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Abstract: The notion of information systems provides a convenient tool for knowledge representation of objects
in terms of their attribute values, while partial ordering is usually used to research the rough monotonicity of an
uncertainty measure in information systems. In this paper, we first reveal the limitations of existing partial

orderings to describe information granulations in information systems with several illustrative examples. Then, a
generalized partial ordering with a set-size nature is proposed to overcome their shortcoming and some of its
important properties are derived. Finally, we prove that several existing information granulations all satisfy the

granulation monotonicity induced by the proposed partial ordering. The presented partial ordering appears to be
well suited to characterize the nature of information granulations in an information system. These results will be
very helpful for studying granular computing and uncertainty in information systems.
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1. Introduction

The notion of information systems (sometimes

called knowledge representation systems, attri-

bute-value systems, data tables, etc.) provides a

convenient tool for the representation of objects

in terms of their attribute values. The rough set

theory (Pawlak, 1991; Pawlak et al., 1995; Paw-

lak & Skowron, 2007) has been introduced to

deal with inexact, uncertain or vague knowledge

in information systems, which has become a

popular mathematical framework for pattern

recognition, image processing, feature selection,

neuro computing, conflict analysis, decision

support, data mining and the knowledge discov-

ery process from large data sets (Düntsch &

Gediga, 1998; Guan & Bell, 1998; Gediga &

Düntsch, 2001; Pawlak, 2005; Jeon et al., 2006;

Jensen & Shen, 2007). The use of the indiscern-

ibility relation results in an information granu-

lation (Yao, 2001).

According to whether or not there are missing

data (null values), information systems can be

classified into two categories: complete and

incomplete. In a complete information system,

the indiscernibility relation generated constitutes
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the mathematical basis of the rough set theory

and induces a partition of the universe into

blocks of indiscernible objects, called

elementary sets (equivalence classes). For an

incomplete information system, according to

whether or not two objects on the universe pos-

sesses distinguished regular values under some

attribute, a so-called similarity relation can be

defined on the universe. However, due to the

existence of null values in an incomplete system,

the similarity relation, from the viewpoint of

mathematics, is a tolerance relation.We know that

in a knowledge representation system, the scale of

the elementary knowledge units (also called knowl-

edge granules or information granules) determines

the performance of representation of general con-

cepts. The smaller the scale of the knowledge

granule, the higher the precision one can achieve.

Information granulation is an important con-

cept of granular computing (proposed by Za-

deh, 1997). The information granulation of an

information system gives a measure of uncer-

tainty about its actual structure. In general,

information granulation can represent the dis-

cernibility ability of an approximate space in

information systems.

Partial ordering is always used to research

information granulation, measuring knowledge

content, measuring the significance of an attri-

bute and their applications in an information

system. For our further investigation, as fol-

lows, we briefly review several existing partial

orderings in information systems. Partial order-

ing has been introduced to research properties

of a complete information system (Beaubouef

et al., 1998; Düntsch & Gediga, 1998; Klir &

Wierman, 1998; Liang et al., 2002; Chakik et al.,

2004; Liang & Li, 2005; Qian & Liang, 2008).

In incomplete information systems, many rese-

archers usually investigate some of its characters

using another partial ordering (Kryszkiewiz,

1998, 1999; Liang & Xu, 2002; Leung & Li,

2003; Liang et al., 2006; Qian & Liang, 2008).

To consider minimal information granules in an

incomplete information system, Leung and Li

(2003) applied the concept of a maximal consis-

tent block to formulate a new approximation to

an object set with a higher level of accuracy.

This method has been used for attribute reduc-

tion and rule acquisition in an incomplete in-

formation system. We defined a new partial

ordering for this method to describe its uncer-

tainty in incomplete information systems. How-

ever, it is worth pointing out that: these partial

orderings are all essentially the second partial

ordering (Qian et al., 2008). In short, the partial

ordering is mainly used to analyse the mono-

tonicities of some uncertainty measures in

information systems (Qian et al., 2008). Never-

theless, it is unfortunate that these partial order-

ings have some limitations, which cannot give

elaborate depictions of the relationship between

knowledge in information systems. For example,

if there does not exist any partial ordering from

the above partial orderings between given two

knowledge, then the information granulations of

these knowledge cannot be characterized from

the viewpoint of these existing partial orderings.

To overcome these drawbacks, we need to find a

new partial ordering for this target.

For a given partial ordering in a complete

information system, one often considers a lattice

formed by partition that is defined by an equiva-

lence relation (Yao, 2003). In an incomplete

information system, we can also consider a lattice

formed by coverings, on which one can also form

a partial ordering (Yao, 2001). The entropy func-

tion or the conditional entropy function will serve

as a good measure (Yao, 2003).

Information granulation, as a kind of mea-

sures for the uncertainty of an information

system, has been focused on widely by many

researchers in recent years. Especially, several

measures in complete information systems clo-

sely associated with granular computing such as

information entropy, rough entropy and infor-

mation granulation and their relationships are

discussed by Liang and Shi (2004). Recently,

Liang et al. (2006) extended these measures to

an incomplete information system. Combina-

tion granulation and combination entropy in

information systems are proposed to calculate

the uncertainty of an information system (Qian

& Liang, 2008), in which the gain function

possesses an intuitionistic knowledge content

nature. It should be mentioned that these above
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measures all satisfy the rough monotonicity

induced by the second partial ordering.

In this paper, we focus on the limitations of

the above partial orderings for measuring the

uncertainty of an information system and pro-

pose a new partial ordering that can overcome

these limitations. Based on the proposed partial

ordering, we will research and give quantitative

measures that characterize the order partially.

The paper is organized as follows: in Section

2, we review some basic concepts, such as

complete information systems, incomplete in-

formation systems and the maximal consistent

block technique. By analysing structures of ex-

isting partial orderings, in Section 3, we analyse

the limitations of these partial orderings to

describe information granulation in information

systems. In Section 4, we define a novel partial

ordering, and show how it overcomes the limita-

tion of existing partial orderings by several

illustrative examples. In Section 5, we prove that

several existing information granulations all

satisfy granulation monotonicity determined by

the proposed partial ordering. Finally, Section 6

concludes the whole paper.

2. Information systems

An information system is a pair S¼ðU;AÞ, where
1. U is a non-empty finite set of objects;

2. A is a non-empty finite set of attributes; and

3. for every a 2 A, there is a mapping a, a:

U ! Va, whereUa is called the value set of a.

For an information system S¼ðU;AÞ, if

8a 2 A, every element in Va is a definite value,

then S is called a complete information system.

Each subset of attributes P � A determines

a binary indistinguishable relation IND(P) as

follows:

INDðPÞ¼ fðu; vÞ 2 U�Uj8a 2 P; aðuÞ¼ aðvÞg
It is easily shown that

INDðPÞ¼ \ a2P INDðfagÞ
U=IND(P) constitutes a partition of U.

U=IND(P) is called a knowledge in U; every

equivalence class is called a knowledge granule

or information granule (Yao, 2000). Informa-

tion granulation, in a sense, denotes the average

measure of information granules (equivalence

classes) in P. In general, we denote the knowl-

edge induced by P � A by U=P.

Example 2.1

Consider the descriptions of several cars in

Table 1.

This is a complete information system, where

U¼fu1; u2; u3; u4; u5g, and A¼fa1; a2; a3; a4g
with a1 being the Price, a2 the Mileage, a3 the

Size and a4 the Maximum speed. By computing,

it follows that

U=INDðAÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5gg

It may happen that some of the attribute values

for an object are missing. For example, in medical

information systems, there may be a group of

patients for whom it is impossible to perform all

the required tests. These missing values can be

represented by the set of all possible values for the

attribute or equivalence by the domain of the

attribute. To indicate such a situation, a distin-

guished value, a so-called null value, is usually

assigned to those attributes.

If Va contains a null value for at least one

attribute a 2 A, then S is called an incomplete

information system (Kryszkiewiz, 1998, 1999;

Qian & Liang, 2008); otherwise, it is complete.

Further on, we will denote the null value by *.

Let S¼ðU;AÞ be an information system, P �
A an attribute set. We define a binary relation

Table 1: A complete information system about

cars

Car Price Mileage Size Max-Speed

u1 High Low Full Low
u2 Low High Full Low
u3 Low Low Compact Low
u4 High High Full High
u5 High High Full High
u6 Low High Full Low
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on U as follows:

SIMðPÞ¼ fðu; vÞ 2 U�Uj8a 2 P;

aðuÞ¼ aðvÞ or aðuÞ¼ � or aðvÞ¼ �g
In fact, SIMðPÞ is a tolerance relation on U;

the concept of a tolerance relation has a wide

variety of applications in classification (Slowins-

ki & Vanderpooten, 2000; Chin et al., 2003;

Liang & Qian, 2006).

It can be easily shown that

SIMðPÞ¼ \ a2P SIMðfagÞ
Let U=SIMðPÞdenote the family sets

fSPðuÞju 2 Ug as the classification induced by

P, where SPðuÞ¼ fv 2 Ujðu; vÞ 2 SIMðPÞg is the
tolerance class determined by the object u. It

should be noticed that the tolerance classes in

U=SIMðPÞ do not constitute a partition of U in

general. They constitute a cover of U, i.e., SP

(u) 6¼Ø for every u 2 U and [u2USPðuÞ¼U.

Of course, SIMðPÞ degenerates into an

equivalence relation in a complete information

system.

Example 2.2

Consider the descriptions of several cars in

Table 2. This is an incomplete information

system, where U¼fu1; u2; u3; u4; u5; u6g, and

A¼fa1; a2; a3; a4g with a1 – Price, a2 – Mileage,

a3 – Size, a4 – Max-Speed. By computing, it

follows that

U=SIMðAÞ¼ fSAðu1Þ;SAðu2Þ;SAðu3Þ;SAðu4Þ;
SAðu5Þ;SAðu6Þg

where SAðu1Þ¼ fu1g, SAðu2Þ¼ fu2; u6g, SAðu3Þ
¼ fu3g, SAðu4Þ¼ fu4; u5g, SAðu5Þ¼ fu4; u5; u6g,
SAðu6Þ¼ fu2; u5; u6g.
However, tolerance classes are not the mini-

mal units for describing knowledge or informa-

tion in incomplete information systems (Leung

& Li, 2003).

Let S¼ðU;AÞ be an information system, P �
A an attribute set and X � U a subset of objects.

We say X is consistent with respect to P if ðu; vÞ 2
SIMðPÞ for any u; v 2 X. If there does not exist a

subset Y � U such that X � Y, and Y is consis-

tent with respect to P, then X is called a maximal

consistent block of P. Obviously, in a maximal

consistent block, all objects are not indiscernible

with available information provided by a similar-

ity relation (Leung & Li, 2003).

Henceforth, we denote the set of all maximal

consistent blocks determined by P � A as CP,

and the set of all maximal consistent blocks of P,

which includes some object u 2 U, is denoted as

CPðuÞ.
It is obvious that X 2 CP if and only if X¼

\ u2XSPðuÞ (Leung & Li, 2003).

Example 2.3

Computing all maximal consistent blocks of

A in Table 2. By computing, from Example 2.2,

we have that

CA ¼ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg

where CA is the set of all maximal consistent

blocks determined by A on U.

3. The limitation of partial ordering �
In a complete information system, partial order-

ing �1 is usually used to analyse the inclusion

relationship on all partitions on the universe

(Beaubouef et al., 1998; Klir & Wierman, 1998;

Liang et al., 2002; Chakik et al., 2004), while

partial ordering � is often used to characterize

the inclusion relationship on all covers in in-

complete information systems (Kryszkiewiz,

1998, 1999; Liang et al., 2006; Qian & Liang,

2008). For maximal consistent blocks in incom-

plete information systems, the above two partial

Table 2: An incomplete information system

about cars

Car Price Mileage Size Max-Speed

u1 High Low Full Low
u2

* * Full Low
u3 Low * Compact Low
u4 High * Full High
u5

* * Full High
u6 Low High Full *
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orderings cannot be directly used to distinguish

two attribute subsets in view of granular com-

puting. For this reason, we will define partial

ordering �2 to the maximal consistent block

technique.

In this section, by analysing the structure of

partial orderings �1, �2 and �, we reveal the

limitation of partial ordering � to describe

information granulation in information systems

by several illustrative examples.

Definition 3.1 (Yao, 2001; Liang et al., 2002) Let

S¼ðU;AÞ be a complete information system,

P;Q � A, U=INDðPÞ¼ fP1; P2; . . . ; Pmg and

U=INDðQÞ¼ fQ1; Q2; . . . ; Qng. We define par-

tial ordering �1 as follows:

P �1Q () For every Pi 2 U=INDðPÞ, there
exists Qj 2 U=INDðQÞ such that Pi � Qj.

If P �1Q and P 6¼Q, i.e., for some

Pi0 2 U=INDðPÞ, there exists Qj0 2 U=INDðQÞ
such that Pi0 � Qj0 , we denote it as P � 1Q.

If P �1Q, we say thatQ is coarser than P (or P

is finer thanQ). IfP � 1Q, we say thatQ is strictly

coarser than P (or P is strictly finer than Q).

Example 3.1

Analyse the relationship between two attri-

bute subsets in Table 1. Let P¼ {Price, Mile-

age}, Q¼ {Price} be two attribute subsets in

Table 1. By computing, we have that

U=INDðPÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5gg

U=INDðQÞ¼ ffu1; u4; u5g; fu2; u3; u6gg

It is obvious that P � 1Q.

Example 3.1 shows that the partition INDðQÞ
is much coarser than the partition induced

by P, in which each equivalence class is the

union of some equivalence classes in

U=INDðPÞ. For instance, the set fu1; u4; u5g
¼fu1g [ fu4; u5g. In other words, the partial

ordering �1 is an approach to characterizing

information granulations in complete informa-

tion systems. However, the partial ordering �1

cannot appropriately describe information

granulation in complete information systems.

Its limitation can be revealed by the following

example.

Example 3.2

Consider two partitions as follows:

U=INDðPÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5gg
U=INDðQÞ¼ ffu1; u3; u5g; fu2; u4; u6gg

FromDefinition 3.1, it is obvious that PI1Q,

whereas one can intuitively know that

U=INDðQÞ is much coarser than U=INDðPÞ
and the information granulation induced by Q

should be bigger than that induced by P. That is

to say, this situation cannot be characterized by

the partial ordering �1. Therefore, a new partial

ordering is needed for depicting this case.

From Definition 3.1, it can be easily seen that

Definition 3.1 is not applicable to an incomplete

information system because the tolerance

classes cannot be induced by an equivalence

relation on the universe. Hence, the partial

ordering � was introduced to incomplete in-

formation systems for depicting the relationship

between two attribute sets.

Definition 3.2 (Liang et al., 2006)Let S¼ðU;AÞ be
an incomplete information system, P;Q � A,

U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;SPðujUjÞg;U=
SIMðQÞ¼ fSQðu1Þ;SQðu2Þ; . . . ; SQðujUjÞg. We

define partial ordering � as follows:

P � Q , SPðuiÞ � SQðuiÞ; 8i 2 f1; 2; . . . ; jUjg

If P � Q, we say that Q is coarser than P

(or P is finer than Q). If P � Q and P 6¼ Q, we

say that Q is strictly coarser than P (or P is

strictly finer than Q) and denoted by P � Q. In

fact, P � Q , for 8i 2 f1; 2; . . . ; jUjg, we have
that SPðuiÞ � SQðuiÞ, and there exists j 2
f1; 2; . . . ; jUjg, such that SPðujÞ � SQðujÞ.

Example 3.3

Analyse the relationship between two attri-

bute subsets in Table 2. Let P¼ {Price, Mile-

age}, Q¼ {Price} be two attribute subsets in
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Table 2. By computing, we have that

U=SIMðPÞ¼ ffu1; u4; u5g; fu2; u5; u6g; fu3g;
fu1; u4; u5g; fu1; u2; u4; u5; u6g;
fu2; u5; u6gg

U=SIMðQÞ¼ ffu1; u3; u4; u5g; fu2; u3; u5; u6g
fu1; u2; u3; u4; u5; u6g;
fu1;u3;u4;u5g;fu1;u2;u3;u4;u5;u6g;
fu2; u3; u5; u6gg

It is obvious that P � Qfrom Definition 3.2.

Example 3.3 indicates that the cover

U=SIMðQÞ is much coarser than the cover

induced by P, in which each tolerance class is

included in the corresponding tolerance class in

U=SIMðQÞ, i.e., SPðuÞ � SQðuÞ for any u 2 U.

That is to say, the partial ordering � is an

approach to characterizing information granu-

lations in incomplete information systems.

However, the partial ordering � also cannot

describe appropriately information granulation

in incomplete information systems. It can be

understood by the following example.

Example 3.4

Consider the following two covers.

U=SIMðPÞ¼ ffu1; u4; u5g; fu2; u5; u6g; fu3g;
fu1; u4; u5g; fu1; u2; u4; u5; u6g;
fu2; u5; u6gg

U=SIMðQÞ¼ ffu1; u2; u4; u5g; fu2; u3; u5; u6g
fu1; u2; u3; u4; u5; u6g;
fu1; u3; u4; u5g;
fu1; u2; u3; u4; u5; u6g;
fu2; u3; u5; u6gg

Since the tolerance class fu1; u2; u4; u5g in

U=SIMðQÞ cannot be obtained by combining

some tolerance classes in U=SIMðPÞ, one has

that PIQ. By comparing the sizes of their

tolerance classes, however, one can know that

U=SIMðQÞ is much coarser than U=SIMðPÞ, in
which the cardinality of the tolerance class of

each object in U=SIMðPÞ is much bigger than

that of the tolerance class of that object in the

universe. That is to say, this situation cannot be

characterized by partial ordering �. In order to

essentially characterize information granulation

in incomplete information systems, one needs to

find a new partial ordering for this target.

In fact, the partial ordering � can degener-

ate into partial ordering �1 in a complete

information system.

Theorem 3.1 Partial ordering �1 is a special

instance of partial ordering �.

Proof It is straightforward. ’

Similar to the definitions of �1 and � , we

define another partial ordering in order to discuss

the properties of the maximal consistent block

technique in incomplete information systems.

Definition 3.3 Let S¼ðU;AÞ be an incomplete

information system, P;Q � A, CP ¼fP1;P2;
. . . ; Pmg,CQ ¼fQ1;Q2; . . . ; Qng. We define par-

tial ordering �2 as follows: P �2 Q , for every

Pi 2 CP, there existsQ
j 2 CQ such that Pi � Qj.

If P �2 Q and P 6¼ Q, i.e., for some Pi0 2 CP,

there exists Qj0 2 CQ such that Pi0 � Qj0 , we

denote it by P �2 Q.

If P �2 Q, we say thatQ is coarser than P (or P

is finer thanQ). If P �2 Q, we say thatQ is strictly

coarser than P (or P is strictly finer thanQ).

From the definition of the above partial

ordering, one can see that this definition is a

natural generalization of the partial ordering �
in incomplete systems. It is illuminated by the

following example.

Example 3.5

Analyse the relationship between two attri-

bute subsets in Table 2. Let P¼A, Q¼ {Price,

Size, Max-Speed} be two attribute subsets in

Table 2. By computing, we have that

CP ¼ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg
CQ ¼ffu1; u2; u6g; fu3g; fu4; u5; u6gg

From the definition of �2, it is follows that

P �2 Q.

Example 3.5 shows that CQ is much coarser

than CP, in which each maximal consistent

6 Expert Systems c� 2010 Blackwell Publishing Ltd8 Expert Systems, February 2012, Vol. 29, No. 1



block is the union of some maximal consistent

blocks in CP. In other words, for every Pi 2 CP,

there exists Qj 2 CQ such that Pi � Qj. How-

ever, partial ordering �2 also cannot describe

appropriately information granulation in in-

complete information systems. Its limitation

can be revealed by the following example.

Example 3.6

Consider two maximal consistent blocks as

follows:

CP ¼ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg
CQ ¼ffu1; u3; u6g; fu2g; fu4; u5; u6gg

From Definition 3.3, we have that PI2Q

because fu1; u3; u6g in CQ cannot be constructed

by several maximal consistent blocks in CP. By

comparing the sizes of these maximal consistent

blocks, however, one can see that CP is much

finer than CQ in fact. In other words, this

situation cannot be well characterized by partial

ordering �2. In this situation, we need to

consider their inner structures of information

granules in a given incomplete information

system and define a more reasonable partial

ordering for characterizing the relationship

among information granulations.

In fact, the partial ordering �2 can be trans-

formed to the partial ordering � in incomplete

information systems. It can be illustrated by the

following theorem.

Theorem 3.2 Partial ordering �2 is a special

instance of partial ordering �.

Proof Let S¼ðU;AÞ be an incomplete informa-

tion system, P;Q � A with P �2 Q, CP ¼
fP1;P2; . . . ; Pmg and CQ ¼fQ1;Q2; . . . ; Qng.
It follows from the definition of �2 that for

arbitrary Pi 2 CP, there exists Q
i 2 CQ such that

Pi � Qj.

Next, we prove that SPðuÞ � SQðuÞ for

8u 2 U. Assume that CPðuÞ¼ fX1;X2; . . . ; Xmg
and CQðuÞ¼ fY1;Y2; . . . ; Yng. In addition,

we know that SPðuÞ¼ [ fXk 2 CPjXk �
SPðuÞg¼ [ fXk 2 CPðuÞgðkrmÞ and SQðuÞ¼
[fYt 2 CQjYt � SQðuÞg¼ [fYt2 CQðuÞgðtrnÞ

from property 4 in the literature (Leung & Li,

2003). From the definition of a maximal consis-

tent block, we have that u 2 CPðuÞ, u 2 CQðuÞ,
u=2CP 	 CPðuÞ and u =2CQ 	 CQðuÞ. Hence, it

follows from P �2 Q that for arbitrary Xk 2
CPðuÞ, there exist Yt 2 CQðuÞ such that Xk �
Yt. Thus, for arbitrary u 2 U, we have that

SPðuÞ¼ [ fXk 2 CPjXk � SPðuÞg

¼
[m
k¼ 1

Xk �
[n
t¼ 1

Yt

¼ [ fYt 2 CQjYt � SQðuÞg
¼SQðuÞ

that is P � Q.

Hence, partial ordering �2 is a special in-

stance of partial ordering �. This completes the

proof. ’

From Theorems 3.1 and 3.2, we know that

partial orderings �1 and �2 are all induced to

the partial ordering �. So far, this partial

ordering has been widely used to describe the

uncertainty of information systems. However,

from the above analyses, this partial ordering

cannot well characterize the essence of uncer-

tainty in information systems.

4. A generalized partial ordering J

In this section, we will introduce a new partial

ordering J with a set-size character to over-

come the limitation of partial ordering �.
For convenience, in the sequel, we denote the

covering U=SIMðAÞ by KðAÞ.

Definition 4.1 Let S¼ðU;AÞ be an informa-

tion system, P;Q � A, KðPÞ¼ fSPðuÞju 2 Ug
and KðQÞ¼ fSQðuÞju 2 Ug. We define a

binary relation J with a set size character as

follows:

PJQ , forKðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ; SPðujUjÞg

there exists a sequence K0ðQÞof KðQÞ, where

K0ðQÞ¼ fSQðu01Þ;SQðu02Þ; . . . ; SQðu0UÞg, such

that jSPðuiÞjrjSQðu0iÞj.
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If there exists a sequence K0ðQÞ of KðQÞ such
that jSPðuiÞjrjSQðu0iÞj and jSPðui0Þj < jSQðui0Þj
for some ui0 2 U, then we will state that P is

strict granulation finer than Q, and denote it by

P .Q; if there exists a sequence K0ðQÞ of KðQÞ
such that jSPðuiÞj ¼ jSQðu0iÞj for arbitrary u 2 U,

then we will state that P is granulation equal to

Q, and denote it by P 
 Q.

Similar to existing partial orderings in com-

plete=incomplete information systems, the pro-

posed partial ordering also forms a lattice,

which can degenerated into each of existing

partial orderings with various restrictions.

Let S¼ðU;AÞ be an information system, and
~K¼fKðPÞjP � Ag be all knowledge induced by

A on the universe U. One can obtain the follow-

ing theorem.

Theorem 4.1 ð ~K; JÞ is a partial set.

Proof Let P; Q; R � A, KðPÞ¼ fSPðu1Þ;SPðu2Þ;
. . . ;SPðujUjÞg, KðQÞ¼ fSQðu1Þ;SQðu2Þ; . . . ;
SQðujUjÞg, and KðRÞ¼ fSRðu1Þ;SRðu2Þ; . . . ;
SRðujUjÞg.
1. For arbitrary u 2 U, it is obvious jSPðuÞj ¼

jSPðuÞj; hence, PJP.

2. Suppose PJQ and QJP. From the above

definition, we obtain that

PJQ , for KðPÞ, there exists a sequence K0ðQÞ
of KðQÞ such that jSPðuiÞjrjSQðu0iÞj, where

K0ðQÞ¼ fSQðu01Þ;SQðu02Þ; . . . ; SQðu0UÞg; QJP

, for KðQÞ, there exists a sequence K0ðPÞ of

KðPÞ such that jSQðuiÞjrjSPðu0iÞj, where K0ðPÞ¼
fSPðu01Þ;SPðu02Þ; . . . ;SPðu0UÞg.
Therefore, we have that

XjUj

i¼ 1

jSPðuiÞjr
XjUj

i¼ 1

jSQðu0iÞj ¼
XjUj

i¼ 1

jSQðuiÞj

r
XjUj

i¼ 1

jSPðu0iÞj

And, since
PjUj

i¼ 1 jSPðuiÞj ¼
PjUj

i¼ 1 jSPðu0iÞj,
one can obtain that

PjUj
i¼ 1 jSPðuiÞj ¼

PjUj
i¼ 1

jSQðu0iÞj. Considering jSPðuiÞjrjSQðu0iÞj, hence

jSPðuiÞj ¼ jSQðu0iÞjðirjUjÞ. Thus, P 
 Q holds.

3. Suppose PJQ and QJR. From the above

definition, we obtain that

PJQ , for KðPÞ, there exists a sequence K0ðQÞ
of KðQÞ such that jSPðuiÞjrjSQðu0iÞj, where

K0ðQÞ¼ fSQðu01Þ;SQðu02Þ; . . . ; SQðu0UÞg; QJR

, for KðQÞ, there exists a sequence K0ðRÞ of

KðRÞ such that jSQðuiÞjrjSRðu0iÞj, where

K0ðRÞ¼ fSRðu01Þ;SRðu02Þ; . . . ; SRðu0UÞg.
Hence, for the sequence K0ðQÞ, there exists a

sequence K00ðRÞ of KðRÞ such that jSQðu0iÞjr
jSRðu00i Þj, where K00ðRÞ¼ fSRðu001Þ; SRðu002Þ; . . . ;
SRðu00UÞg.
Therefore, for KðPÞ, there exists a sequence

K00ðRÞ of KðRÞ such that jSPðuiÞjrjSRðu00i Þj, i.e.,
PJR.

Thus, ð ~K; JÞ is a partial set. This completes

the proof. ’

From the above theorem, it follows that the

binary relation J on the power set of A is a

partial ordering. The following example shows

the mechanism of partial orderingJ.

Example 4.1

Analyse the relationship between two attri-

bute subsets in Table 2. Let P¼ {Max-Speed},

Q¼ {Price} be two attribute subsets in Table 2.

By computing, we have that

KðPÞ¼ ffu1; u2; u3; u6g; fu1; u2; u3; u6g;
fu1; u2; u3; u6gfu4; u5; u6g; fu4; u5; u6g;
fu1; u2; u3; u4; u5; u6gg

KðQÞ¼ ffu1; u3; u4; u5g; fu2; u3; u5; u6g;
fu1; u2; u3; u4; u5; u6g; fu1; u3; u4; u5g;
fu1; u2; u3; u4; u5; u6g; fu2; u3; u5; u6gg

Assume that K0ðQÞ¼ ffu1; u3; u4; u5g; fu2; u3;
u5; u6g; fu1; u2; u3; u4; u5; u6g; fu1; u3; u4; u5g;
fu2; u3; u5; u6g; fu1; u2; u3; u4; u5; u6gg.
Obviously, there exists a sequence K0ðQÞ of

KðQÞ such that jSPðuiÞjrjSQðu0iÞjðSPðuiÞ 2
KðPÞ;SQðu0iÞ 2 K0ðQÞÞ. Since jSPðu3Þj ¼ 4 <
6¼ jSQðu03Þj, we have that P .Q.
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In the sequel, how the partial ordering J
overcomes the limitation of partial ordering �
will be illustrated by the following examples.

Example 4.2 (Continued from Example 3.2)

U=INDðPÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5gg
U=INDðQÞ¼ ffu1; u3; u5g; fu2; u4; u6gg

In incomplete information systems, they can

be expressed as

KðPÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5g; fu4; u5g;
fu2; u6gg

KðQÞ¼ ffu1; u3; u5g; fu2; u4; u6g; fu1; u3; u5g;
fu2; u4; u6g; fu1; u3; u5g; fu2; u4; u6gg

Suppose that

K0ðQÞ¼ ffu1; u3; u5g; fu2; u4; u6g; fu1; u3; u5g;
fu2; u4; u6g; fu1; u3; u5g; fu2; u4; u6gg

Clearly, for arbitrary i 2 U, we have that

jSPðuiÞj < jSQðu0iÞj. Hence, it follows from

Definition 4.1 that P .Q holds.

Therefore, this situation can be characterized

by the partial orderingJ. However, in Example

3.2, one has that PI1Q for the attribute sets P

andQ. That is to say, the partial orderingJ can

characterize the situation that cannot be de-

picted by the partial ordering �1. Hence, the

partial ordering J is much better than the

partial ordering �1 for characterizing the rela-

tionship among knowledge from a complete

information system.

Clearly, one can obtain the following theorem.

Theorem 4.2 Partial ordering �1 can be induced

to partial orderingJ.

Example 4.3 (continued from Example 3.4)

U=SIMðPÞ¼ ffu1; u4; u5g; fu2; u5; u6g; fu3g;
fu1; u4; u5g; fu1; u2; u4; u5; u6g;
fu2; u5; u6gg

U=SIMðQÞ¼ ffu1; u3; u4; u5g; fu2; u3; u5; u6g;
fu1; u2; u3; u4; u5; u6g; fu1; u3; u4; u5g;
fu1; u2; u3; u4; u5; u6g; fu2; u3; u5; u6gg

In fact, KðPÞ¼U=SIMðPÞand KðQÞ¼U=
SIMðQÞ in incomplete information systems.

Let K0ðQÞ¼KðQÞ¼U=SIMðQÞ.
Clearly, for arbitrary i 2 U, we have that

jSPðuiÞj < jSQðu0iÞj. Hence, it follows from

Definition 4.1 that P .Q holds.

Therefore, this situation can also be charac-

terized by the partial orderingJ. But, in Exam-

ple 3.4, we know that PIQ for the attribute sets

P and Q. In other words, the partial orderingJ
can characterize the situation that cannot be

depicted by the partial ordering �. Therefore,
the partial ordering J is much better than the

partial ordering � for depicting the relation-

ship between knowledge from an incomplete

information system.

From the above example, it is easy to obtain

the following theorem.

Theorem 4.3 Partial ordering � can be induced

to partial ordering J.

Example 4.4 (continued from Example 3.6)

CP ¼ffu1g; fu2; u6g; fu3g; fu4; u5g; fu5; u6gg;
CQ ¼ffu1; u3; u6g; fu2g; fu4; u5; u6gg

Since the same maximal consistent blocks

can induce multi tolerance relations in incom-

plete information systems, we only employ

the following instance to describe the partial

ordering J

KðPÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5g; fu4; u5; u6g
fu2; u5; u6gg

KðQÞ¼ ffu1; u3; u6g; fu2g; fu1; u3; u6g;
fu4; u5; u6g; fu4; u5; u6g;
fu1; u2; u3; u4; u5; u6gg

Suppose that

K0ðQÞ¼ ffu2g; fu1; u3; u6g; fu1; u3; u6g;
fu4; u5; u6g; fu4; u5; u6g;
fu1; u3; u4; u5; u6gg
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By computing, we have that

jfu1gj¼ 1¼ jfu2gj
jfu2; u6gj¼ 2 < 3¼ jfu1; u3; u6gj
jfu3gj¼ 1 < 3¼ jfu1; u3; u6gj
jfu4; u5gj¼ 2 < 3¼ jfu4; u5; u6gj
jfu4; u5; u6gj¼ 3¼ jfu4; u5; u6gj
jfu2; u5; u6gj¼ 3 < 5¼ jfu1; u3; u4; u5; u6gj
Hence, from Definition 4.1, it follows that

P .Q. In Example 3.6, nevertheless, we have that

PI2Q for the attribute sets P and Q. In other

words, the partial orderingJ can characterize the

situation that cannot be described by the partial

ordering �2. Therefore, the partial ordering J is

much better than the partial ordering �2 for

depicting the relationship between knowledge in

the context of maximal consistent blocks.

In fact, this mechanism can be illustrated by

the following theorem.

Theorem 4.4 Partial ordering �2 can be induced

to partial ordering J.

Proof Let S¼ðU;AÞ be an incomplete informa-

tion system, P;Q � A with P �2 Q, CP ¼
fP1;P2; . . . ; Pmg and CQ ¼fQ1;Q2; . . . ; Qng.
It follows from the definition of �2 that for

arbitrary Pi 2 CP, there existsQ
i 2 CQ such that

Pi � Qj and jPijrjQjj.
Next, we prove that jSPðuÞjrjSQðuÞj, 8u 2 U.

Assume that CPðuÞ¼ fX1;X2; . . . ; Xmg and

CQðuÞ¼ fY1;Y2; . . . ; Yng.
We know that SPðuÞ¼ [ fXk 2 CPjXk �

SPðuÞg¼ [ fXk 2 CPðuÞg ðkrmÞ and SQðuÞ
¼ [ fYt 2 CQ jYt � SQ ðuÞg ¼ [ fYt 2 CQðuÞg
ðtrnÞ from property 4 in the literature (Leung

& Li, 2003). From the definition of the maximal

consistent block, we have that u 2 CPðuÞ,
u 2 CQðuÞ, u=2CP 	 CPðuÞ and u=2CQ 	 CQðuÞ.
Hence, it follows from P �2 Q that for arbitrary

Xk 2 CPðuÞ, there exists Yt 2 CQðuÞ such that

Xk � Yt. Therefore,

[m
k¼ 1

Xk �
[n
t¼ 1

Yt and

�����
[m
k¼ 1

Xk

�����r
�����
[n
t¼ 1

Yt

�����

Thus, we have that

jSPðuÞj ¼
���[ fXi 2 CPðuÞg

���
¼
�����
[m
k¼ 1

Xk

�����r
�����
[n
t¼ 1

Yt

�����
¼
���[ fYy 2 CQðuÞg

���¼ jSQðuÞj

Hence, jSPðuÞjrjSQðuÞj, 8u 2 U, i.e., PJQ

holds. This completes the proof. ’

Theorem 4.2 shows that partial ordering �2

is also a special instance of partial orderingJ.

In what follows, we employ an example to

exemplify the merit of the proposed partial

orderingJ.

Example 4.5

Consider a given information system (see

Table 3).

This is an information system, where U¼fu1;
u2; u3; u4; u5g and A¼fa1; a2; a3g. By comput-

ing, it follows that

U=INDðfa1gÞ¼ ffu1g; fu2; u5g; fu3g; fu4g; fu6gg

U=INDðfa2gÞ¼ ffu1g; fu2; u6g; fu3g; fu4; u5gg

U=INDðfa3gÞ¼ ffu1; u3; u5g; fu2; u4; u6gg

From this computation, one cannot obtain

the relationships between the above three parti-

tions in terms of the existing partial orderings.

In fact, we have that fa1gI1fa2gI1fa3g,
fa1gIfa2gIfa3g and fa1gI2fa2gI2fa3g. In

other words, these existing three partial order-

ings cannot characterize the relationship be-

tween the three partitions.

In fact, the above partitions can also be

denoted by the following knowledge:

Kðfa1gÞ¼ffu1g; fu2; u5g; fu3g; fu4g; fu2; u5g; fu6gg

Kðfa2gÞ¼ffu1g; fu2; u6g; fu3g; fu4; u5g; fu4; u5g; fu2; u6gg

Kðfa3gÞ¼ffu1; u3; u5g; fu2; u4; u6g; fu1; u3; u5g;

fu2; u4; u6g; fu1; u3; u5g; fu2; u4; u6gg
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If we adopt the proposed partial ordering, it is

clear that

fa1gJfa2gJfa3g
That is to say, the proposed partial ordering

may be much better than existing partial order-

ings for characterizing the relationship between

knowledge in a complete=incomplete informa-

tion system.

From the above discussions and analyses, one

can draw a conclusion that the partial ordering

J may be a much better description of char-

acterizing the relationship between knowledge

in a complete=incomplete information system.

As a result, a uniform representation of the

partial orderings is obtained for characterizing

the relationship among knowledge information

systems, which may lead to a strategy for

dealing with information granulations in some

real-word applications that involve complete

information, incomplete information and max-

imal consistent blocks all together.

5. Granulation monotonicities of some existing

information granulations

Conveniently, partial ordering J can be called

a granulation partial ordering; the monotoni-

city of information granulation induced by it

can be called granulation monotonicity. In

recent years, some different kinds of informa-

tion granulations were defined, and their rough

monotonicities had been systemically re-

searched as well (Liang & Shi, 2004; Liang &

Qian, 2006; Liang et al., 2006; Qian & Liang,

2008). In this section, we will investigate granu-

lation monotonicities of these measures.

Definition 5.1 (Liang & Shi, 2004) Let S¼ðU;AÞ
be a complete information system, U=INDðAÞ
¼ fP1;P2; . . . ; Pmg. An information granula-

tion of A is defined by

GKðAÞ¼ 1

jUj2
Xm
i¼ 1

jPij2

where 1
jUjrGKðAÞr1and

Pm
i¼ 1 jPij2 is the

cardinality of the equivalence relation
Sm

i¼ 1

ðPi � PiÞ determined by A.

Theorem 5.1 Let S¼ðU;AÞ be a complete in-

formation system and P;Q � A. If P .Q, then

GKðPÞ < GKðQÞ.

Proof Let P;Q � A. In complete information

systems, U=INDðPÞ¼ fP1;P2; . . . ; Pmg, Pi ¼
fui1; ui2; . . . ; uisig, where jPij ¼ si and

Pm
i¼ 1 si

¼ jUj; U=INDðQÞ¼ fQ1;Q2; . . . ;Qng, Qj ¼
fuj1; uj2; . . . ; ujtjg, where jQjj ¼ tj and

Pn
j¼ 1 tj

¼ jUj. Suppose that KðPÞ¼ fSPðu1Þ;
SPðu2Þ; . . . ; SPðujUjÞg and KðQÞ¼ fSQðu1Þ;
SQðu2Þ; . . . ; SQðujUjÞg in incomplete informa-

tion systems. Therefore, we have that

Pi ¼SPðui1Þ¼SPðui2Þ¼ � � � ¼SPðuisiÞ
Qj ¼SQðuj1Þ¼SQðuj2Þ¼ � � � ¼SQðujtjÞ

Thus,

jPij ¼ jSPðui1Þj ¼ jSPðui2Þj ¼ � � � ¼ jSPðuisiÞj
jQjj ¼ jSQðuj1Þj ¼ jSQðuj2Þj¼ � � � ¼ jSQðujtjÞj

If P .Q, from Definition 4.1, it follows

that there exists a sequence K0ðQÞ of KðQÞ such
that for 8i 2 f1; 2; . . . ; jUjg, jSPðuiÞjrjSQðu0iÞj
and jSPðui0Þj < jSQðu0i0Þj for some ui0 2 U.

Table 3: An information system with three

attributes

Objects a1 a2 a3

u1 0 0 0
u2 1 1 1
u3 2 2 0
u4 3 3 1
u5 1 3 0
u6 4 1 1

c� 2010 Blackwell Publishing Ltd Expert Systems 1113Expert Systems, February 2012, Vol. 29, No. 1



Hence

GKðPÞ¼ 1

jUj2
Xm
i¼ 1

jPij2

¼ 1

jUj2
Xm
i¼ 1

ðjSPðui1Þj þ jSPðui2Þj

þ � � � þ jSPðuisiÞjÞ
¼ 1

jUj2 ðjSPðu1Þj þ jSPðu2Þj

þ � � � þ jSPðujUjÞjÞ

¼ 1

jUj2
XjUj

i¼ 1;i 6¼i0

jSPðuiÞj þ jSPðui0Þj
 !

<
1

jUj2
XjUj

i¼ 1;i6¼i0

jSQðu0iÞj þ jSQðu0i0Þj
 !

¼ 1

jUj2 ðjSQðu01Þj þ jSQðu02Þj þ � � � þ jSQðu0UÞjÞ

¼ 1

jUj2 ðjSQðu1Þj þ jSQðu2Þj þ � � � þ jSQðujUjÞjÞ

¼ 1

jUj2
Xn
j¼ 1

ðjSQðuj1Þj þ jSQðuj2Þj

þ � � � þ jSQðujtjÞjÞ

¼ 1

jUj2
Xn
j¼ 1

jQjj2 ¼GKðQÞ

i.e., GKðPÞ < GKðQÞ.
This completes this proof. ’

Definition 5.2 (Liang et al., 2006) Let

S¼ðU;AÞbe an incomplete information system,

KðAÞ¼ fSAðu1Þ;SAðu2Þ; . . . ; SAðujUjÞg. An in-

formation granulation of A is defined by

GKðAÞ¼ 1

jUj2
Xm
i¼ 1

jSAðuiÞj

where 1
jUjrGKðAÞr1.

Theorem 5.2 Let S¼ðU;AÞbe an incomplete

information system, P;Q � A. If P .Q, then

GKðPÞ < GKðQÞ.

Proof Similar to the proof of Theorem 5.1, it can

be easily proved. ’

Definition 5.3 (Qian & Liang, 2008) Let S¼
ðU;AÞ be a complete information system,

U=INDðAÞ¼ fP1;P2; . . . ; Pmg. Combination

granulation of A is defined by

CGðAÞ¼
Xm
i¼ 1

jPij
jUj

C2
jPij

C2
jUj

where 0rCGðAÞr1; jPij
jUj represents the prob-

ability of equivalence class Pi within the uni-

verse U and
C2

jPi j
C2

jUj
denotes the probability of pairs

of elements on equivalence class Pi within the

whole pairs of elements on the universe U.

Theorem 5.3 Let S¼ðU;AÞ be a complete in-

formation system, P;Q � A. If P .Q, then

CGðPÞ < CGðQÞ.

Proof Let P;Q � A. For a complete information

system, U=INDðPÞ¼ fP1;P2; . . . ; Pmg, Pi ¼
fui1; ui2; . . . ; uisig, where jPij ¼ si and

Pm
i¼ 1

si ¼ jUj; U=INDðQÞ¼ fQ1;Q2; . . . ; Qng; Qj ¼
fuj1; uj2; . . . ; ujtjg, where jQjj ¼ tj and

Pn
j¼ 1 tj ¼

jUj. Suppose that KðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and KðQÞ¼ fSQðu1Þ;SQðu2Þ; . . . ;
SQðujUjÞg in incomplete information systems.

Therefore, like the proof of Theorem 5.1, we

have that

jPij ¼ jSPðui1Þj ¼ jSPðui2Þj ¼ � � � ¼ jSPðuisiÞj;
jQjj ¼ jSQðuj1Þj ¼ jSQðuj2Þj ¼ � � � ¼ jSQðujtjÞj

If P .Q, from Definition 4.1, it follows that

there exists a sequence K0ðQÞ of KðQÞ such that

for 8i 2 f1; 2; . . . ; jUjg, jSPðuiÞjrjSQðu0iÞj and

jSPðui0Þj < jSQðu0i0Þj for some ui0 2 U.

Hence,

CGðPÞ¼
Xm
i¼ 1

jPij
jUj

C2
jPij

C2
jUj

¼ 1

jUj
Xm
i¼ 1

C2
jPij

C2
jUj

jSPðui1Þj
jPij þ jSPðui2Þj

jPij
�

þ � � � þ jSPðuisiÞj
jPij

�

¼ 1

jUjC2
jUj

ðC2
jSPðu1Þj þ C2

jSPðu2Þj

þ � � � þ C2
jSPðujUjÞjÞ
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¼ 1

jUj
XjUj

i¼ 1;i6¼i0

C2
jSPðuiÞj
C2

jUj
þ
C2

jSPðui0 Þj
C2

jUj

 !

<
1

jUj
XjUj

i¼ 1;i6¼i0

C2
jSQðu0iÞj
C2

jUj
þ
C2

jSQðu0i0 Þj

C2
jUj

0
@

1
A

¼ 1

jUjC2
jUj

C2
jSQðu01Þj þ C2

jSQðu02Þj þ � � � þ C2
jSQðu0jUjÞj

� �

¼ 1

jUjC2
jUj

C2
jSQðu1Þj þ C2

jSQðu2Þj þ � � � þ C2
jSQðujUjÞj

� �

¼ 1

jUj
Xn
j¼ 1

C2
jQjj

C2
jUj

jSQðuj1Þj
jQjj þ jSQðuj2Þj

jQjj
�

þ � � � þ jSQðujtjÞj
jQjj

�

¼
Xn
j¼ 1

jQjj
jUj

C2
jQjj

C2
jUj

¼CGðQÞ

i.e., CGðPÞ < CGðQÞ.
This completes this proof. ’

Definition 5.4 (Qian & Liang, 2008) Let

S¼ðU;AÞbe an incomplete information system,

KðAÞ¼ fSAðu1Þ;SAðu2Þ; . . . ; SAðujUjÞg. Combi-

nation granulation of A is defined by

CGðAÞ¼ 1

jUj
XjUj

i¼ 1

C2
jSAðuiÞj
C2

jUj

where 0rCGðAÞr1 and
C2

jSAðuiÞj
C2

jUj
denotes the

probability of pairs of elements on tolerance

class SAðuiÞ within the whole pairs of elements

on the universe U.

Theorem 5.4 Let S¼ðU;AÞ be an incomplete

information system and P;Q � A. If P .Q, then

CGðPÞ < CGðQÞ.
Proof Similar to the proof of Theorem 5.3, it can

be easily proved. ’

The concept of rough entropy was introduced

to measure the roughness of knowledge in rough

set theory (Liang & Xu, 2002; Liang & Shi,

2004; Liang & Li, 2005; Liang et al., 2006).

Essentially, it is also a form of information

granulation in information systems.

Definition 5.5 (Liang & Shi, 2004) Let S¼
ðU; AÞ be a complete information system,

U=INDðAÞ¼ fP1; P2; . . . ; Pmg. Rough entropy

of A is defined by

ErðAÞ¼ 	
Xm
i¼ 1

jPij
jUj log2

1

jPij

where 0rErðAÞr log2 jUj.
Theorem 5.5 Let S¼ðU;AÞ be a complete in-

formation system and P;Q � A. If P .Q, then

ErðPÞrErðQÞ.
Proof Let P;Q � A. In complete information

systems, U=INDðPÞ¼ fP1;P2; . . . ; Pmg, Pi ¼
fui1; ui2; . . . ; uisig, where jPij ¼ si andPm

i¼ 1 si ¼ jUj; U=INDðQÞ¼ fQ1;Q2; . . . ; Qng,
Qj ¼fuj1; uj2; . . . ; ujtjg, where jQjj ¼ tj andPn

j¼ 1 tj ¼ jUj. Suppose that KðPÞ¼ fSPðu1Þ;
SPðu2Þ; . . . ; SPðujUjÞg; and KðQÞ¼ fSQðu1Þ;
SQðu2Þ; . . . ; SQðujUjÞg in incomplete informa-

tion systems.

Therefore, like the proof of Theorem 5.1, we

have that

jPij ¼ jSPðui1Þj ¼ jSPðui2Þj ¼ � � � ¼ jSPðuisiÞj
jQjj ¼ jSQðuj1Þj ¼ jSQðuj2Þj¼ � � � ¼ jSQðujtjÞj

If P .Q, from Definition 4.1, it follows that

there exists a sequence K0ðQÞof KðQÞ such that

for 8i 2 f1; 2; . . . ; jUjg, jSPðuiÞjrjSQðu0iÞj and

jSPðui0Þj < jSQðu0i0Þj for some ui0 2 U.

Hence,

ErðPÞ¼ 	
Xm
i¼ 1

jPij
jUj log2

1

jPij

¼ 	
Xm
i¼ 1

1

jUj log2
1

jSPðui1Þj
�

þ 1

jUj log2
1

jSPðui2Þj þ � � � þ 1

jUj log2
1

jSPðuisiÞj
�
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¼ 	 1

jUj
�

log2
1

jSPðu1Þj þ
1

jUj log2
1

jSPðu2Þj

þ � � � þ 1

jUj log2
1

jSPðujUjÞj
�

¼ 1

jUj
XjUj

i¼ 1

log2 jSPðuiÞj

¼ 1

jUj log2
YjUj

i¼ 1;i6¼i0

jSPðuiÞj þ 1

jUj log2 jSPðui0Þj

<
1

jUj log2
YjUj

i¼ 1;i6¼i0

jSQðu0iÞj þ
1

jUj log2 jSQðu0i0Þj

¼ 	 1

jUj log2
1

jSQðu01Þj
þ 1

jUj log2
1

jSQðu02Þj
�

þ � � � þ 1

jUj log2
1

jSQðu0jUjÞj

!

¼ 	
Xn
j¼ 1

1

jUj log2
1

jSQðu1Þj þ
1

jUj
�

log2
1

jSQðu2Þj

þ � � � þ 1

jUj log2
1

jSQðujUjÞj
�

¼ 	
Xn
j¼ 1

jQjj
jUj log2

1

jQjj

¼ErðQÞ

i.e., ErðPÞ < ErðQÞ.
This completes this proof. ’

Definition 5.6 (Liang et al., 2006) Let S¼ðU;AÞ
be an incomplete information system and

KðAÞ¼ fSAðu1Þ;SAðu2Þ; . . . ; SAðujUjÞg. Rough

entropy of A is defined by

ErðAÞ¼ 	
XjUj

i¼ 1

1

jUj log2
1

jSAðuiÞj

where 0rErðAÞr log2 jUj.

Theorem 5.6 Let S¼ðU;AÞ be an incomplete

information system and P; Q � A. If P .Q,

then ErðPÞ < ErðQÞ.

Proof It can be easily proved according to the

idea of Theorem 5.5. ’

Remark. The above theorems show that these

forms of information granulation satisfy both

rough monotonicity and granulation monotoni-

city. We can draw a conclusion from these

results that information granulation must satis-

fy rough monotonicity if it satisfies granulation

monotonicity. However, its reverse relation can-

not be established in general. Hence, partial

ordering J might be better to characterize the

nature of information granulation than partial

ordering � in information systems.

6. Granulation monotonicities of several

existing information entropies

6.1. Granulationmonotonicity of Shannon’s entropy

The entropy of a system as defined by Shannon

(Shannon, 1948) can also be used to measure the

uncertainty of an information system. In Shan-

non’s entropy, an equivalence partition is re-

garded as a finite probability distribution, and

the proportion of each equivalence class from a

given partition within the universe is seen as its

probability on the universe. It can be formally

defined as follows:

Definition 6.1 (Shannon, 1948) Let S¼ðU;AÞ be
a complete information system, U=INDðAÞ¼
fX1;X2; . . . ; Xmg. Shannon’s entropy of A is

defined as

HðAÞ¼ 	
Xm
i¼ 1

pi log2 pi ¼ 	
Xm
i¼ 1

jXij
jUj log2

jXij
jUj

where pi ¼ jXij
jUjrepresents the probability of

equivalence class Xi within the universe U.

The following theorem gives the rough mono-

tonicity of Shannon’s entropy in information

systems.

Theorem 6.1 (Rough monotonicity) Let

S¼ðU;AÞ be a complete information system

and P;Q � A. Then, HðPÞZHðQÞ if P � Q.

Proof Let S¼ðU;AÞ be a complete information

system, P;Q � A with P � Q, U=INDðPÞ¼
fP1;P2; . . . ; Pmg and U=INDðQÞ¼ fQ1;Q2;
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. . . ; Qng. In the context of incomplete informa-

tion systems, they can also be written as

Pi ¼fui1; ui2; . . . ; uisig, where jPij ¼ si andPm
i¼ 1 si ¼ jUj; and U=SIMðQÞ¼ fSQðu1Þ;

SQðu2Þ; . . . ;SQðujUjÞg, Qj ¼fuj1; uj2; . . . ; ujsjg,
where jQjj ¼ sj and

Pn
j¼ 1 sj ¼ jUj. Hence,

Pi ¼SPðui1Þ¼SPðui2Þ¼ � � � ¼SPðuisiÞ and Qj ¼
SQðuj1Þ¼SQðuj2Þ¼ � � � ¼SQðujsjÞ.
Since P � Q, we have that SPðuiÞ � SQðuiÞ,

8i 2 f1; 2; . . . ; jUjg. Therefore, we obtain that

HðPÞ¼ 	
Xm
i¼ 1

jPij
jUj log2

jPij
jUj

¼ 	
Xm
i¼ 1

1

jUj
�
log2:

jSPðui1Þj
jUj þ log2

jSPðui2Þj
jUj

þ � � � þ log2
jSPðuisiÞj

jUj
�

¼ 	 1

jUj
XjUj

i¼ 1

log2
jSPðuiÞj
jUj

Z	 1

jUj
XjUj

i¼ 1

log2
jSQðuiÞj
jUj

¼ 	
Xn
i¼ 1

1

jUj log2
jSQðuj1Þj

jUj
�

þ log2
jSQðuj2Þj

jUj

þ � � � þ log2
jSQðujsjÞj

jUj
�

¼ 	
Xn
j¼ 1

jQjj
jUj log2

jQjj
jUj ¼HðQÞ

i.e.,HðPÞZHðQÞ. This completes the proof. ’

Theorem 6.1 suggests that Shannon’s entropy

H of a complete information system increases

as equivalence classes become smaller through

finer classification.

Using the partial relation J, we suggest

granulation monotonicity of Shannon’s entropy

in information systems.

Theorem 6.2 (Granulation monotonicity) Let

S¼ðU;AÞ be a complete information system

and P;Q � A. Then, HðPÞZHðQÞ if PJQ.

Proof Similar to Theorem 6.1, it follows from

PJQ that there exists a sequence fSQðu01Þ;
SQðu02Þ; . . . ; SQðu0jUjÞg such that jSPðuiÞjrjSQ

ðu0iÞj, 8i 2 f1; 2; . . . ; jUjg. Hence, we have that

HðPÞ¼ 	
Xm
i¼ 1

jPij
jUj log2

jPij
jUj

¼ 	 1

jUj
XjUj

i¼ 1

log2
jSPðuiÞj
jUj

Z	 1

jUj
XjUj

i¼ 1

log2
jSQðu0iÞj
jUj

¼ 	 1

jUj
XjUj

i¼ 1

log2
jSQðuiÞj
jUj

¼ 	
Xn
i¼ 1

1

jUj log2
jSQðuj1Þj

jUj
�

þ log2
jSQðuj2Þj

jUj

þ � � � þ log2
jSQðujsjÞj

jUj
�

¼ 	
Xn
j¼ 1

jQjj
jUj log2

jQjj
jUj ¼HðQÞ

i.e.,HðPÞZHðQÞ. This completes the proof. ’

Theorem 6.2 states that Shannon’s entropy H

of a complete information system increases as

the information granularity of this system be-

comes finer.

Corollary 6.1 let S¼ðU;AÞ be a complete in-

formation system and P;Q � A. Then, HðPÞ <
HðQÞ if GðPÞ > GðQÞ.

In original Shannon’s information entropy,

the proportion of each equivalence class within

the universe is regarded as its probability.

Clearly, it is difficult to measure the uncertainty

of an incomplete information system. To over-

come this limitation, Liang et al. (2006) ex-

tended Shannon’s entropy to incomplete

information systems, which is as follows:

Definition 6.2 Let S¼ðU;AÞ be an incomplete

information system and U=SIMðAÞ¼ fSAðu1Þ;
SAðu2Þ; . . . ;SAðujUjÞg. Information entropy ofA
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is defined as

H�ðAÞ¼ 	
XjUj

i¼ 1

1

jUj log2
jSAðuÞj
jUj

where H� : A ! ½0;1Þ.
In the following, we obtain the rough mono-

tonicity and the granulation monotonicity of the

extended Shannon’s entropy in incomplete in-

formation systems.

Theorem 6.3 (Rough monotonicity) Let S¼
ðU;AÞ be an incomplete information system

and P;Q � A. Then, H�ðPÞZH�ðQÞ if P � Q.

Proof Let U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ;SQðu2Þ;
. . . ;SQðujUjÞg. Since P � Q, we have that

SPðuiÞ � SQðuiÞ and jSPðuiÞjrjSQðuiÞj, 8i 2
f1; 2; . . . ; jUjg. Therefore, one has that

H�ðPÞ¼ 	 1

jUj
XjUj

i¼ 1

log2
jSPðuiÞj
jUj

Z	 1

jUj
XjUj

i¼ 1

log2
jSQðuiÞj
jUj ¼H�ðQÞ

i.e.,H�ðPÞZH�ðQÞ. This completes the proof. ’

Theorem 6.3 suggests that the extended Shan-

non’s entropy H� of an incomplete information

system increases as tolerance classes become

smaller through finer classification.

The following theorem gives the granulation

monotonicity of incomplete Shannon’s entropy

H� in incomplete information systems.

Theorem 6.4 (Granulation monotonicity) Let

S¼ðU;AÞ be an incomplete information

system and P;Q � A. Then, H�ðPÞZH�ðQÞ if

PJQ.

Proof Let U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ; SQðu2Þ;
. . . ;SQðujUjÞg. From the definition of PJQ, it

follows that there exists a sequence fSQðu01Þ;
SQðu02Þ; . . . ;SQðu0jUjÞg such thatjSPðuiÞjrjSQ

ðu0iÞj, 8i 2 f1; 2; . . . ; jUjg. Hence, we have that

HðPÞ¼ 	 1

jUj
XjUj

i¼ 1

log2
jSPðuiÞj
jUj

Z	 1

jUj
XjUj

i¼ 1

log2
jSQðu0iÞj
jUj

¼ 	 1

jUj
XjUj

i¼ 1

log2
jSQðuiÞj
jUj ¼HðQÞ

i.e.,HðPÞZHðQÞ. This completes the proof. ’

Theorem 6.4 states that the extended Shan-

non’s entropy H� of an incomplete information

system increases as the information granularity

of this system becomes finer.

Corollary 6.2 let S¼ðU;AÞ be a complete in-

formation system andP;Q � A. Then,H�ðPÞ <
H�ðQÞ if GðPÞ > GðQÞ.
6.2. Granulation monotonicity of Liang’s entropy

Although several authors have used Shannon’s

entropy and its variants to measure uncertainty in

information systems, it has some limitations. In

fact, Shannon’s entropy is not a fuzzy entropy,

and cannot measure the fuzziness in information

systems. To overcome the limitation, Liang et al.

(2002) proposed a new information entropy. Un-

like the logarithmic behaviour of Shannon’s en-

tropy, the gain function of this entropy possesses

a complement nature. The new entropy can be

used to measure both the uncertainty of an

information system and the fuzziness of a rough

set and a rough classification in the rough set

theory. In complete information systems, Liang’s

information entropy is defined by the following.

Definition 6.3 letS¼ðU;AÞ be a complete infor-

mation system andU=INDðAÞ¼ fX1;X2; . . . ;
Xmg. The information entropy of A is defined as

IEðAÞ¼
Xm
i¼ 1

jXij
jUj

jXc
i j

jUj
where Xc

i is the complement set of Xi, i.e.,

Xc
i ¼U	 Xi.

Like Shannon’s entropy, one can obtain the

rough monotonicity and granulation mono-

tonicity of the above information entropy IE,
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which are listed in the following Theorems 18

and 19.

Theorem 6.5 (Rough monotonicity) Let S¼
ðU;AÞ be a complete information system and

P;Q � A. Then, IEðPÞZIEðQÞ if P � Q.

Proof Let U=INDðPÞ¼ fP1;P2; . . . ;Pmg and

U=INDðQÞ¼ fQ1;Q2; . . . ;Qng. In the context

of incomplete information systems, they can be

written as U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg, Pi ¼fui1; ui2; . . . ; uisig, where jPij ¼ si
and

Pm
i¼ 1 si ¼ jUj; and U=SIMðQÞ¼ fSQðu1Þ;

SQðu2Þ; . . . ;SQðujUjÞg, Qj ¼fuj1; uj2; . . . ; ujsjg,
where jQjj ¼ sj and

Pn
j¼ 1 si ¼ jUj. Hence,

Pi ¼SPðui1Þ¼SPðui2Þ¼ � � � ¼SPðuisiÞ and Qj ¼
SQðuj1Þ¼SQðuj2Þ¼ � � � ¼SQðujsjÞ.
It follows from P � Q that SPðuiÞ � SQðuiÞ

and jSPðuiÞjrjSQðuiÞj, 8i 2 f1; 2; . . . ; jUjg.
Hence, we have that

IEðPÞ¼
Xm
i¼ 1

jPij
jUj

jPc
i j

jUj ¼
Xm
i¼ 1

jPij
jUj 1	 jPij

jUj
� �

¼
Xm
i¼ 1

1

jUj 1	 jSPðui1Þj
jUj

� �
þ 1

jUj 1	 jSPðui2Þj
jUj

� ��

þ � � � þ 1

jUj 1	 jSPðuisiÞj
jUj

� ��

¼ 1

jUj 1	 jSPðu1Þj
jUj

� �
þ 1

jUj 1	 jSPðu2Þj
jUj

� �

þ � � � þ 1

jUj 1	 jSPðujUjÞj
jUj

� �

Z
1

jUj 1	 jSQðu1Þj
jUj

� �
þ 1

jUj 1	 jSQðu2Þj
jUj

� �

þ � � � þ 1

jUj 1	 jSQðujUjÞj
jUj

� �

¼
XjUj

i¼ 1

1

jUj 1	 jSQðuiÞj
jUj

� �
¼
Xn
j¼ 1

jQjj
jUj

jQc
j j

jUj ¼ IEðQÞ

i.e., IEðPÞZIEðQÞ. This completes the proof. ’

Theorem 6.5 shows that the information en-

tropy IE of a complete information system

increases as equivalence classes become smaller

through much finer classification.

Theorem 6.6 (Granulation monotonicity) Let

S¼ðU;AÞ be a complete information system

and P;Q � A. Then, IEðPÞZIEðQÞ if PJQ.

Proof Like Theorem 6.5, one can suppose that

U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;SPðujUjÞg and

U=SIMðQÞ¼fSQðu1Þ;SQðu2Þ; . . . ;SQðujUjÞg. Since
PJQ, it easily follows that there exists a se-

quence fSQðu01Þ;SQðu02Þ; . . . ;SQðu0jUjÞg such that

jSPðuiÞjrjSQðu0iÞj, 8i 2 f1; 2; . . . ; jUjg. Hence,

we have that

IEðPÞ¼
Xm
i¼ 1

jPij
jUj

jPc
i j

jUj ¼
Xm
i¼ 1

jPij
jUj 1	 jPij

jUj
� �

¼
Xm
i¼ 1

1

jUj
�

1	 jSPðui1Þj
jUj

� �
þ 1

jUj 1	 jSPðui2Þj
jUj

� �

þ � � � þ 1

jUj 1	 jSPðuisiÞj
jUj

� ��

¼ 1

jUj 1	 jSPðu1Þj
jUj

� �
þ 1

jUj 1	 jSPðu2Þj
jUj

� �

þ � � � þ 1

jUj 1	 jSPðujUjÞj
jUj

� �

¼
XjUj

i¼ 1

1

jUj 1	 jSPðuiÞj
jUj

� �

Z
XjUj

i¼ 1

1

jUj 1	 jSQðu0iÞj
jUj

� �

¼
XjUj

i¼ 1

1

jUj 1	 jSQðuiÞj
jUj

� �

¼
Xn
j¼ 1

jQjj
jUj

jQc
j j

jUj ¼ IEðQÞ

that is IEðPÞZIEðQÞ. This completes the

proof. ’

Theorem 6.6 states that information entropy

IE of a complete information system increases

as the information granularity of this system

becomes finer.

Corollary 6.3 Let S¼ðU;AÞbe a complete in-

formation system and P;Q � A. Then, IEðPÞ <
IEðQÞ if GðPÞ > GðQÞ.

Similar to Shannon’s entropy, Liang’s infor-

mation entropy IE also encounters the same

challenge for dealing with incomplete data.

Liang et al. (2006) gave the definition of infor-

mation entropy IE in incomplete information

systems, which is shown as follows:
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Definition 6.4 Let S¼ðU;AÞ be an incomplete

information system and U=SIMðAÞ¼ fSAðu1Þ;
SAðu2Þ; . . . ; SAðujUjÞg. The information entropy

of A is defined as

IE�ðAÞ¼
XjUj

i¼ 1

1

jUj 1	 jSAðuiÞj
jUj

� �

In the sequel, we examine the rough mono-

tonicity and the granulation monotonicity of the

information entropy IE� in incomplete informa-

tion systems.

Theorem 6.7 (Rough monotonicity) LetS¼
ðU;AÞ be an incomplete information system

andP;Q � A. Then, IE�ðPÞZIE�ðQÞ if P � Q.

Proof Let U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ;SQðu2Þ;
. . . ; SQðujUjÞg. It follows from P � Q that

SPðuiÞ � SQðuiÞ and jSPðuiÞjrjSQðuiÞj, 8i 2
f1; 2; . . . ; jUjg. Hence, we have that

IE�ðPÞ¼
XjUj

i¼ 1

1

jUj 1	 jSAðuiÞj
jUj

� �

Z
XjUj

i¼ 1

1

jUj 1	 jSQðuiÞj
jUj

� �

¼ IE�ðQÞ

i.e., IE�ðPÞZIE�ðQÞ. This completes the

proof. ’

Theorem 6.7 suggests that the information

entropy IE� of an incomplete information sys-

tem increases as tolerance classes become smal-

ler through finer classification.

Theorem 6.8 (Granulation monotonicity) Let

S¼ðU;AÞ be an incomplete information system

and P;Q � A. Then, IE�ðPÞZIE�ðQÞ if PJQ.

Proof Let U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ;SQðu2Þ;
. . . ; SQðujUjÞg. Since PJQ, it easily follows that

there exists a sequence fSQðu01Þ;SQðu02Þ; . . . ;
SQðu0jUjÞg such that jSPðuiÞjrjSQðu0iÞj, 8i 2

f1; 2; . . . ; jUjg. Thus, one has that

IE�ðPÞ¼
XjUj

i¼ 1

1

jUj 1	 jSAðuiÞj
jUj

� �

Z
XjUj

i¼ 1

1

jUj 1	 jSQðu0iÞj
jUj

� �

¼
XjUj

i¼ 1

1

jUj 1	 jSQðuiÞj
jUj

� �

¼ IE�ðQÞ
that is IE�ðPÞZIE�ðQÞ. This completes the

proof. ’

Theorem 6.8 states that information entropy

IE� of an incomplete information system in-

creases as the information granularity of this

system becomes finer.

Corollary 6.4 Let S¼ðU;AÞ be a complete

information system and P;Q � A. Then,

IE�ðPÞ < IE�ðQÞ if GðPÞ > GðQÞ.

6.3. Granulation monotonicity of combination

entropy

From the viewpoint of the rough set theory,

knowledge is a kind of classification ability

(Pawlak, 1991). In general, the elements in an

equivalence class cannot be distinguished from

each other, but the elements in different equiva-

lence classes can be distinguished from each

other. However, both Shannon’s entropy and

Liang’s information entropy cannot reflect the

behaviour that any two elements that can be

distinguished from each other are regarded as a

knowledge unit on the universe. Based on the

consideration, Qian and Liang (2008) presented

a new measure, called combination entropy, for

measuring the uncertainty and information con-

tent of an information system, in which the

information content is depicted by the number of

pairs of the objects that can be distinguished from

each other on the universe. Definition 6.5 gives

the description of the combination entropy.

Definition 6.5 Let S¼ðU;AÞ be a complete in-

formation system and U=INDðAÞ¼ fX1;X2;
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. . . ; Xmg. Combination entropy ofA is defined as

CEðAÞ¼
Xm
i¼ 1

jXij
jUj

C2
jUj 	 C2

jXij
C2

jUj

where C2
jXij ¼

jXij�ðjXij	1Þ
2 , jXij

jUj represents the prob-
ability of an equivalence class Xi within the

universe U, and
C2

jUj	C2
jXi j

C2
jUj

denotes the probability

of pairs of the elements that are distinguishable

from each other within the entire number of pairs

of the elements in the universe.

The following theorem shows the rough

monotonicity of the combination entropy.

Theorem 6.9 (Rough monotonicity) Let

S¼ðU;AÞ be a complete information system

and P; Q � A. Then, CEðPÞZCEðQÞ if P � Q.

Proof Let U=INDðPÞ¼ fP1;P2; . . . ; Pmg and

U=INDðQÞ¼ fQ1;Q2; . . . ; Qng. In the context

of incomplete information systems, they can be

written as U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg, Pi ¼fui1; ui2; . . . ; uisig, where jPij ¼ si
and

Pm
i¼ 1 si ¼ jUj; and U=SIMðQÞ¼ fSQðu1Þ,

SQðu2Þ; . . . ; SQðujUjÞg, Qj ¼fuj1; uj2; . . . ; ujsjg
where jQjj ¼ sj and

Pn
j¼ 1 sj ¼ jUj. Hence, Pi ¼

SPðui1Þ¼SPðui2Þ¼ � � � ¼SPðuisiÞ and Qj ¼SQ

ðuj1Þ¼SQðuj2Þ¼ � � � ¼SQðujsjÞ. It follows from

P � Q that SPðuiÞ � SQðuiÞ and jSPðuiÞjrjSQ

ðuiÞj, 8i 2 f1; 2; . . . ; jUjg. Hence, we have that

CEðPÞ¼
Xm
i¼ 1

jXij
jUj

C2
jUj 	 C2

jXij
C2

jUj
¼ 1	 1

jUj
Xm
i¼ 1

jXij �
C2

jXij
C2

jUj

¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSPðuiÞj
C2

jUj
Z1	 1

jUj
XjUj

i¼ 1

C2
jSQðuiÞj
C2

jUj

¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSQðuiÞj
C2

jUj
¼CEðQÞ

i.e., CEðPÞZCEðQÞ. This completes the

proof. ’

Theorem 6.9 shows that the combination

entropy CE of a complete information system

increases with equivalence classes becoming

smaller through finer classification.

Using the partial relation �0, one can obtain

the granulation monotonicity of the combina-

tion entropy in a complete information system.

Theorem 6.10 (Granulation monotonicity) Let

S¼ðU;AÞ be a complete information system

and P; Q � A. Then, CEðPÞZCEðQÞ if PJQ.

Proof Using the denotations in Theorem 6.9, we

denoted two equivalence partitions by U=SIM
ðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ; SPðujUjÞg and U=
SIMðQÞ¼ fSQðu1Þ;SQðu2Þ; . . . ; SQðujUjÞg. Since
PJQ, it easily follows that there exists a sequence

fSQðu01Þ;SQðu02Þ; . . . ; SQðu0jUjÞg such that

jSPðuiÞjrjSQðu0iÞj, 8i 2 f1; 2; . . . ; jUjg. Thus,

one has that

CEðPÞ¼
Xm
i¼ 1

jXij
jUj

C2
jUj 	 C2

jXij
C2

jUj

¼ 1	 1

jUj
Xm
i¼ 1

jXij �
C2

jXij
C2

jUj
¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSPðuiÞj
C2

jUj

Z1	 1

jUj
XjUj

i¼ 1

C2
jSQðu0iÞj
C2

jUj
¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSQðuiÞj
C2

jUj

¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSQðuiÞj
C2

jUj
¼CEðQÞ

i.e., CEðPÞZCEðQÞ. This completes the

proof. ’

Theorem 6.10 states that the combination

entropy CE of a complete information system

increases with the information granularity of

this system becoming finer.

Corollary 6.5 Let S¼ðU;AÞ be an incomplete

information system and P;Q � A. Then,

CEðPÞ < CEðQÞ if GðPÞ > GðQÞ.
In an incomplete information system, the

elements in a tolerance class may not be distin-

guished from each other, but the elements in

different tolerance classes are probably distin-

guishable from each other. Based on this con-

sideration, Qian et al. (2009) proposed an

incomplete combination entropy in incomplete

information systems. The following definition
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gives the description of the incomplete combina-

tion entropy.

Definition 6.6 Let S¼ðU;AÞ be an incom-

plete information system and U=SIMðAÞ¼
fSAðu1Þ;SAðu2Þ; . . . ; SAðujUjÞg. The combina-

tion entropy of A is defined as

CE�ðAÞ¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSAðuiÞj
C2

jUj

where
C2

jUj	C2
jSAðuiÞj

C2
jUj

denotes the probability of

pairs of elements that are probably distinguish-

able from each other within the whole number

of pairs of elements on the universe.

Theorem 6.11 (Rough monotonicity) Let S¼
ðU;AÞ be an incomplete information system

and P;Q � A. Then, CE�ðPÞZCE�ðQÞ if

P � Q.

Proof Let U=SIMðPÞ¼ fSPðu1Þ; SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ;SQðu2Þ;
. . . ; SQðujUjÞg. It follows from P � Q that

SPðuiÞ � SQðuiÞ and jSPðuiÞjrjSQðuiÞj,
8i 2 f1; 2; . . . ; jUjg. Hence, we have that

CE�ðPÞ¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSPðuiÞj
C2

jUj

¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSPðuiÞj
C2

jUj
Z1	 1

jUj
XjUj

i¼ 1

C2
jSQðuiÞj
C2

jUj

¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSQðuiÞj
C2

jUj
¼CE�ðQÞ

i.e., CE�ðPÞZCE�ðQÞ. This completes the

proof. ’

Theorem 6.11 suggests that the combination

entropy CE* of an incomplete information sys-

tem increases as the tolerance classes become

smaller through finer classification.

Theorem 6.12 (Granulation monotonicity) Let

S¼ðU;AÞbe an incomplete information system

andP;Q � A. Then, CE�ðPÞZCE�ðQÞ if PJQ.

Proof Let U=SIMðPÞ¼ fSPðu1Þ;SPðu2Þ; . . . ;
SPðujUjÞg and U=SIMðQÞ¼ fSQðu1Þ;SQðu2Þ;
. . . ; SQðujUjÞg. It follows from PJQ that there

exists a sequence fSQðu01Þ;SQðu02Þ; . . . ;
SQðu0jUjÞg such that jSPðuiÞjrjSQðu0iÞj, 8i 2
f1; 2; . . . ; jUjg. Hence, we have that

CE�ðPÞ¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSPðuiÞj
C2

jUj
¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSPðuiÞj
C2

jUj

Z1	 1

jUj
XjUj

i¼ 1

C2
jSQðu0iÞj
C2

jUj
¼ 1	 1

jUj
XjUj

i¼ 1

C2
jSQðuiÞj
C2

jUj

¼ 1

jUj
XjUj

i¼ 1

C2
jUj 	 C2

jSQðuiÞj
C2

jUj
¼CE�ðQÞ

i.e., CE�ðPÞZCE�ðQÞ. This completes the

proof. ’

Theorem 6.12 states that the combination

entropy CE� of an incomplete information sys-

tem increases as the information granularity of

this system become finer.

Corollary 6.6 Let S¼ðU;AÞ be an incomplete

information system andP; Q � A. Then, CE�

ðPÞ < CE�ðQÞif GðPÞ > GðQÞ.

6. Conclusions

According to partial ordering �, every class in

one approximation space is requested to be

contained within a corresponding class in the

other approximation space in an information

system. But this restriction could not felicitously

depict the scale of information granulation of an

approximation space in information systems.

For this reason, a new partial ordering J is

introduced.We show the mechanism of how this

partial ordering overcomes the limitation of �
by several illustrative examples. We also point

out that the granulation monotonicity induced

by J is all satisfied by all existing information

granulations. As a result, a uniform representa-

tion of the partial orderings is obtained for

characterizing the relationship among approx-

imation spaces, which may lead to a strategy for

dealing with information granulations in some
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real-word applications that involve complete

information, incomplete information and max-

imal consistent blocks all together. With the

above discussions, we develop the theoretical

foundation of granular computing in informa-

tion systems for its further research. Another

important thing we should point out is that

partial ordering J presented in this paper is the

natural generalization of partial ordering �.
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