepts following the idea of Node Importance [10]
and define the distance between two concepts in two consecutive windows using the new concept emerging degree and the
old concept fading degree to analyze the change of concepts in consecutive windows. We present the methods for measuring
the significance of an attribute that causes the concept change and the outlier degrees of objects to reveal the causes of con-
cept change. Finally, we integrate the above techniques in a trend analysis algorithm to compute the trend of concept change
in a data stream over the sequence of consecutive time windows.

A series of experiments were conducted on KDD-CUP’99 data set [22]. The experimental results have shown that the pro-
posed method can discover the trend of concept change in consecutive windows. In comparison with [6], the new method
not only revealed the relative concept change between consecutive windows but also found the causes of concept change.

The rest of this paper is organized as follows. Section 2 states the research problem. Section 3 reviews some preliminaries.
The trend analysis algorithm and the corresponding techniques are presented in Section 4. Experimental results on real data
sets are shown in Section 5. The paper is concluded in Section 6.

2. Problem statement

A categorical data stream consists of a sequence of records or objects with timestamps, where each record is described by
a set of categorical attributes such as Sex, Position, Location and Class. A categorical attribute takes values from a finite set of
categories, for instance, Sex = {M,F}. Formally, a categorical data stream can be formulated as a table of the quintuple
TDT ¼ ðU;A;V ; f ; tÞ, where U is a nonempty set of objects called the universe, A is a nonempty set of attributes, t is a sequence
of timestamps, f : U � A� t ! V is a mapping called an information function such that for any x 2 U; a 2 A and
t0 2 t; f ðx; a; t0Þ 2 Va, where Va is a finite and unordered set of values for attribute a. V ¼

S
a2AVa is the union of all attribute

domains.
Given a particular categorical data stream, we partition the sequence of objects into a set of consecutive time windows

with respect to t, using the sliding window technique [3,9,16]. Suppose that N is the size of a sliding window, i.e., the number

of records in the window, data stream TDT is partitioned into a series of subsets STi 1 6 i 6 jUj
N

l m� �
, where Ti represents the ith

window and STi
T

STj ¼ ; 1 6 i – j 6 jUj
N

l m� �
.

Problem Statement: Given a categorical data stream whose objects are partitioned into a set of consecutive time windows,
find the concepts the objects carry in each window; find the change of concepts in two consecutive windows; find the causes
of concept change; find the trend of concept change over the sequence of consecutive time windows.

3. Preliminaries

In this section, we briefly review some definitions, such as the new concept emerging degree, the old concept fading de-
gree and the difference measure between two windows that are used to measure concept change. These definitions were
first given in [8].

Definition 1 [21]. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream, P # A and X # U. For any Y # X and x 2 X, the lower
approximation and upper approximation of Y in X are defined as
PY ¼ fxj½x�P # Yg ð1Þ

and
PY ¼ xj½x�P
\

Y – ;
n o

; ð2Þ
where ½x�P ¼ fy 2 Xjðx; yÞ 2 INDðPÞg. INDðPÞ is an equivalence relation, which is defined as INDðPÞ ¼ fðx; yÞ 2 X�
Xj 8 a 2 P; f ðx; aÞ ¼ f ðy; aÞg.

Here, we describe the lower approximation and upper approximation of Y in a set X, not the universe U.
Given a categorical data stream whose objects are partitioned into a set of consecutive windows, we can use Definition 1

to measure the change of concepts between two consecutive windows. For example, in a social media data stream, a time



(a) New concept emerging (b) Old concept fading (c) Dual occurring

Fig. 1. Three types of concept change.

162 F. Cao et al. / Information Sciences 276 (2014) 160–173
window may contain several topics (concepts). The set of topics change as a new topic emerges in the following window or
an old topic disappears. The intuitive example in Fig. 1 illustrates three types of concept change. Assume the two rectangles
in each subfigure represent two consecutive windows. The circles in each window indicate different concepts. Fig. 1(a)
shows the concept described by the yellow circle emerged in the following window. Fig. 1(b) shows the concept described
by the yellow circle disappeared in the following window. In Fig. 1(c), two old concepts faded completely and two new con-
cepts emerged in the following window.

Using the lower approximation and upper approximation in Definition 1, we define the new concept emerging degree and
the old concept fading degree in two consecutive windows as follows.

Definition 2. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj � ¼ STi
S

STj . The
new concept emerging degree and the old concept fading degree from Ti to Tj with respect to A are defined as
NEDA STi ; STj

D E
¼ 1
jAj
X
a2A

NEDfag STi ; STj

D E
ð3Þ
and
OFDA STi ; STj

D E
¼ 1
jAj
X
a2A

OFDfag STi ; STj

D E
; ð4Þ
where
NEDfag STi ; STj

D E
¼
jfagSTj j
jfagSTj j

;

OFDfag STi ; STj

D E
¼
jfagSTi j
jfagSTi j

:

Here, fagSTm and fagSTm ðm ¼ i; jÞ represent the lower approximation and the upper approximation of STm in S½Ti ;Tj � with respect
to attribute a, respectively. The objects in fagSTm can be with certainty classified as members of STm on the basis of knowledge

in a, while the objects in fagSTm can be only classified as possible members of STm on the basis of knowledge in a.
NEDA STi ; STj

D E
represents the accuracy of approximation [21] of STj in S½Ti ;Tj �, while OFDA STi ; STj

D E
is the accuracy of approx-

imation of STi in S½Ti ;Tj �. The higher the two measures, the bigger the relative concept change occurring in the two windows.

That is to say, the higher the values of NEDA STi ; STj

D E
or OFDA STi ; STj

D E
are, the bigger the difference between STi and STj .

If S½Ti ;Tj �=INDðfagÞ ¼ fXjX ¼ fug;u 2 S½Ti ;Tj �g, NEDfag STi ; STj

D E
and OFDfag STi ; STj

D E
achieve their maximum value 1. In other

words, NEDfag STi ; STj

D E
and OFDfag STi ; STj

D E
are precise with respect to a.

If S½Ti ;Tj �=INDðfagÞ ¼ fXjX ¼ S½Ti ;Tj �g, NEDfag STi ; STj

D E
and OFDfag STi ; STj

D E
achieve their minimum value 0. In other words,

NEDfag STi ; STj

D E
and OFDfag STi ; STj

D E
are vague with respect to a.

Obviously, we have 0 6 NEDA STi ; STj

D E
6 1 and 0 6 OFDA STi ; STj

D E
6 1.

Fig. 1 shows that old concept fading and new concept emerging can occur simultaneously. We use NEDA STi ; STj

D E
and

OFDA STi ; STj

D E
to define the difference measure between two consecutive windows as follows.
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Definition 3. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj � ¼ STi
S

STj . The
difference measure between STi and STj with respect to A is defined as
DMA STi ; STj

� �
¼

NEDA STi ; STj

D E
þ OFDA STi ; STj

D E
2

: ð5Þ� �

We can verify that DMA STi ; STj is a distance metric.
4. Trend analysis method

In this section, we propose a new algorithm for trend analysis of concept change in categorical data streams. We first
present a data labeling algorithm to identify concepts of a given time window from the concepts in the preceding window.
Then, we define a method to express concepts and a distance measure of two concepts in two consecutive windows. After
that, we integrate all these methods in the trend analysis algorithm. Finally, we present methods to measure the significance
of an attribute that affects the concept change and the outlier degree of objects in a time window.

4.1. Data-labeling algorithm

Given the set of objects in the first window of a data stream, we can use a clustering algorithm to divide the objects into
clusters and identify concepts. If the difference measure between Ti and Tj is greater than a given threshold, we consider that
Tj is a concept-drifting window relative to Ti and use a clustering algorithm to find new concepts in Tj. If there is no signif-
icant change in concepts between two consecutive windows, we can use a data labeling method to quickly partition the ob-
jects in the current window by referencing the concepts in the preceding window. Inspired by the idea of Node Importance
[10], we define the degree of membership of an object in the current window Tj that belongs to a cluster or concept in the
preceding window Ti as follows.

Definition 4. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj� ¼ STi
S

STj .

Suppose that CTi ¼ cTi
1 ; c

Ti
2 ; . . . ; cTi

kTi

n o
is the clustering results on STi , where cTi

m is the mth cluster, 1 6 m 6 kTi
. For any

unlabeled object x 2 STj , the degree of membership of x belonging to cTi
m with respect to A is defined as
SimAðx; cTi
mÞ ¼

X
a2A

da �xa; ð6Þ
where
da ¼
jfyjf ðx; aÞ ¼ f ðy; aÞ; y 2 cTi

mgj
jcTi

m j
and
xa ¼ 1þ 1
log2ðkTi

Þ �
XkTi

m¼1

ðqa � log2ðqaÞÞ:
The value of da reflects the frequency of the component f ðx; aÞ in cTi
m . In other words, the component is important in the

cluster when the frequency of the component is high in this cluster. The value of xa measures the entropy of component

f ðx; aÞ between clusters, where qa ¼
jfyjf ðx;aÞ¼f ðy;aÞ;y2c

Ti
m gj

jfzjf ðz;aÞ¼f ðx;aÞ;z2CTi gj. Suppose that there is a component which occurs in all clusters uni-

formly, the component which contains the maximum uncertainty provides less similarity. In other words, attribute a is of
no effect for the degree of membership.

We use an example to show that DMAðÞ can measure not only the difference between two windows, but also the relative
concept change between two windows. The data is shown in Table 1.

Let U ¼ fx1; x2; . . . ; x20g;A ¼ fA1;A2;A3;A4g, where A4 is the timestamp. Suppose that the size of the time window is 5. We
have ST1 ¼ fx1; x2; . . . ; x5g, ST2 ¼ fx6; x7; . . . ; x10g, ST3 ¼ fx11; x12; . . . ; x15g and ST4 ¼ fx16; x17; . . . ; x20g. Using Definition 3, we

have DMA ST1 ; ST2
� �

¼ 0:0333;DMA ST2 ; ST3
� �

¼ 0:2507 and DMA ST3 ; ST4
� �

¼ 0:2381. We set the threshold of concept drift to

0.2. Since DMA ST1 ; ST2

� �
6 0:2, we have to allocate the most appropriate cluster label to each object of ST2 . We first used

the k-modes algorithm [15] to partition ST1 . Assume that x1; x2 were chosen as the initial cluster centers in ST1 . We obtained

the clustering results CT1 ¼ cT1
1 ; c

T1
2

n o
, where cT1

1 ¼ fx1; x5g and cT1
2 ¼ fx2; x3; x4g. Table 2 shows the degree of membership be-

tween each object in ST2 and each cluster in ST1 according to Definition 4.
From Table 2, we can obtain that cT2

1 ¼ fx6; x8; x10g and cT2
2 ¼ fx7; x9g.



Table 1
An example of categorical data stream.

Object A1 A2 A3 A4

x1 A M C t1

x2 Y E P t2

x3 X E P t3

x4 Y M P t4

x5 A M D t5

x6 A M C t6

x7 X M P t7

x8 A M D t8

x9 Y M P t9

x10 A M C t10

x11 B E G t11

x12 X M P t12

x13 B E D t13

x14 Y M P t14

x15 B F D t15

x16 Y M P t16

x17 X M P t17

x18 Z N T t18

x19 X M P t19

x20 Y M P t20

Table 2
The degrees of membership between objects of ST2 and clusters of ST1 .

x6 x7 x8 x9 x10

cT1
1

1.5817 0.0817 1.5817 0.0817 1.5817

cT1
2

0.0272 1.3606 0.0272 1.6939 0.0272
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The data labeling algorithm is described in Algorithm 1. The time complexity for computing the degree of membership
between an object and a cluster is OðjSTi jjAjÞ. The total computational cost of the algorithm is OðjSTi jjAjjSTj jkTi

Þ. Therefore, this
algorithm is linear to the number of the objects in STj , i.e., the size of the time window.

Algorithm 1. The data labeling algorithm
1: Input:

2: – CTi : the clustering results in Ti;

3: – STj : the objects in Tj;

4: Output: a partition of STj ;
5: Method:

6: Generate a partition CTi ¼ cTi
1 ; c

Ti
2 ; . . . ; cTi

kTi

n o
of STi with respect to A by calling the corresponding categorical

clustering algorithm;

7: for j0 ¼ 1 to jSTj j do
8: for i0 ¼ 1 to kTi

do

9: Calculate SimAðxj0 ; c
Ti

i0
Þ according to Definition 4, where xj0 is the j0th object in STj .

10: end for

11: Give label L to xj0 , where L ¼ arg maxi0¼1;...;kTi
fSimAðxj0 ; c

Ti

i0
Þg;

12: end for

13: Return CTj ¼ cTj

1 ; c
Tj

2 ; . . . ; cTj

kTi

n o
;

4.2. Expression of concepts

The cluster expressions contribute to the understanding of concepts. The ‘‘modes’’ [15] are a traditional expression of
clusters for categorical data. However, ‘‘modes’’ are mainly focused on the intra-cluster similarity and do not take the
inter-cluster similarity into account. To solve this problem, we define a new cluster expression that considers both
intra- and inter-cluster similarities.
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Definition 5. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and ST # U. Suppose that CT ¼ cT
1; c

T
2; . . . ; cT

kT

n o
is the

clustering results on ST . The expression of cT
i 2 CT is defined as
RðcT
i Þ ¼ qjjqj ¼ arg max

qj0 2Vaj

d0aj
�x0aj

; j ¼ 1;2; . . . ; jAj
( )

; ð7Þ
where
d0aj
¼
jfxj f ðx; ajÞ ¼ qj0 ; x 2 cT

i gj
jcT

i j
and
x0aj
¼ 1þ 1

log2ðkTÞ
� w:
Here
w ¼
XkT

i¼1

xjf ðxÞ ¼ q0j; x 2 cT
i

n o��� ���
zjf ðzÞ ¼ q0j; z 2 CT
n o��� ���� log2

xjf ðxÞ ¼ q0j; x 2 cT
i

n o��� ���
zjf ðzÞ ¼ q0j; z 2 CT
n o��� ���

0
B@

1
CA:
Similar to Definition 4, the value of d0aj reflects the frequency of q0j in cT
i . The value of x0aj measures the entropy of com-

ponent q0j between clusters.

Continuing from Example 1, we have cT1
1 ¼ fx1; x5g, cT1

2 ¼ fx2; x3; x4g; cT2
1 ¼ fx6; x8; x10g and cT2

2 ¼ fx7; x9g. With Definition 5,
we can obtain the expression of each cluster as shown in Table 3.

4.3. Distance between two concepts in consecutive windows

With the difference measure in Definition 3, we define a new distance between two concepts (clusters) in consecutive
windows as follows.

Definition 6. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj� ¼ STi
S

STj .

Suppose that CTi ¼ cTi
1 ; c

Ti
2 ; . . . ; cTi

kTi

n o
and CTj ¼ cTj

1 ; c
Tj

2 ; . . . ; cTj

kTj

� �
are the clustering results on STi and STj , respectively. The

distance between cTi

i0
and cTj

j0
with respect to A is defined as
Table 3
The expressions of clusters in 2 consecutive windows.

Clusters Cluster expression

cT1
1 ¼ fx1; x5g Rðc1

1Þ ¼ fA;M;Cg
cT1

2 ¼ fx2; x3; x4g Rðc1
2Þ ¼ fY ; E; Pg

cT2
1 ¼ fx6; x8; x10g Rðc2

1Þ ¼ fA;M;Cg
cT2

2 ¼ fx7; x9g Rðc2
2Þ ¼ fX;M; Pg

Table 4
The distances between clusters in two consecutive windows of 4 windows.

cT1
1 ¼ fx1; x5g cT1

2 ¼ fx2; x3; x4g

cT2
1 ¼ fx6; x8; x10g 0 0.7222

cT2
2 ¼ fx7; x9g 0.6667 0.0667

cT2
1 ¼ fx6; x8; x10g cT2

2 ¼ fx7; x9g
cT3

1 ¼ fx11; x13; x15g 0.7750 1

cT3
2 ¼ fx12; x14g 0.6667 0

cT3
1 ¼ fx11; x13; x15g cT3

2 ¼ fx12; x14g
cT4

1 ¼ fx16; x17; x19; x20g 1 0

cT4
2 ¼ fx18g 1 1



Table 6
The out

T1 !

T2 !

T3 !
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dA cTi
i0
; c

Tj

j0

� �
¼

NEDA cTi
i0
; c

Tj

j0

D E
þ OFDA cTi

i0
; c

Tj

j0

D E
2

; ð8Þ
where 1 6 i0 6 kTi
;1 6 j0 6 kTj

.
Continuing from Example 1, we have DMA ST2 ; ST3

� �
> 0:2 and DMA ST3 ; ST4

� �
> 0:2. We consider that T3 and T4 are two

concept-drifting windows. Suppose that the clustering results of ST3 and ST4 are CT3 ¼ cT3
1 ; c

T3
2

n o
and CT4 ¼ cT4

1 ; c
T4
2

n o
, where

cT3
1 ¼ fx11; x13; x15g; cT3

2 ¼ fx12; x14g, cT4
1 ¼ fx16; x17; x19; x20g and cT4

2 ¼ fx18g. With Definition 6, we can compute the distances of

clusters in STi and STiþ1 ð1 6 i 6 3Þ as shown in Table 4.

4.4. Significance of attributes and outlier degree of objects

To find the causes of concept change in consecutive windows, we measure the significance of an attribute the change of
whose values affects the change of clusters in the following window. If the value distributions of an attribute remain the
same in the two consecutive windows, then this attribute has little effect on the concept change. The significance of an attri-
bute is measured as follows.

Definition 7. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj � ¼ STi
S

STj . For
any a 2 A, the significance of a between STi and STj is defined as
Sigfag STi ; STj

� �
¼

DMfag STi ; STj

� �
P

c2ADMfcg STi ; STj

� � : ð9Þ
Continuing from Example 1, we can use Definition 7 to compute the significance of each attribute in two consecutive win-
dows as shown in Table 5.

From Table 5, we can see that A1 and A3 has no effect on concept change from T1 to T2. A1;A2 and A3 have the same con-
tributions for concept change from T3 to T4.

Similarly, different objects provide different contributions for the concept change. If the attribute values of an object
rarely occur in two consecutive windows, the object provides the maximal contribution to concept change and can be con-
sidered as an outlier [24]. We measure the degree of an object as an outlier as follows.

Definition 8. Let TDT ¼ ðU;A;V ; f ; tÞ be a categorical data stream and STi ; STj # U, where STi
T

STj ¼ ; and S½Ti ;Tj � ¼ STi
S

STj . For
any x 2 S½Ti ;Tj �, the outlier degree of the object x with respect to A is defined as
ODAðxÞ ¼
1
jAj
X
a2A

1þ wðaÞ
jS½Ti ;Tj �j

� log2
wðaÞ
jS½Ti ;Tj �j

 !
; ð10Þ
where wðaÞ ¼ jfzjf ðx; aÞ ¼ f ðz; aÞ; z 2 S½Ti ;Tj �gj.
Continuing from Example 1, the outlier degree of each object in T1 ! T2; T2 ! T3 and T3 ! T4 is shown in Table 6.
From Table 6, we can see that objects x3; x11 and x18 have the maximum outlier degree in T1 ! T2; T2 ! T3 and T3 ! T4,

respectively.
Table 5
The significance of each attribute in two consecutive windows of 4 windows.

Windows A1 A2 A3

T1 ! T2 0 1 0
T2 ! T3 0.5698 0.1994 0.2308
T3 ! T4 0.3333 0.3333 0.3333

lier degree of each object in two consecutive windows of 4 windows.

T2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0.5950 0.8157 0.8434 0.5950 0.6226 0.5950 0.6226 0.6226 0.5950 0.5950

T3 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

0.7350 0.7025 0.7074 0.7025 0.7350 0.9322 0.7025 0.8845 0.7025 0.9046

T4 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

0.9322 0.6410 0.9122 0.6410 0.9322 0.6410 0.6410 1.0000 0.6410 0.6410
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4.5. Trend analysis algorithm

Integrating the techniques discussed in the previous sections, we define the trend analysis algorithm in Algorithm 2. The
total computational cost of this algorithm is OðjSTi jjAjkTi

þ jSTj jjAjkTj
þ kTi

kTj
jSTi

S
STj jjAjÞ ¼ OðkTi

kTj
jSTi

S
STj jjAjÞ.

Algorithm 2. The trend analysis algorithm

1: Input:

2: – CTi : the clustering results in Ti;

3: – CTj : the clustering results in Tj;
4: – c : the specified threshold;
5: Output: the trend of concept change from Ti to Tj;
6: Method:

7: Obtain clustering results CTi ¼ cTi
1 ; c

Ti
2 ; . . . ; cTi

kTi

n o
and CTj ¼ cTj

1 ; c
Tj

2 ; . . . ; cTj

kTj

� �
with respect to A;

8: for i0 ¼ 1 to kTi
do

9: Generate RðcTi

i0
Þ according to Definition 5;

10: end for
11: for j0 ¼ 1 to kTj

do

12: Generate RðcTj

j0
Þ according to Definition 5;

13: end for
14: for i0 ¼ 1 to kTi

do
15: for j0 ¼ 1 to kTj

do

16: if dAðcTi

i0
; cTj

j0
Þ 6 c then

17: Connect cTi

i0
; cTj

j0
with line;

18: end if
19: end for
20: end for

We use the trend analysis algorithm to analyze the trend of concept change in the data stream of Table 1. We set the
threshold c to 0.2. The trend of concept change in 4 consecutive time windows is shown in Fig. 2. The horizontal axis is con-
secutive time windows. The blue and red circles in each column indicate the clusters in the time window. The size of the
circle represents the number of objects. The content in each circle is the expression of concept in each cluster. Similar con-
cepts are linked with the green lines. From this figure, we can understand how concepts change in consecutive windows.

In comparison with the result in [6], Fig. 3 shows the relative concept change between windows. We computed the new
concept emerging degree and the old concept fading degree in consecutive time windows as shown in Fig. 3. We can see that
concept change was caused by emerging new concepts or fading old concepts or both. From T2 to T3, the new concept emerg-
ing degree was greater than the old concept fading degree. This indicates that more new concepts emerged than old concepts
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Fig. 2. The trend of concept change in 4 consecutive time windows.
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Fig. 3. The change of two measures in 4 consecutive windows.
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faded. However, from T3 to T4, more old concepts faded than new concepts emerged. This phenomenon was caused by the
fact that a new cluster of x11; x13 and x15 emerged in T3 from T2 and an old cluster of x11; x13 and x15 in T3 faded in T4.
5. Experimental results

A series of experiments was conducted on real data for evaluation of the proposed trend analysis algorithm. In this sec-
tion, we present the results of trend analysis on a real data stream for network intrusion detection and investigate the causes
of concept change through significance of attributes and discuss the property of parameter c.

5.1. Network stream data

KDD-CUP’99 was used as a test data for The Third International Knowledge Discovery and Data Mining Tools Compe-
tition. The data set contained 494,021 records, each having a timestamp. The records were classified into 23 classes.
One class indicated the normal connection and other 22 classes were network attack types. Each record was described
by 41 attributes, in which 34 attributes were continuous and 7 were categorical. We used uniform quantization to convert
these continuous attributes into discrete values, each attribute with 5 categories. We also aggregated 22 attack classes into
one general attack class.

5.2. Trends analysis

The first 15,000 records in the network data set were selected as a sample data to show trend analysis. We choose 3000
records as the size of the time window and divided the sample data into 5 consecutive time windows. We first used the
k-modes algorithm [15] to cluster the records in the first window into two clusters, each representing a concept. Before
executing the k-modes algorithm, we used the method in [7] to obtain its initial cluster centers. Then, we used DMA distance
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Fig. 4. The trend of concept change on the sample set by the proposed method.
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measure Eq. (5) to compute the distance between the first window and the second window. If the distance was smaller than
the given threshold 0.01, the data labeling algorithm was used to obtain the concepts for the second window. Otherwise, the
k-modes algorithm was used to generate clusters for the second window. This process was repeatedly used to generate con-
cepts in the following windows.

To investigate the relationships of concepts in two consecutive windows, we used dA distance measure Eq. (8) to compute
the similarity between two concepts in the consecutive windows. If the similarity between two concepts was greater than
the threshold c, the two concepts in the consecutive windows were related, i.e., being the same. Fig. 4 shows relations of
concepts in consecutive windows and the trend of concept change in 5 consecutive time windows. The result was produced
with c ¼ 0:01. The red circles represent attack clusters and the blue circles are normal connection clusters. The vertical dot
lines indicate the boundaries between consecutive time windows. The number in the circle is the number of the records in
the cluster. We can see that attacks suddenly emerged in window 3, continued to window 4 and suddenly dropped in win-
dow 5. Such trend can help us easily understand the behavior of network attacks over time.

Table 7 shows the expressions of concepts (clusters) of 41 attributes in 5 consecutive windows. Each window has two
concepts.

In addition, we compared the proposed method with the work in [6]. In the method of [6], we set c ¼ 0:1. Fig. 5 shows the
trend of concept change in 5 consecutive time windows.

In Fig. 5, we find that the clusters between T3 and T4 were not connected by lines. In fact, the clusters between T3 and T4

should be connected because there are many objects labeled by attack in these two time windows. Comparing Fig. 4 with
Fig. 5, we find the results of the proposed method were much closer to the distributions of the sample data.
Table 7
The cluster expressions in 5 consecutive time windows.

Attr Rðc1
1Þ Rðc1

2Þ Rðc2
1Þ Rðc2

2Þ Rðc3
1Þ Rðc3

2Þ Rðc4
1Þ Rðc4

2Þ Rðc5
1Þ Rðc5

2Þ

1 1 1 1 1 1 1 1 1 1 1
2 2 3 2 2 2 2 2 2 1 1
3 20 9 20 20 20 20 20 20 1 1
4 10 10 10 10 10 10 10 10 2 2
5 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0

10 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 0 0 0 0
12 1 0 1 1 1 1 1 1 0 0
13 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0
23 1 1 1 1 1 1 1 1 1 1
24 1 1 1 1 1 1 1 1 1 1
25 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1
27 1 1 1 1 1 1 1 1 1 1
28 1 1 1 1 1 1 1 1 1 1
29 5 5 5 5 5 5 5 5 2 2
30 1 1 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1 1 1
32 5 1 1 5 1 5 1 1 1 1
33 5 2 5 5 5 5 5 5 1 1
34 5 5 5 5 5 5 5 5 1 1
35 1 1 1 1 1 1 1 1 1 1
36 1 1 1 1 1 1 1 1 1 1
37 1 1 1 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1
39 1 1 1 1 1 1 1 1 1 1
40 1 1 1 1 1 1 1 1 1 1
41 1 1 1 1 1 1 1 1 1 1
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Fig. 5. The trend of concept change on the sample set by the method in [6].

Table 8
The significance of attributes in 5 consecutive time windows

Attr T1 ! T2 T2 ! T3 T3 ! T4 T4 ! T5

1 0.0345 0.0004 0 0
2 0 0 0 0.2445
3 0 0.0032 0.1195 0.2607
4 0.0345 0.0040 0.0298 0.0008
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0

10 0.0690 0 0.0448 0.0003
11 0 0 0.0149 0.0001
12 0 0 0 0
13 0 0 0 0
14 0 0.0016 0 0.0003
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0
18 0.0690 0.0008 0 0
19 0.0690 0.0008 0.0149 0.0001
20 0 0 0 0
21 0 0 0 0
22 0 0 0 0.0009
23 0 0.4834 0.1642 0.2319
24 0 0.4834 0.1642 0.2319
25 0.0690 0 0.0298 0.0003
26 0.0690 0.0004 0.0448 0.0001
27 0 0.0016 0 0.0004
28 0 0.0016 0 0.0004
29 0.0345 0.0028 0.0298 0.0025
30 0.0690 0.0028 0.0149 0.0025
31 0 0 0 0
32 0 0 0 0
33 0 0 0 0
34 0 0 0 0.0199
35 0.1034 0.0024 0.0746 0.0012
36 0.2069 0.0032 0.1194 0
37 0.0690 0.0012 0.0149 0.0004
38 0.0690 0.0008 0.0597 0.0002
39 0 0.0016 0.0597 0
40 0 0.0016 0 0.0004
41 0.0345 0.0020 0 0.0004

Table 9
The value distributions of attribute 4.

T1 T2 T3 T4 T5

{2,7,10} {2,7,8,10} {6,10} {10} {2,6,7,10}
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5.3. Significance of attributes

To investigate the causes of concept change between two windows, we analyzed the significance of attributes for the
changed concepts. The result is shown in Table 8. The first column is attribute and the other four columns are the significance
measure of each attribute on the transition of two consecutive windows. Value 0 implies that the concept change in consec-
utive windows was not caused by that attribute. The values greater than 0 indicate that the attributes contributed to the
concept change in the consecutive windows.

From Table 8, we can see that a few attributes contributed significantly to the change of concepts in consecutive windows,
such as attributes 4, 19, 26, 29, 30, 35, 37 and 38. These attributes were the main causes of the concept change in 5 consec-
utive windows. Some attributes such as 23 and 24 show significant impact on the concept change in consecutive windows
T2 ! T3; T3 ! T4 and T4 ! T5.

Further investigating the causes of concept change, we looked into the value distributions of an attribute in consecutive
windows. Table 9 shows the example of attribute 4 in 5 time windows. We can see that the bigger the difference of value
distributions in two consecutive windows, the more significant the causes of concept change by the attribute. From this
observation, we can monitor the concept change of a data stream by looking into the value change of significant attributes
in the data stream.

Computing the new concept emerging degree and the old concept fading degree defined in Definition 2, we investigated
the relative concept change in 5 consecutive time windows. The result is shown in Fig. 6. We can see a dramatic drop of the
fading degree and an obvious rise of the emerging degree from T4 and T5. This is an indication that the change was mainly
caused by emerging new concepts and the fact was that there were 2488 attack records in T4 which disappeared in T5

whereas 3000 normal connection records emerged in T5.
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5.4. Impact of c

Using the trend analysis algorithm Algorithm 2, we need to specify a threshold c that determines whether two concepts in
consecutive windows are the same concept or one concept in one window has drifted to another concept in the following
window. We used the entire data set to investigate c. The time window size was set as 3000 records and 164 consecutive
windows were obtained. We ran the trend analysis algorithm with different values of c and counted the number of pairs
of consecutive windows which had concept change measured by the distance of two consecutive windows which was great-
er than c.

Fig. 7 shows the relationships between the number of concept drifts and the value of c. We can see that the number of
drifting-concepts decreases as c increases. When c is greater than 0.07, the number of drifting-concepts drops to zero, which
means no concept change was identified. Therefore, c cannot be greater than 0.07 in this data set. To better reveal concept
change patterns, we set c ¼ 0:01 as default.
6. Conclusions

In this paper, we have presented a new method for trend analysis of categorical data streams. In this method, a data label-
ing method has been proposed by considering both the intra-cluster similarity and the inter-cluster similarity. We have de-
fined a new distance between concepts in two consecutive windows that is used to measure the concept change. The
significance measure of attributes has also been defined to reveal the causes of concept change. We have used a real data
stream to demonstrate the usefulness of the new algorithm in trend analysis.

The trend analysis algorithm proposed in this paper is applied to categorical data streams. Our future work is to study the
trend of concept change in the case of continuous data by using the neighborhood rough set because continuous data
streams are widely available in real applications.
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