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a b s t r a c t

The class of k-ary n-cubes represents the most commonly used interconnection topology
for distributed-memory parallel systems. Given an even k P 4, let (V1,V2) be the bipartition
of the k-ary 2-cube, fv1, fv2 be the numbers of faulty vertices in V1 and V2, respectively, and
fe be the number of faulty edges. In this paper, we prove that there exists a cycle of length
k2 � 2max{fv1, fv2} in the k-ary 2-cube with 0 6 fv1 + fv2 + fe 6 2. This result is optimal with
respect to the number of faults tolerated.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The k-ary n-cube Qk
n has many desirable properties, such as ease of implementation, low-latency and high-bandwidth in-

ter-processor communication. Therefore, a number of distributed-memory parallel systems (also known as multicomputers)
have been built with a k-ary n-cube forming the underlying topology. The graph embedding is a technique that maps a guest
graph into a host graph (usually an interconnection architecture). Many graph embeddings take cycles and paths as guest
graphs [1,3–10], because these interconnection architectures are widely used in distributed-memory parallel systems.

As failures are inevitable, fault-tolerance is an important issue in the distributed-memory parallel system. Recently, fault-
tolerant cycle-embeddings of various interconnection networks received much attention (see, for example, [1,3,9]). In [11],
Yang et al. proved that the faulty k-ary 2-cube with odd k P 3 admits a hamiltonian cycle if the number of faults does not
exceed 2. For even k P 4, Stewart and Xiang [7] investigated the problem of embedding long paths in k-ary 2-cubes with
faulty vertices and edges and presented the following result.

Theorem 1 [7]. Let k P 4 be even, and let fv be the number of faulty vertices and fe be the number of faulty edges in Qk
2 with

0 6 fv + fe 6 2. Given any two healthy vertices s and t of Qk
2, then there is a path from s to t of length at least k2 � 2fv � 1 in the

faulty Qk
2 if s and t have different parities (the parity of a vertex v = v1v2 of Qk

2 is defined to be v1 + v2 modulo 2).

As every pair of adjacent vertices have different parities when k is even, there is a cycle of length at least k2 � 2fv in the
faulty Qk

2. In fact, this result can be improved according to the possible distribution of the faulty vertices. The parity of a ver-
tex v = v1v2 of Q k

2 is defined to be v1 + v2 modulo 2. We speak of a vertex as being odd or even according to whether its parity
is odd or even. In this paper, we prove that there exists a cycle of length k2 � 2max{fv1, fv2} in the Q k

2 with at most two faults,
where fv1 (resp. fv2) is the number of faulty vertices which are even (resp. odd). As fv1 + fv2 = fv, we have max{fv1, fv2} < fv when
fv1 = fv2 = 1. Obviously, k2 � 2max{fv1, fv2} P k2 � 2fv. Therefore, our result improves the result noted above.
. All rights reserved.
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The rest of this paper is organized as follows. In Section 2, we introduce some basic definitions. In Section 3, we prove the
main result. Conclusions are covered in Section 4.

2. Basic definitions

Throughout this paper, notation and terminology mostly follow [2].
The k-ary 2-cube Qk

2 is a graph consisting of k2 vertices, each has the form v = v1v2, where 0 6 v1, v2 6 k � 1. Two vertices
v = v1v2 and u = u1u2 are adjacent if and only if there exists an integer j, j 2 {1,2}, such that uj = vj ± 1 (mod k) and ui = vi, for
i 2 {1,2}n{j}. For clarity of presentation, we omit writing ‘‘(mod k)’’ in similar expressions for the remainder of the paper.
A k-ary 2-cube with even k P 4 is a bigraph. Let V1 (resp. V2) be the set of the vertices which are even (resp. odd). Then
(V1,V2) is a bipartition of the k-ary 2-cube. Many structural properties of k-ary 2-cubes are known, but of particular relevance
for us is that a k-ary 2-cube is vertex-transitive, that is, for any two distinct vertices u and v of Q k

2, there is an automorphism
of Qk

2 mapping u to v. In particular, the mapping h : ij ? i(k � j), 0 6 i, j 6 k � 1, is an automorphism of Q k
2.

For convenience, we write va,b as the vertex of Q k
2 with the form ab, where 0 6 a, b 6 k � 1. For 0 6 i 6 j 6 k � 1, Row(i : j) is

the subgraph of Q k
2 induced by {va,b : i 6 a 6 j,0 6 b 6 k � 1}. We simply write Row(i) instead of Row(i : i). It can be seen that

each Row(i) is a cycle of length k. Let (vi,j,vi,j+1) be an edge of Row(i). Then the edge (vm,j,vm,j+1), m 2 {i � 1, i + 1}, is called the
corresponding edge of (vi,j,vi,j+1) in Row(m).

3. Cycle embeddings in faulty k-ary 2-cubes

To show our main result, we first introduce some useful lemmas. A pair of vertices {u,v} is odd (resp. even) if u and v have
different (resp. the same) parities.

According to the proof of Lemma 1 in [7], the following lemma holds.

Lemma 3.1 [7]. Given an even k P 4, let v be a faulty vertex of Row(0:1) in Qk
2 and let s and t be two distinct healthy vertices of

Row(0:1). If {v, s} is odd and {s, t} is even, then there is a path from s to t of length 2k � 2 in Row(0:1).

According to Theorem 1, the following lemma holds.

Lemma 3.2 [7]. Given an even k P 4, let s and t be any two distinct healthy vertices of Q k
2 with two faulty vertices. Then there is a

path of length at least k2 � 5 from s to t if {s, t} is odd.
Lemma 3.3 [7]. Given an even k P 4, let s and t be two distinct healthy vertices of Row(0:p � 1) in Qk
2, where 2 6 p 6 k. If {s, t} is

odd (resp. even), then there is a path from s to t of length pk � 1 (resp. pk � 2) in Row(0:p � 1).

A matching in a graph is a set of pairwise nonadjacent edges. The vertex incident with an edge of a matching is said to be
covered by the matching. A perfect matching is one which covers every vertex of the graph. Let G1 and G2 be two graphs. We
denote by G14G2 the graph induced by the edges of E(G1)4E(G2), where E(G1)4E(G2) denotes the symmetric difference of
E(G1) and E(G2). Given an integer m with 1 6m 6 k, let M ¼ fðv i;j1 ;v i;j1þ1Þ; ðv i;j2 ;v i;j2þ1Þ; . . . ; ðv i;jm ;v i;jmþ1Þ : 0 6 jl 6 k� 1;
l ¼ 1;2; . . . ;mg# EðRowðiÞÞ and let Cjn ¼ ðv i;jn ;v iþ1;jn ;v iþ1;jnþ1;v i;jnþ1;v i;jn Þ. Set CðMÞ ¼ Cj1 4 Cj2 4 . . .4 Cjm .

Lemma 3.4. Given an even k P 4, let v and w be two distinct faulty vertices of Row(0:1) in Q k
2. If {v,w} is odd, then there is a cycle

of length 2k � 2 in Row(0:1) that contains at least one healthy edge of Row(0).
Proof. Without loss of generality, assume that v = v0,0. We distinguish two cases.

Case 1. w is a vertex of Row(0). Let w = v0,i(1 6 i 6 k � 1). As h :vi,j ? vi,k�j is an automorphism of Q k
2; hðv0;0Þ ¼ v0;0 and

h(v0,i) = v0,k�i, it is enough to consider 1 6 i 6 k
2. As {v,w} is odd and v0,0 is even, i is odd. Let

M = {(v0,1,v0,2), (v0,3,v0,4), . . . , (v0,i�2,v0,i�1), (v0,i+1,v0,i+2), . . . , (v0,k�2,v0,k�1)}. Then it is easy to see that M is a perfect
matching of Row(0) � {v,w}. Thus, C ¼ Rowð1Þ 4 CðMÞ is a cycle of length 2k � 2 in Row(0:1). As jMj ¼ k�2

2 P 1
and M # E(C), C contains at least one healthy edge of Row(0).

Case 2. w is a vertex of Row(1). Let w = v1,j(0 6 j 6 k � 1). As {v,w} is odd and v0,0 is even, j is even. Suppose that w = v1,0,
then C = (v0,1,v0,2, . . . ,v0,k�2,v0,k�1,v1,k�1,v1,k�2, . . . ,v1,2,v1,1,v0,1) is as required. Suppose that w – v1,0. Let M0

1 be the
maximum matching of Row(1) � w such that ðv1;0;v1;1Þ 2 M0

1 and ðv1;k�2;v1;k�1Þ R M0
1. Set M1 ¼ M0

1[
fðv1;0;v1;k�1Þg. Let M0 be the set of corresponding edges of M1 in Row(0). Then C ¼ Rowð1Þ4 C EðRowð0ÞÞ �M0ð Þ
is a cycle of length 2k � 2 in Row(0:1). As jM0j = jM1j < k and (E(Row(0)) �M0) # E(C), C contains at least one
healthy edge of Row(0). h
Theorem 3.1. Letk P 4 be even, and let fv 6 2 be the number of faulty vertices in Q k
2. Then there is a cycle of length

k2 � 2max{fv1, fv2} in the faulty Qk
2, where fv1 (resp. fv2) is the number of faulty vertices which are even (resp. odd) and fv1 + fv2 = fv.
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Proof. According to the number of faulty vertices fv, we distinguish three cases.

Case 1. fv = 0.
In this case, fv1 + fv2 = 0. We have fv1 = fv2 = 0. Note that Row(0:k � 1) is not empty. Let
(s, t) 2 E(Row(0:k � 1)) be a healthy edge in Qk

2. Then {s, t} is odd. By Lemma 3.3, there is a path P in
Row(0:k � 1) from s to t of length k2 � 1. So P + (s, t) is a cycle of length k2 in Qk

2, where
k2 = k2 � 2max{fv1, fv2}.

Case 2. fv = 1.
In this case, fv1 + fv2 = 1. We have
fv1 ¼ 1;
fv2 ¼ 0;

�
or

fv1 ¼ 0;
fv2 ¼ 1:

�
ð3:1Þ
Without loss of generality, we consider fv1 = 1 and fv2 = 0. Let even v = v0,0 be the faulty vertex. Note that Row(0:1) and
Row(2:k � 1) are two subgraphs of Qk

2. Given an odd i and an even j (0 6 i, j 6 k � 1), let s = v0,i and t = v1,j. Then {v,s} is odd
and {s, t} is even. By Lemma 3.1, there is a path P1 in Row(0:1) from s to t of length 2k � 2. Let s1 = vk�1,i and t1 = v2,j. Then
(v0,i,vk�1,i) and (v1,j,v2,j) are two healthy edges in the faulty Q k

2. It is easy to see that {s1, t1} is even. Combining this with the fact
that Row(2:k � 1) and Row(0:k � 3) are isomorphic, Lemma 3.3 implies that there is a path P2 in Row(2:k � 1) from s1 to t1 of
length (k � 2)k � 2. Now, P1 [ P2 + {(v0,i,vk�1,i), (v1,j,v2,j)} is a cycle of length l with l = (2k � 2) + (k � 2)
k � 2 + 2 = k2 � 2 = k2 � 2max{fv1, fv2} in the faulty Qk

2.
Case 3. fv = 2. In this case, fv1 + fv2 = 2. We have
fv1 ¼ 2;
fv2 ¼ 0;

�
or

fv1 ¼ 1;
fv2 ¼ 1;

�
or

fv1 ¼ 0;
fv2 ¼ 2:

�
ð3:2Þ
Case 3.1. fv1 = 2, fv2 = 0 or fv1 = 0, fv2 = 2. Without loss of generality, we consider fv1 = 2,fv2 = 0. Let ðs; tÞ 2 EðQk
2Þ be a

healthy edge. Then {s, t} is odd. By Lemma 3.2, there is a path P in the faulty Qk
2 from s to t of length

k2 � 5. So P + (s, t) is a cycle of length k2 � 4 in the faulty Q k
2, where k2 � 4 = k2 � 2max{fv1, fv2}.

Case 3.2. fv1 = fv2 = 1.
Suppose that even v and odd w are the two faulty vertices. Without loss of generality, let v = v0,0. According
to the possible distribution of w, we distinguish three subcases.

Case 3.2.1. w is a vertex of Row(0:1) or Row(k � 1).
Suppose that w is a vertex of Row(0:1). Note that Row(0:1) and Row(2:k � 1) are two subgraphs of Qk

2. As
{v,w} is odd, Lemma 3.4 implies that there is a cycle C1 in Row(0:1) of length 2k � 2 containing a healthy
edge (v0,w0) of Row(0). Let v 01 (resp. w01) be the adjacent vertex of v0 (resp. w0) in Row(k � 1). Then
ðv 0; v 01Þ and ðw0; w01Þ are two healthy edges in the faulty Q k

2. As {v0,w0} is odd, we have that fv 01; w01g is
odd. Combining this with the fact that Row(2:k � 1) and Row(0:k � 3) are isomorphic, Lemma 3.3 implies
that there is a path P in Row(2:k � 1) from v 01 to w01 of length (k � 2)k � 1. So
C1 [ P þ fðv 0;v 01Þ; ðw0;w01Þg � fðv 0;w0Þg is a cycle of length l with l = (2k � 2) + (k � 2)k � 1 + 2 � 1 =
k2 � 2 = k2 � 2max{fv1, fv2} in the faulty Qk

2.
Suppose that w 2 V(Row(k � 1)). Let w = vk�1,j (0 6 j 6 k � 1). As h1 :vi,j ? vk�i,j is an automorphism of
Q k

2; h1ðv0;0Þ ¼ v0;0 and h1(vk�1,j) = v1,j. Similarly, we can obtain a desired cycle.

Case 3.2.2. w is a vertex of Row(2:3) or Row(k � 3:k � 2). Suppose that w is a vertex of Row(2:3). For k = 4, note that
Row(0:1) and Row(2:3) are subgraphs of Q4

2. Let even w0 be a healthy vertex of Row(2) and let w01 be the
adjacent vertex of w0 in Row(1). Then w01 is odd and ðw0; w01Þ is a healthy edge in the faulty Q4

2. Let odd v0

be a healthy vertex of Row(0). As {v,v0} is odd and fv 0; w01g is even, Lemma 3.1 implies that there is a path
P1 in Row(0:1) from v0 to w01 of length 6. Let v 01 be the adjacent vertex of v0 in Row(3). Then v 01 is even and
ðv 0; v 01Þ is a healthy edge in the faulty Q4

2. As {w,w0} is odd and fw0; v 01g is even, Lemma 3.1 implies that
there is a path P2 in Row(2:3) from v 01 to w0 of length 6. So P1 [ P2 þ fðw0;w01Þ; ðv 0;v 01Þg is a cycle of length
l with l = 6 + 6 + 2 = 14 = 42 � 2max{fv1, fv2} in the faulty Q4

2.
For even k P 6, note that Row(0:1), Row(2:3) and Row(4:k� 1) are subgraphs of Q k

2. Let even w0 be a healthy ver-
tex of Row(2) and let w01 be the adjacent vertex of w0 in Row(1). Then w01 is odd and ðw0; w01Þ is a healthy edge in the
faulty Qk

2. Let odd v0 be a healthy vertex of Row(0). As {v,v0} is odd and fv 0; w01g is even, Lemma 3.1 implies that
there is a path P1 in Row(0:1) from v0 to w01 of length 2k� 2. Let even x be a healthy vertex of Row(3). As {w,w0} is
odd and {w0,x} is even, Lemma 3.1 implies that there is a path P2 in Row(2:3) from x to w0 of length 2k� 2. Let x1 be
the adjacent vertex of x in Row(4). Then x1 is odd and (x,x1) is a healthy edge in the faulty Q k

2. Let v 01 be the adjacent
vertex of v0 in Row(k� 1). Then v 01 is even and ðv 0; v 01Þ is a healthy edge in the faulty Q k

2. As fx1; v 01g is odd and
Row(4:k� 1) and Row(0:k� 5) are isomorphic, Lemma 3.3 implies that there is a path P3 in Row(4:k� 1) from x1

to v 01 of length (k� 4)k� 1. So P1 [ P2 [ P3 þ fðw0;w01Þ; ðx; x1Þ; ðv 0;v 01Þg is a cycle of length l with
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l = (2k� 2) + (2k� 2) + (k� 4)k� 1 + 3 = k2� 2 = k2� 2max{fv1, fv2} in the faulty Q k
2.

Suppose that w 2 V(Row(k� 3:k� 2)). Let w = vi,j, where i 2 {k� 3,k� 2} and 06 j6 k� 1. As h1: vi,j ? vk�i,j is an
automorphism of Q k

2; h1ðv0;0Þ ¼ v0;0; h1ðvk�3;jÞ ¼ v3;j and h1(vk�2,j) = v2,j. Similarly, we can obtain a desired cycle.
Case 3.2.3. w is a vertex of Row(n), where 4 6 n 6 k � 4. In this case, we have even k P 8. Note that Row(0:1),

Row(2:n � 1), Row(n:n + 1) and Row(n + 2:k � 1) are subgraphs of Q k
2. Let odd v0 (resp. odd w0) be a healthy

vertex of Row(0) (resp. Row(1)). As {v,v0} is odd and {v0,w0} is even, Lemma 3.1 implies that there is a path P1

in Row(0:1) from v0 to w0 of length 2k � 2. Let even v 01 (resp. even w01) be a healthy vertex of Row(n) (resp.
Row(n + 1)). As fw; v 01g is odd and fv 01; w01g is even, Lemma 3.1 implies that there is a path P2 in
Row(n:n + 1) from v 01 to w01 of length 2k � 2. Let w00 (resp. v 001) be the adjacent vertex of w0 (resp. v 01) in
Row(2) (resp. Row(n � 1)). Then (w0,w00) and ðv 01;v 001Þ are two healthy edges in the faulty Qk

2. It is easy to
see that w00 is even and v 001 is odd. So fw00; v 001g is odd. Combining this with the fact that Row(2:n � 1) and
Row(0:n � 3) are isomorphic, Lemma 3.3 implies that there is a path P3 in Row(2:n � 1) from w00 to v 001 of
length (n � 2)k � 1. Let v00 (resp. w001) be the adjacent vertex of v0 (resp. w01) in Row(k � 1) (resp. Row(n + 2)).
Then ðw01;w001Þ and (v0,v00) are two healthy edges in the faulty Qk

2. It is easy to see that v00 is even and w001 is odd.
So fv 00; w001g is odd. Combining this with the fact that Row(n + 2:k � 1) and Row(0:k � n � 3) are isomorphic,
Lemma 3.3 implies that there is a path P4 in Row(n + 2:k � 1) from v00 to w001 of length (k � n � 2)k � 1. So
P1 [ P2 [ P3 [ P4 þ fðw0;w00Þ; ðv 01; v 001Þ; ðw01;w001Þ; ðv 0;v 00Þg is a cycle of length l with
l = (2k � 2) + (2k � 2) + (n � 2)k � 1 + (k � n � 2)k � 1 + 4 = k2 � 2 = k2 � 2max{fv1, fv2} in the faulty Qk

2. As
we have discussed all possible cases, the proof is complete. h

According to Theorem 1, the following three lemmas hold.

Lemma 3.5 [7]. Given an even k P 4, let s and t be any two distinct healthy vertices of Q k
2 with one faulty edge. Then there is a

path in the faulty Qk
2 from s to t of length k2 � 1 if {s, t} is odd.
Lemma 3.6 [7]. Given an even k P 4, let s and t be any two distinct healthy vertices of Q k
2 with two faulty edges. Then there is a

path in the faulty Q k
2 from s to t of length k2 � 1 if {s, t} is odd.
Lemma 3.7 [7]. Given an even k P 4, let s and t be any two distinct healthy vertices of Qk
2 with one faulty edge and one faulty

vertex. Then there is a path in the faulty Q k
2 from s to t of length at least k2 � 3 if {s, t} is odd.

Note that the Q k
2 with at most two faults is not empty and every pair of adjacent vertices have different parities when k is

even. When fv = 0 and fe = 1 or fe = 2, it follows from Lemmas 3.5 and 3.6 that each healthy edge of the faulty Q k
2 lies on a cycle

of length k2 = k2 � 2max{fv1, fv2}. When fv = 1 and fe = 1, it follows from Lemma 3.7 that each healthy edge of the faulty Q k
2 lies

on a cycle of length k2 � 2 = k2 � 2max{fv1, fv2}. Combining these with Theorem 3.1, it can be seen that the following theorem
holds.

Theorem 3.2. Let k P 4 be even, and let fv be the number of faulty vertices and fe be the number of faulty edges in Qk
2 with

0 6 fv + fe 6 2. Then there is a cycle of length k2 � 2max{fv1, fv2} in the faulty Qk
2, where fv1 (resp. fv2) is the number of faulty vertices

which are even (resp. odd) and fv1 + fv2 = fv.
This result is optimal. The reasons are as follows. (1) Suppose that Qk

2 contains no faulty vertices or two faulty vertices
with different parities. Then the cycle of length k2 � 2max{fv1, fv2} is a hamiltonian cycle of the faulty Q k

2. (2) Suppose that
Qk

2 contains exactly one faulty vertex. Recall that a Qk
2 with even k P 4 is actually a bigraph. As there is no cycle of odd length,

the length k2 � 2max{fv1, fv2} of the cycle cannot be improved. (3) Suppose that Qk
2 contains two faulty vertices with the same
Fig. 1. The Q4
2 with two faulty vertices v0;0 and v0;2.
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parities. Similarly, there is no cycle of odd length in the faulty Qk
2. In addition, it is not difficult to see that the Q 4

2 with two
faulty vertices v0,0 and v0,2 has no cycle of length k2 � 2 = 14 (See Fig. 1). Therefore, the length k2 � 4 = k2 � 2max{fv1, fv2} of
the cycle cannot be improved.

4. Conclusions

In this paper, we investigate the problem of embedding long cycles in k-ary 2-cubes with fv faulty vertices and fe faulty
edges, where k P 4 is even and 0 6 fv + fe 6 2. It is proved that there is a cycle of length k2 � 2max{fv1, fv2} in the faulty k-ary
2-cube where fv1 (resp. fv2) is the number of faulty vertices which are even (resp. odd). Our result improves the result in the
case when n = 2 given by Stewart and Xiang [7]. A generalization would lead to looking for the long cycles in the faulty k-ary
n-cubes with n P 3 and even k P 4.
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