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Abstract The purpose of this paper is to study the ex-
istence and global stability of a periodic solution for
a discrete predator–prey system with the Beddington–
DeAngelis functional response and predator cannibal-
ism. By using the continuation theorem, the existence
conditions of at least one periodic solution are ob-
tained, and the sufficient conditions, which ensure the
global stability of the positive periodic solution, are
derived by constructing a special Lyapunov function.

Keywords Predator–prey · Predator cannibalism ·
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1 Introduction

The dynamic relationship between predators and their
prey has long been and will continue to be the dom-
inant themes in both ecology and mathematical bi-
ology. Since the great work of Lotka (in 1925) and
Volterra (in 1926), modeling these interactions has
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been one of the central themes in mathematical biol-
ogy [1, 2].

Among predator–prey relationships, one significant
component is the functional response of predators. In
general, the functional response can be either prey de-
pendent or predator dependent. Holling family ones
are prey dependent, which may fail to model the
interference among predators, and have been facing
challenges from the biology and physiology commu-
nities. The predator-dependent functional responses
can provide better descriptions of a predator feed-
ing over a range of predator–prey abundances, as is
supported by much significant laboratory and field
evidence (see [3] and references therein). However,
the Beddington–DeAngelis functional response, first
proposed by Beddington [4] and DeAngelis [5], per-
formed even better. As a result, predator–prey systems
with the Beddington–DeAngelis response have been
studied extensively in the literature [6–10]. The sys-
tem can be written as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dz(t)

dt
= rz(t)

[
1 − z(t)

] − bz(t)p(t)

Az(t) + Bp(t) + C
,

dp(t)

dt
= p(t)

[
kbz(t)

Az(t) + Bp(t) + C
− D

]

,

(1)

where r , b, k, A, B , C, D are positive constants and
z(t), p(t) represent the population density of prey and
predator at time t , respectively.

Recently, some work showed that cannibalism can
stabilize population cycles in a Lotka–Volterra type
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predator–prey model [11, 12]. Specifically, Kohlmeier
et al. used a Lotka–Volterra type predator–prey model
with logistic prey growth and a Beddington–
DeAngelis functional response and added a can-
nibalism term [11]. The system has the following
form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dz(t)

dt
= rz(t)

[
1 − z(t)

] − bz(t)p(t)

Az(t) + Bp(t) + C
,

dp(t)

dt
= p(t)

[
k(t)b(t)z(t)

A(t)z(t) + B(t)p(t) + C(t)

− D(t)

]

− y1
(
z(t),p(t)

)
,

(2)

where

y1
(
z(t),p(t)

) = θ(t)p2(t)

A(t)z(t) + B(t)p(t) + C(t)
, (3)

represents predator cannibalism. z(t) and p(t) are
the density of prey and predator, respectively; r is
the growth rate of the prey population; b and θ

are the attack rates on prey and conspecifics; A

and B are the handling times of prey and con-
specifics; k is the food to newborns conversion fac-
tor, and D is the predator death rate. And all the
r(t), b(t), k(t), θ(t),A(t), B(t),C(t),D(t) are posi-
tive T -periodic sequences.

Though much progress has been seen for the sys-
tem (2), there is no work that has been done for such
discrete model. However, it is well known that the dis-
crete time models governed by difference equations
are more appropriate than the continuous ones when
the populations have nonoverlapping generations. In
addition, discrete time models can also provide effi-
cient computational models of continuation for nu-
merical simulations [13]. He and Lai investigated
the bifurcation and chaotic behavior of a discrete-
time predator–prey system [14]. Fang and Chen ob-
tained the permanence of a discrete Lotka–Volterra
predator–prey system with delays [15]. Xia et al.
showed that the discrete-time analogues preserve the
periodicity of the continuous-time models with mono-
tonic functional responses [16]. Ghaziani et al. pre-
sented resonance and bifurcation in a discrete-time
predator–prey system [17]. Motivated by the previ-
ous work, we will analyze the dynamics of a dis-
crete analogue of the continuous system (2) in this
paper.

This paper is organized as follows. In Sect. 2, we
give the discrete form of system (2). In Sects. 3 and 4,
by using the continuation theorem and constructing a
Lyapunov function, we obtain the existence conditions
and global stability of the positive periodic solution.
In Sect. 5, we present a conclusion and some discus-
sion.

2 Discrete analogue of the model

Let us assume that the average growth rates in system
(2) change only at regular intervals of time. Then we
can incorporate this aspect in system (2) and obtain the
following modified system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

z(t)

dz(t)

dt
= r[t](1 − z[t])

− b[t]p[t]
A[t]z[t] + B[t]p[t] + C[t] ,

1

p(t)

dp(t)

dt
=

(
k[t]b[t]z[t]

A[t]z[t] + B[t]p[t] + C[t] − D[t]
)

− g
(
z[t],p[t]),

(4)

where

g(z,p) = θp

Az + Bp + C
, (5)

and [t] denotes the integer part of t ∈ (0,+∞). The
system (4) is known as a differential equation with
piecewise constant arguments, and it occupies a posi-
tion midway between differential equations and a dif-
ference equation.

Thus, on any interval of the form [n,n+ 1), n ∈ N ,
we can integrate the system (4) and obtain that for n ≤
t < n + 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(t) = z(n) exp

{

r(n)
[
1 − z(n)

]

− b(n)p(n)

A(n)z(n) + B(n)p(n) + C(n)

}

,

p(t) = p(n)

× exp

{

k(n)
b(n)z(n)

A(n)z(n) + B(n)p(n) + C(n)

− D(n) − g
(
z(n),p(n)

)
}

.

(6)
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Let t → n + 1, and we obtain from (6) that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(n + 1) = z(n) exp

{

r(n)
[
1 − z(n)

]

− b(n)p(n)

A(n)z(n) + B(n)p(n) + C(n)

}

,

p(n + 1) = p(n) exp

{

k(n)

× b(n)z(n)

A(n)z(n) + B(n)p(n) + C(n)

− D(n) − g
(
z(n),p(n)

)
}

.

(7)

Apparently, the system (7) is a discrete analogue
of system (2). Throughout the rest of this paper, we
assume that z(0) > 0, p(0) > 0. It is easy to check that
the solution (z(n),p(n))T of the system (7) is positive
for all n ∈ N .

In the following sections, we will pay our attention
on system (7).

3 Existence of positive periodic solutions

In this section, we will establish the existence condi-
tion of at least one T -periodic solution of system (7)
by using continuation theorem which was proposed by
Gaines and Mawhin [18]. For the sake of discussion,
let

z(n) = exp
{
x1(n)

}
, p(n) = exp

{
x2(n)

}
,

then we can get
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1) − x1(n) = r(n)
[
1 − expx1(n)

]

− b(n) exp{x2(n)}
f (x1(n), x2(n))

,

x2(n + 1) − x2(n) = k(n)
b(n) exp{x1(n)}
f (x1(n), x2(n))

− D(n) − g1
(
x1(n), x2(n)

)
,

(8)

where

f
(
x1(n), x2(n)

) = A(n) exp
{
x1(n)

}

+ B(n) exp
{
x2(n)

} + C(n),

g1
(
x1(n), x2(n)

)

= θ(n) exp{x2(n)}
A(n) exp{x1(n)} + B(n) exp{x2(n)} + C(n)

.

In what follows, we will introduce some symbols
and lemmas. Denote N , R, R2 as the set of natural
numbers, real numbers, and a two-dimensional Eu-
clidean vector space, respectively, then we can define
the norm of vector x ∈ R2

‖x‖ =
2∑

i=1

xi,

and let

IT = {0,1,2, . . . , T − 1},

w = 1

T

T −1∑

s=0

w(s), W = 1

T

T −1∑

s=0

∣
∣w(s)

∣
∣,

wu = max
s∈IT

w(s), wl = min
s∈IT

w(s),

where w(s) is a T -periodic sequence of nonnegative
real numbers defined for s ∈ N .

Let the X and Y be two real Banach spaces, L :
domL ⊂ X → Y be a Fredholm mapping of index
zero, and P : X → X, Q : Y → Y , be continuous pro-
jections such that ImP = kerL, kerQ = ImL, and
X = kerL ⊕ kerP , Y = ImL ⊕ ImQ. Denote by Lp

the restriction of L to domL ∩ kerP , Kp : ImL →
domL ∩ kerP the inverse of Lp , and by J : ImQ →
kerL an isomorphism of ImQ onto kerL.

Lemma 1 [18] Let Ω ⊂ X be an open bounded set
and let N : X → Y a continuous operator, which is L-
compact on Ω (i.e., QN : Ω → Y and Kp(I − Q)N :
Ω → X are compact). Assume

(a) Lx 
= λNx for every (x,λ) ∈ (domL\kerL ∩
∂Ω) × (0,1);

(b) QNx 
= 0 for every x ∈ kerL ∩ ∂Ω ;
(c) deg(QN |kerL,Ω ∩ kerL,0) 
= 0.

Then the equation Lx = Nx has at least one solution
in domL ∩ Ω .

Lemma 2 [19] Let w : Z → R be T -periodic, i.e.,
w(k + T ) = w(k). Then for any fixed k1, k2 ∈ IT , and
any k ∈ Z, one has

w(k) ≤ w(k1) +
T −1∑

s=0

∣
∣w(s + 1) − w(s)

∣
∣,

w(k) ≥ w(k2) −
T −1∑

s=0

∣
∣w(s + 1) − w(s)

∣
∣.
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Now we can define L to be the linear operator from
domL ⊂ X to Y with

domL = {
x = x(n) : x(n) ∈ R2, n ∈ N

}

and

L(x) = x(n + 1) − x(n), x = (x1, x2)
T ∈ domL.

Define the nonlinear operator N : X → Y by

N(x) = N

(
x1(n)

x2(n)

)

=
(

r(n)(1 − exp{x1(n)}) − b(n) exp{x2(n)}
f (x1(n),x2(n))

k(n)
b(n) exp{x1(n)}
f (x1(n),x2(n))

− D(n) − g1(x1(n), x2(n))

)

.

Then we can consider the operator equation

L(x) = λN(x), λ ∈ (0,1). (9)

It is trivial to see that L is a bounded linear operator
with

kerL = {
x ∈ domL : x(n) = l ∈ R2, n ∈ N

}
,

ImL =
{

x ∈ domL :
T −1∑

n=0

u(n) = 0, n ∈ N

}

,

and

dim KerL = 2 = co dim ImL.

As a result, it follows that L is a Fredholm mapping of
index zero.

Define P : X → X, Q : Y → Y respectively as

Px = 1

T

T −1∑

s=0

x(s), x ∈ X,

and

Qy = 1

T

T −1∑

s=0

y(s), y ∈ Y.

It is not difficult to show that P and Q are continu-
ous projectors such that

ImP = kerL, ImL = kerQ = Im(I − Q).

It follows that LdomL∩kerP : (I − P)X → ImL is in-
vertible. And we denote the generalized inverse (to L)

by KP : ImL → domL ∩ kerP and KP has the fol-
lowing form:

Kp(y) =
T −1∑

s=0

y(s) − 1

T

T −1∑

s=0

(T − s)y(s).

It is obvious that QN and KP (I − P)N are contin-
uous. Since X is a finite-dimensional Banach space,
by using the Arzela–Ascoli theorem, we can eas-

ily obtain that KP (I − P)N(Ω) is compact for any
open bounded Ω ⊂ X. In addition, QN(Ω) is clearly
bounded, which implies that N is L-compact on Ω .

For the application of Lemma 1, we must search for
an appropriate open, bounded subset Ω .

Suppose that x(n) = (x1(n), x2(n))T ∈ X is an ar-
bitrary solution of system (8) for certain λ ∈ (0,1).
Summing both sides of system (8) over the interval
[0, T − 1] with respect to n, we obtain

rT =
T −1∑

n=0

[

r(n) exp
{
x1(n)

} + b(n) exp{x2(n)}
f (x1(n), x2(n))

]

,

(10)

DT =
T −1∑

n=0

[

k(n)
b(n) exp{x1(n)}
f (x1(n), x2(n))

− g1
(
x1(n), x2(n)

)
]

.

(11)

From (8) and (10), it follows that

T −1∑

n=0

∣
∣x1(n + 1) − x1(n)

∣
∣

≤
{

T −1∑

n=0

∣
∣r(n)

∣
∣ +

T −1∑

n=0

[

r(n) exp
{
x1(n)

}

+ b(n) exp{x2(n)}
f (x1(n), x2(n))

]}

= (R + r)T . (12)

Similarly, from (8) and (11), we have

T −1∑

n=0

∣
∣x2(n + 1) − x2(n)

∣
∣ ≤ (B + D)T . (13)
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In view of x = {x(n)} ∈ X, there exist ξi , ηi ∈ IT such
that

xi(ξi) = min
n∈IT

{
xi(n)

}
,

xi(ηi) = max
n∈IT

{
xi(n)

}
, i = 1,2.

(14)

From (10) and (14), we can obtain that

rT ≥
T −1∑

n=0

[
r(n) exp

{
x1(ξ1)

}] = T (r/L) exp
{
x1(ξ1)

}
,

so then

x1(ξ1) ≤ ln
[
r/(r/L)

] := Q1. (15)

By virtue of (12) and (15) and Lemma 2, we have

x1(n) ≤ x1(ξ1) +
T −1∑

n=0

∣
∣x1(n + 1) − x1(n)

∣
∣

≤ ln
[
r/(r/L)

] + (R + r)T := H1. (16)

On the other hand, from (10) and (14), we can also
obtain that

rT ≤
T −1∑

n=0

[

r(n) exp
{
x1(η1)

} + b(n)

B(n)

]

= T
[
(r/L) exp

{
x1(η1)

} + (b/B)
]
, (17)

which leads to

x1(η1) ≥ ln
[(

r − (b/B)
)
/(r/L)

] := q1. (18)

This, together with (12) and Lemma 2, yields

x1(n) ≥ x1(η1) −
T −1∑

n=0

∣
∣x1(n + 1) − x1(n)

∣
∣

≥ ln
[(

r − (b/B)
)
/(r/L)

] − (R + r)T := H2.

(19)

It follows from (16) and (19) that

max
n∈IT

{∣
∣x1(n)

∣
∣
}

< max
{|H1|, |H2|

} := D1. (20)

From (11) and (14), we can obtain

DT ≤
T −1∑

n=0

[

k(n)
b(n) exp{x1(n)}
f (x1(n), x2(n))

]

≤
T −1∑

n=0

[

k(n)
b(n) exp{H1}

Al exp{H2} + Bl exp{x2(ξ2)}
]

≤
T −1∑

n=0

[
k(n)b(n) exp{H1}
Bl exp{x2(ξ2)}

]

= exp{H1}
exp{x2(ξ2)}

(
kb/Bl

)
T , (21)

which leads to

x2(ξ2) ≤ ln
(kb/Bl)

D
+ H1 := Q2. (22)

Together with (13) and Lemma 2, it yields

x2(n) ≤ x2(ξ2) +
T −1∑

n=0

∣
∣x2(n + 1) − x2(n)

∣
∣

≤ ln
(kb/Bl)

D
+ H1 + (B + D)T := H3. (23)

We can also obtain from (11) and (14) that

DT ≥
T −1∑

n=0

[

k(n)
b(n) exp{H2}

f (x1(n), x2(n))

]

− (1/H2)T

≥
T −1∑

n=0

[

k(n)
b(n) exp{H2}

1 + Au exp{H1} + Bu exp{x2(η2)}
]

− (1/H2)T , (24)

which leads to

x2(η2) ≥ ln

[
(kb) exp{H2}

Bu(D + (1/H2))
− 1 + Au exp{H1}

Bu

]

:= q2. (25)

This together with (13) and Lemma 2 yields

x2(n) ≥ x2(η2) −
T −1∑

n=0

∣
∣x2(n + 1) − x2(n)

∣
∣

≥ q2 − (B + D)T := H4. (26)

It follows from (23) and (26) that

max
n∈IT

{∣
∣x2(n)

∣
∣
}

< max
{|H3|, |H4|

} := D2. (27)

Clearly, D1 and D2 are independent of λ. Take
D′ = D1 + D2 + D0 where D0 is taken sufficiently
large that D0 > |q1| + |Q1| + |q2| + |Q2|.
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Let Ω = {(x1(n), x2(n))T ∈ X : ‖(x1, x2)‖ < D′},
then Ω is an open, bounded set in X and satisfies the
requirement (a) of Lemma 1.

Now, let us consider the algebraic equations

(
r − (r/L) exp{x1} − μ 1

T

∑T −1
n=0

b(n) exp{x2}
f (x1,x2)

−D + 1
T

∑T −1
n=0 [ k(n)b(n) exp{x1}

f (x1,x2)
− g1(x1, x2)]

)

=
(

0
0

)

, (28)

where μ ∈ [0,1] is a parameter and (x1, x2)
T ∈ R2.

Similarly, it is easy to show that any solution (x∗
1 , x∗

2 )T

of (28) with μ ∈ [0,1] satisfies

H2 ≤ x∗
1 ≤ H1, H4 ≤ x∗

2 ≤ H3.

Suppose (x1, x2)
T ∈ kerL∩∂Ω = R2 ∩∂Ω , (x1, x2)

T

is a constant vector in R2, and

∥
∥(x1, x2)

∥
∥ = |x1| + |x2| = D′,

then QN [(x1, x2)
T ] 
= 0, which verifies the require-

ment (b) of Lemma 1.
Considering the homotopy for computing the Brou-

wer degree

Hμ

[
(x1, x2)

T
] = μQN

[
(x1, x2)

T
]

+ (1 − μ)A
[
(x1, x2)

T
]
, μ ∈ [0,1],

where

A
[
(x1, x2)

T
]

=
(

r − (r/L) exp{x1}
−D + 1

T

∑T −1
n=0 [ k(n)b(n) exp{x1}

f (x1,x2)
− g1(x1, x2)]

)

.

By the invariance property of homotopy, direct calcu-
lation produces

deg(JQN,kerL ∩ Ω,0)+ = deg(QN,kerL ∩ Ω,0)

= deg(A,kerL ∩ Ω,0)


= 0.

We have proved that Ω satisfies all requirement
of Lemma 1, then Lx = Nx has at least one so-
lution in domL ∩ Ω , that is, the system (8) has
at least one T -periodic solution in domL ∩ Ω , say
(x∗

1 (n), x∗
2 (n))T . Let z∗(n) = exp{x∗

1 (n)}, p∗(n) =
exp{x∗

2 (n)}, so (z∗(n),p∗(n))T is an T -periodic solu-
tion of system (7) with strictly positive components.

Then we can get the main theorem.

Theorem 1 If r − (b/B) ≥ 0 and (kb) exp{H2}
Bu(D+(1/H2))

−
1+Au exp{H1}

Bu ≥ 0, then the system (7) has at least one
positive T -periodic solution.

4 Global stability of the positive periodic solution

In this section, we obtain the sufficient conditions
which guarantee that the positive periodic solution of
(7) is globally stable by constructing a suitable Lya-
punov function.

From the above discussion, it is easy to get

H ′
2 = eH2 ≤ z(n) ≤ eH1 = H ′

1,

H ′
4 = eH4 ≤ p(n) ≤ eH3 = H ′

3.
(29)

Theorem 2 Assume that

(i) there exist positive constant c and positive con-
stants dj (j = 1,2) such that

d1

H ′
1

− [
d1 − d1r(n)

] − d2k(n)b(n)[C(n) + B(n)H ′
3] + [d2θ(n) + d1b(n)]A(n)H ′

3

[C(n) + A(n)H ′
2 + B(n)H ′

4]2
> c,

d2

H ′
3

− d2k(n)b(n)B(n)H ′
1 − [d1b(n) + d2θ(n)][C(n) + A(n)H ′

1]
[C(n) + A(n)H ′

2 + B(n)H ′
4]2

> c;

(ii) H1 > 0, H2 > 0, H3 > 0, H4 > 0 for all n ∈ N ,
which guarantee the system (7) is permanent;

(iii) k(n)b(n)B(n)− θ(n)A(n) > 0, [k(n)b(n)B(n)−
θ(n)A(n)]H ′

2 − θ(n) > 0 for n ∈ N .
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Then the positive periodic solutions of (7) are glob-
ally stable.

Proof Let z∗(n),p∗(n) be a positive periodic solution
of system (7). In the following, we will prove that it

is uniformly asymptotically stable. We introduce the
change of variables

u1(n) = z(n) − z∗(n), u2(n) = p(n) − p∗(n).

System (7) can be transformed into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1) = z(n) exp

{

r(n)
[
1 − z(n)

] − b(n)p(n)

A(n)z(n) + B(n)p(n) + C(n)

}

− z∗(n) exp

{

r(n)
(
1 − z∗(n)

) − b(n)p∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)

}

,

u2(n + 1) = p(n) exp

{

k(n)
b(n)p(n)

A(n)z(n) + B(n)p(n) + C(n)
− D(n) − g1

(
z(n),p(n)

)
}

− p∗(n) exp

{

k(n)
b(n)p∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)
− D(n) − g1

(
z∗(n),p∗(n)

)
}

,

(30)

which can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1) = exp

{

r(n)
(
1 − z∗(n)

) − b(n)p∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)

}

×
{[

1 − r(n)z∗(n) + b(n)A(n)p∗(n)z∗(n)

[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

]

u1(n)

+
[ −b(n)z∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)
+ b(n)B(n)z∗(n)p∗(n)

[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

]

u2(n)

+ F1
(
n,u(n)

)
}

u2(n + 1) = exp

{

k(n)
b(n)z∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)
− D(n) − g1

(
z∗(n),p∗(n)

)
}

×
{[

k(n)b(n)p∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)
+ −k(n)b(n)A(n)z∗(n)p∗(n) + θ(n)A(n)[p∗(n)]2

[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

]

u1(n)

+
[

C(n) + θ(n)B(n)[p∗(n)]2 − k(n)b(n)B(n)z∗(n)p∗(n)

[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

− θ(n)p∗(n)

A(n)z∗(n) + B(n)p∗(n) + C(n)

]

u2(n) + F2
(
n,u(n)

)
}

,

(31)

where ‖Fi(n,u)‖/‖u‖ (i = 1,2) converges to zero as
‖u‖ → 0.

In view of system (7), it follows from (31) that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1) = z∗(n + 1) ×
{[

1 − r(n)z∗(n) + b(n)A(n)p∗(n)z∗(n)

[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

]
u1(n)

z∗(n)

+
[ −b(n)[C(n) + A(n)z∗(n)]
[A(n)z∗(n) + B(n)p∗(n) + C(n)]2

]

u2(n) + F1(n,u(n))

z∗(n)

}

,

u2(n + 1) = p∗(n + 1) ×
{[

k(n)b(n)[C(n)B(n)p∗(n)] + θ(n)A(n)p∗(n)

(C(n) + A(n)z∗(n) + B(n)p∗(n))2

]

u1(n)

+
[

C(n) + −k(n)b(n)B(n)z∗(n)p∗(n) − θ(n)p∗(n)[C(n) + A(n)z∗(n)]
(C(n) + A(n)z∗(n) + B(n)p∗(n))2

]
u2(n)

p∗(n)

+ F2(n,u(n))

p∗(n)

}

.

(32)

Now, we can define the Lyapunov function V by

V
(
u(K)

) = d1

∣
∣
∣
∣
u1(n)

z∗(n)

∣
∣
∣
∣ + d2

∣
∣
∣
∣
u2(n)

p∗(n)

∣
∣
∣
∣,

where dj (j = 1,2) are positive constants given in (i).
By calculating the difference of V along the solu-

tion of system (32) and using (iii), we can obtain

�V ≤ −
{

d1

z∗(n)
− [

d1 − d1r(n)
]

− d2k(n)b(n)[C(n) + B(n)p∗(n)] + [d2θ(n) + d1α(n)]A(n)p∗(n)

[C(n) + A(n)z∗(n) + B(n)p∗(n)]2

}

z∗(n)

∣
∣
∣
∣
u1(n)

z∗(n)

∣
∣
∣
∣

−
{

d2

p∗(n)
− d2k(n)b(n)B(n)z∗(n) − [d1b(n) + d2θ(n)][C(n) + A(n)z∗(n)]

(C(n) + A(n)z∗(n) + B(n)p∗(n))2

}

p∗(n)

∣
∣
∣
∣
u2(n)

p∗(n)

∣
∣
∣
∣

+ d1

∣
∣
∣
∣
F1(n,u(n))

z∗(n)

∣
∣
∣
∣ + d2

∣
∣
∣
∣
F2(n,u(n))

p∗(n)

∣
∣
∣
∣. (33)

In view of (29), we can obtain that

�V ≤ −
{

d1

H ′
1

− [
d1 − d1r(n)

] − d2k(n)b(n)[C(n) + B(n)H ′
3] + [d2θ(n) + d1b(n)]A(n)H ′

3

[C(n) + A(n)H ′
2 + B(n)H ′

4]2

}

z∗(n)

∣
∣
∣
∣
u1(n)

z∗(n)

∣
∣
∣
∣

−
{

d2

H ′
3

− d2k(n)b(n)B(n)H ′
1 − [d1b(n) + d2θ(n)][C(n) + A(n)H ′

1]
[C(n) + A(n)H ′

2 + B(n)H ′
4]2

}

p∗(n)

∣
∣
∣
∣
u2(n)

p∗(n)

∣
∣
∣
∣

+ d1

∣
∣
∣
∣
F1(n,u(n))

z∗(n)

∣
∣
∣
∣ + d2

∣
∣
∣
∣
F2(n,u(n))

p∗(n)

∣
∣
∣
∣. (34)

Since ‖Fi(n,u)‖/‖u‖ (i = 1,2) converges to zero as
‖u‖ → 0, and in view of the assumptions (i) and (ii),
there exists a positive constant δ such that if n is suffi-
ciently large and ‖u(n)‖ < δ,

�V ≤ −c‖u(n)‖
2

< −cδ

2
.

By [20], we see that the trivial solution of (30) is
uniformly asymptotically stable, and so is the solution
(z∗(n),p∗(n)) of (7).

We note that the positive solution (z(n),p(n)) is
chosen in arbitrary way. As the proceeding exactly
in [21], it can be concluded that the positive periodic



Global stability of periodic solutions for a discrete predator–prey system with functional response 515

Fig. 1 Positive periodic solution of system (7). Parameters values can be found in the main text

solutions (z∗(n),p∗(n)) of system (7) is globally sta-
ble.

The proof is completed. �

Example We choose r(n) = 0.05[1 + sin(πn/20)],
b(n) = 0.02 sin(πn/20), A(n) = 0.1 sin(πn/20),
B(n) = 0.01 sin(πn/20), C(n) = 0.3[2 + 0.1 sin(πn/

20)], k(n) = 0.002 sin(πn/20), D(n) = 0.006 sin(πn/

20), θ(n) = 0.01 sin(πn/20) for simulations. In Fig. 1,
we found that system (7) has a positive periodic solu-
tion with T = 40.

5 Conclusions and discussions

In this paper, we present a discrete predator–prey sys-
tem with the Beddington–DeAngelis functional re-
sponse and predator cannibalism. We obtained the ex-
istence conditions of at least one periodic solution by
using the continuation theorem. Moreover, by con-
structing a Lyapunov function, the sufficient condi-
tions, which ensure the global stability of the positive
periodic solutions, are gained. Biological speaking, if
the populations exhibit periodic oscillation, they are
prone to persist for a long time, which are beneficial
for protecting the diversity of species.

All things live in a spatial world where it is a natu-
ral phenomenon that a substance goes from high den-
sity regions to low density regions [22–24]. Moreover,
spatial models can be used to estimate the formation
of spatial patterns on the large scale and guide pol-
icy decisions in the aspect of population conservation

[25, 26]. As a result, dynamics of discrete predator–
prey systems with space need further investigation and
discussion.
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