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Abstract For categorical data, there are three widely-used internal validity func-
tions: the k-modes objective function, the category utility function and the information
entropy function, which are defined based on within-cluster information only. Many
clustering algorithms have been developed to use them as objective functions and find
their optimal solutions. In this paper, we study the generalization, effectiveness and
normalization of the three validity functions from a solution-space perspective. First,
we present a generalized validity function for categorical data. Based on it, we analyze
the generality and difference of the three validity functions in the solution space. Fur-
thermore, we address the problem whether the between-cluster information is ignored
when these validity functions are used to evaluate clustering results. To the end, we
analyze the upper and lower bounds of the three validity functions for a given data
set, which can help us estimate the clustering difficulty on a data set and compare the
performance of a clustering algorithm on different data sets.
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1 Introduction

Clustering is an unsupervised classification technique that is used to group a set of unla-
beled objects into clusters so that the objects in the same cluster have high similarity
but are very dissimilar with objects in other clusters. Many types of clustering algo-
rithms have been developed in the literature (e.g., Jain and Dubes 1988 and references
therein), which have extensive applications in various domains, including information
retrieval, image processing and biological engineering.

Cluster validation is an important part of cluster analysis (Jain andDubes 1988). For
a data set, there are a number of possible partitions. This has led to the use of cluster
validity functions to evaluate the quality of the partitions and select the one that best fits
the data to be as the final clustering result. Generally speaking, there are two types of
cluster validation techniques, i.e., external and internal validity functions (Halkidi et al.
2001; Halkidi and Vazirgiannis 2001; Zhao and Karypis 2004; Steinbach et al. 2000).
Their difference is whether or not the external information (class labels) is used (Xiong
et al. 2009). External validity functions aremainly to compare ormeasure the similarity
between two clustering results. People often use them to measure the clustering output
with the “true” partition determined by the class label information. Internal validity
functions (Liu et al. 2010, 2013) are mainly to evaluate the quality of the internal
structure of a partition without external information. Internal validity functions can be
further divided into two types. The one does not participate in clustering process but
is used to evaluate clustering results and determine the parameters, e.g., the number
of clusters k. The other can be as objective functions and help users find out the best
clustering result in clustering process. The focus of this paper will be on the second
type.

In the literature (e.g., Dunn 1973; Berry and Linoff 1996; Xiong et al. 2009; Wu
et al. 2010; Yu 2005 and references therein), there have been considerable research
efforts on studying the cluster validity functions for numerical data. However, further
investigation is needed to develop validity functions for clustering categorical data,
where records are made up of nonnumerical data, since this task is of great practical
relevance in several fields ranging from statistics to psychology (Aggarwal et al. 2002;
Barbara and Jajodia 2002; Baxevanis and Ouellette 2001; Gowda and Diday 1991;
Wrigley 1985). Due to the lack of intuitive geometric properties between categorical
values, the techniques used in cluster validation for numerical data are not suitable
for categorical data (Huang 1997; Chen et al. 2008; Chen and Liu 2005, 2009). For
categorical data, there are three well-known internal validity functions: the k-modes
objective function (Huang 1997), the category utility function (Gluck andCorter 1985)
and the information entropy function (Barbara et al. 2002).Many algorithms have been
developed to use these validity functions as objective functions and find their (local)
optimal solutions. The brief reviews of these functions and relevant algorithms can be
found in Sect. 2. While the above functions are used to evaluate the clustering results,
the three issues are needed to discuss:

(1) How do we discover generality and difference of these validity functions? The
different validity functions are often defined based on the different assumptions.
Thus, these validity functions for a given clustering result maybe have the same
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or different evaluation results. Therefore, we need to analyze the generality and
difference of these validity functions. The obtained difference can help users
select the most suitable function for cluster analysis. The obtained generality
can promote the mutual learning of clustering algorithms with different objective
functions.

(2) Is the between-cluster information ignored when these validity functions are used
to evaluate clustering results? A good cluster result should have high within-
cluster similarity and low between-cluster similarity. However, the three validity
functions are based on the within-cluster information only. Therefore, we need to
discuss the relation between the within-cluster and between-cluster information
in using these validity functions to evaluate the clustering results.

(3) Howdowe normalize these validity functions for a given data set?There should be
two application scenarios of the validity functions,whichwas introducedbyLuo et
al. (2009). First, the validity functions can be used to compare the performances
of different clustering algorithms in a given data set. In this case, the validity
functions mainly help users select the one that best fits the data set from a large
number of clustering algorithms. Second, the validity functions can be used to
compare the performances of a specific clustering algorithm in different data sets.
In this case, the validity functions mainly help a specific clustering algorithm find
out the data sets that fit it. For example, in order to analyze the effects of the data
characteristics (e.g., the dimensionality, scalability and distribution of the data) on
the performance of a clustering algorithm, we often sample several data sets with
different characteristics to respectively cluster each data set and compare their
clustering results. However, different data characteristics often lead to different
clustering difficulty. The larger the clustering difficulty on the data set is, the
more possible it is that a clustering algorithm produces a clustering result with
the poorer values of the validity functions. When comparing the performance of
a clustering algorithm on different data sets, if we judge its effectiveness by only
the values of the validity functions, the evaluation may be biased. Therefore, we
need the normalization of the validity functions to obtain the relative position
of each validity function value between the minimal and maximal values while
a data set is provided. However, a critical challenge for the normalization is to
obtain the ranges of the optimal solutions of the validity functions for a given data
set, since the minimization or maximization of these functions in the relevant
constraints is a class of nonconvex optimization problems whose solutions are
unknown.

Therefore, we will address the three issues from a solution-space perspective. The
major contributions are as follows:

(1) A generalized validity function is presented for evaluating the clustering results of
categorical data. Furthermore, we apply the generalized validity function to ana-
lyze the generality and difference of the k-modes objective function, the category
utility function and the information entropy function in the solution space.

(2) Due to the fact that the three existing validity functions are only based on the
within-cluster information, a theoretical analysis is provided to answer whether
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these validity functions can effectively evaluate the clustering results by using the
within-cluster information only.

(3) A theoretical method is provided to obtain the upper and lower bounds of the three
validity functions for a given data set. Furthermore, we present a normalization
method based on the obtained bounds to reduce the effects of data characteristics
on the performance of the clustering algorithm.

The organization of this paper is as follows: In Sect. 2, we review the notations of
categorical data and the three cluster validity functions. Section 3 introduces a gen-
eralized validity function and discusses the relations of the three functions. Section 4
shows the effectiveness of the within-cluster information in evaluating the cluster-
ing results. In Sect. 5, we discuss the normalization issue for the validity functions.
In Sect. 6, the experimental results illustrate the effectiveness of the above analysis.
Finally, concluding remarks are given in Sect. 7.

2 Preliminaries

In this section, we will firstly introduce the notations of categorical data and then
review the three widely-used validity functions for categorical data.

2.1 Categorical data

Huang (1997) provided the notations of categorical data which were introduced as
follows: LetU = {x1, x2, . . . , xn} be a set of n objects and A = {a1, a2, . . . , am} be a
set of m attributes which are used to describeU . Each attribute a j describes a domain
of values, denoted by Daj , associated with a defined semantic and a data type. Here,
only consider two general data types, numerical and categorical, and assume other
types used in database systems can be mapped to one of these two types. The domains
of attributes associated with these two types are called numerical and categorical,
respectively. A numerical domain consists of real numbers. A domain Daj is defined

as categorical if it is finite and unordered, i.e., Daj = {a(1)
j , a(2)

j , . . . , a
(n j )

j } where n j

is the number of categories of attribute a j for 1 ≤ j ≤ m. For any 1 ≤ p ≤ q ≤ n j ,

either a(p)
j = a(q)

j or a(p)
j �= a(q)

j . For 1 ≤ i ≤ n, an object xi ∈ U is represented as a
vector [xi1, xi2, . . . , xim], where xi j ∈ Daj , for 1 ≤ j ≤ m. If each attribute in A is
categorical, U is called a categorical data set.

2.2 Cluster validity functions

(1) The k-modes objective function was proposed by Huang (1997) which is an exten-
sion of the k-means objective function (MacQueen 1967) by using a simple matching
dissimilarity measure for categorical objects, modes instead of means for clusters.
The objective function attempts to minimize the dispersion of objects from the center
in each cluster. The k-modes algorithm begins with an initial set of cluster centers
and uses the alternating minimization method to obtain a local minimal solution for
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the objective function. Several modified k-modes algorithms have been developed in
the literature (Huang and Ng 1999; He et al. 2005; San et al. 2004; Ng et al. 2007;
Huang et al. 2005; Bai et al. 2011, 2013). The k-modes objective function is defined
as follows (Huang 1997):

F(W, Z) =
k∑

l=1

n∑

i=1

wli d(zl , xi ) (1)

subject to

⎧
⎪⎪⎨

⎪⎪⎩

wli ∈ {0, 1}, 1 ≤ l ≤ k, 1 ≤ i ≤ n,

∑k
l=1 wli = 1, 1 ≤ i ≤ n,

0 <
∑n

i=1 wli < n, 1 ≤ l ≤ k,

(2)

where

• n is the number of objects in U , k(≤ n) is a known number of clusters;
• W = [wli ] is a k-by-n {0, 1} matrix, wli indicates whether xi belongs to the lth
cluster, wli = 1 if xi belongs to the lth cluster and 0 otherwise;

• Z = {z1, z2, . . . , zk} ⊆ R, where R = Da1 × Da2 × · · · × Dam and zl = [zl1,
zl2, . . . , zlm] is the lth cluster prototype with categorical attributes a1, a2, . . . , am ;

• d(zl , xi ) is the simple matching dissimilarity measure between object xi and the
prototype zl of the lth cluster which is defined as

d(zl , xi ) =
m∑

j=1

δ(zl j , xi j ), (3)

where

δ(zl j , xi j ) =
{
1, zl j �= xi j ,

0, zl j = xi j .
(4)

(2) The category utility functionwas introduced by Gluck and Corter (1985), which
attempts to maximize the probability that two data objects in the same cluster obtain
the same attribute values. This function has been applied in Cobweb (Fisher 1987),
a tool for incremental clustering with categorical features, and related systems. In
addition, the original framework has been expanded to both nonincremental clustering
and mixed scale data. For instance, Mirkin (2001) provided extensions of the scoring
function to situations with differently standardized andmixed scale data.CU is shown
in the following equation (Gluck and Corter 1985):

CU (W ) =
k∑

l=1

|cl |
n

m∑

j=1

n j∑

q=1

[
P

(
a(q)
j |cl

)2 − P
(
a(q)
j

)2]
, (5)
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subject to the same conditions as those in (2), where P(a(q)
j |cl) = |cl jq |

|cl | , |cl jq | =
∑n

i=1,xi j=a(q)
j

wli , |cl | = ∑n
i=1 wli , P(a(q)

j ) = |a(q)
j |
n , |a(q)

j | = |{xi |xi j = a(q)
j ,

xi ∈ U }| and cl is the lth cluster.
(3) The information entropy function Elog was proposed (Barbara et al. 2002),

which uses the information-theoretic principles and the notion of entropy to measure
the clustering results. The basic intuition is that groups of similar objects have lower
entropy than those of dissimilar ones. Several algorithms have been developed (Andrit-
sos et al. 2004; Barbara et al. 2002; Chen and Liu 2005, 2009), which are aimed at
finding the optimal data partition that minimizes the information entropy function.
Besides, Li et al. (2004) introduced the relations of the information entropy function,
probabilistic mixture models and dissimilarity coefficients. The information entropy
function is defined as follows (Barbara et al. 2002):

Elog(W ) = −
k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

P
(
a(q)
j |cl

)
log P

(
a(q)
j |cl

)
, (6)

subject to the same conditions as those in (2).

3 The generalization issue

3.1 The generalized validity function

Before discussing generalization of the validity functions for categorical data,we intro-

duce a set of variables V =
[
v

(q)
l j

]
that is a three-dimensional

(
k × m × maxmj=1 n j

)

array. v(q)
l j is the representability of the qth categorical value of the j th attribute in the

lth cluster, for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j . The larger v
(q)
l j is, the more repre-

sentability the categorical value a(q)
j has in the lth cluster.We constrain

∑n j
q=1 v

(q)
l j = 1

and 0 ≤ v
(q)
l j ≤ 1(1 ≤ q ≤ n j ) for each attribute a j (1 ≤ j ≤ m). For each cluster

(1 ≤ l ≤ k), we use vl = {vl1, vl2, . . . , vlm}, where vl j = {v(1)
l j , v

(2)
l j , . . . , v

(n j )

l j }, to
summarize and characterize the lth cluster. For a categorical data set, V is a clustering
model which can be used to predict the likelihood of an unseen object being a cluster
member. If V has good predictive ability, it is thought to be good.

A clustering result should be composed of two parts: W (which is defined in (2))
and V . While analyzing the effectiveness of a clustering result, we need to evaluate not
only the effectiveness ofW but also that of V . Therefore, we will define a generalized
validity function Fg(W, V ) whose values depend on the two set of variables W and
V . The function Fg(W, V ) should have the following properties:

• Given V , a good W should be possible to make objects within clusters have very
high similarity.
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Fig. 1 An example of an
attribute distribution in the
cluster, where each bar
corresponds to each categorical
value
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• Given W , a good V should be possible to objectively reflect the characteristics of
each cluster.

Using the function Fg(W, V ) to find the best clustering result on a data set is like a
dynamic game betweenW and V . The game scenario is described as follows:When V
is given, it is wished thatW can make each object belong to a cluster whose vl has the
best representative to the object. That can enhance the purity within clusters. When
W is given, V should not blindly overestimate the purity within clusters but stimulate
more categorical values to contribute to the identification of clusters and effectively
avoid losing information. Let us consider the following example to demonstrate the
problem. We suppose that there is a categorical attribute a j which has four categorical
values: ‘A’, ‘B’, ‘C’ and ‘D’, and a cluster cl which contains 40 ‘A’, 35 ‘B’, 20 ‘C’ and
5 ‘D’ in attribute a j . Figure 1 shows the categorical attribute distribution in cluster cl .
If we only select ‘A’ from the attribute domain to represent cluster cl , other 60%
categorical values will be ignored. Therefore, we should use more categorical values
to identify the cluster.

The generalized validity function and optimization problem can be written as fol-
lows:

min Fg(W, V ) =
k∑

l=1

n∑

xi∈cl
dg(xi , cl) + T

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

(
v

(q)
l j

)2
(7)

subject to

⎧
⎪⎨

⎪⎩

wli ∈ {0, 1},
k∑

l=1
wli = 1, 1 <

∑n
i=1 wli < n,

v
(q)
l j ∈ [0, 1], ∑n j

q=1 v
(q)
l j = 1,

(8)

where T (≥ 0) is a parameter and dg(xi , cl) is a dissimilarity measure between the
object xi and the lth cluster cl defined as follows:
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dg(xi , cl) =
m∑

j=1

φa j (xi , cl) (9)

with

φa j (xi , cl) = 1 − v
(r)
l j , i f xi j = a(r)

j , 1 ≤ r ≤ n j . (10)

Here, φa j (xi , cl) depends on v
(r)
l j , which is the representability of a

(r)
j in the lth cluster.

The larger v
(r)
l j is, the more representability a(r)

j has in the lth cluster, the smaller the

dissimilarity between xi and cl in the attribute a j is. When the representability of a(r)
j

is 1, φa j (xi , cl) = 0.

In the generalized validity function (7),
∑k

l=1
∑

xi∈cl dg(xi , cl) is the sum of the

within-cluster dispersions thatwewant tominimize. T
∑k

l=1 |cl | ∑m
j=1

∑n j
q=1

(
v

(q)
l j

)2

is used to stimulate more categorical values to contribute to the identification of clus-
ters. In the following, we will analyze how the second term in (7) works. Let

� = T
k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

(
v

(q)
l j

)2

which are nonnegative and independent. GivenW , minimizing (maximizing) the quan-
tity is equivalent to minimizing (maximizing) each inner sum.Wewrite the l, j th inner
sum (1 ≤ l ≤ k and 1 ≤ j ≤ m) as

ψl j = |cl |
n j∑

q=1

(
v

(q)
l j

)2
. (11)

Since ψl j is a strictly convex function, the K–K–T necessary optimality condition is

also sufficient. Thus, v̂l j is an optimal solution ofminψl j subject to
∑n j

q=1 v
(q)
l j −1 = 0

if and only if there is some λ̂ together with v̂l j satisfying the following system of
equations:

∇vl j ϕ̃(vl j , λ) = 0,

1 −
n j∑

q=1

v
(q)
l j = 0, (12)

where

ϕ̃(vl j , λ) = |cl |
n j∑

q=1

(
v

(q)
l j

)2 + λ

⎛

⎝
n j∑

q=1

v
(q)
l j − 1

⎞

⎠ . (13)
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Note that

∂ϕ̃(vl j , λ)

∂v
(q)
l j

= 2|cl |
(
v

(q)
l j

)
+ λ, 1 ≤ q ≤ n j . (14)

From (12) and (14), we obtain that

v̂
(q)
l j = 1

n j
, 1 ≤ q ≤ n j . (15)

The above analysis shows that, when v
(q)
l j are the same for 1 ≤ q ≤ n j , ψl j achieves

its minimum value given by

min

n j∑

q=1

(
v

(q)
l j

)2 = 1

n j
.

We also know that

n j∑

q=1

(
v

(q)
l j

)2 ≤
⎛

⎝
n j∑

q=1

v
(q)
l j

⎞

⎠
2

= 1.

If only one of the v
(q)
l j for 1 ≤ q ≤ n j is nonzero, ψl j achieves the maximum value,

i.e.,

max

n j∑

q=1

(
v

(q)
l j

)2 = 1.

Note that the smaller
∑n j

q=1

(
v

(q)
l j

)2
is, the more categories the weights are assigned

to. While giving W , we wish to minimize � to make more categorical values identify
clusters.

Therefore, the two terms
∑k

l=1
∑n

xi∈cl dg(xi , cl) and T
∑k

l=1 |cl | ∑m
j=1

∑n j
q=1(

v
(q)
l j

)2 are integrated to the generalized validity function so that we can simulta-
neously minimize the within cluster dispersion and stimulate more categorical values
to contribute to the identification of clusters.

The parameter T is used to balance which part plays a more important role in the
minimization process of (7). The larger T is, the more the last term contributes in the
optimization process and the smoother or fuzzier of the resulting V is. However, the
values of T should not be too large. The reason is that when T is very large so that
each element in vl j is close to 1/n j . Next, we will discuss how to set the parameter T .
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Let

ϑl j =
n j∑

q=1

|cl jq |
(
1 − v

(q)
l j

)
+ T |cl |

n j∑

q=1

(
v

(q)
l j

)2

for 1 ≤ l ≤ k, 1 ≤ j ≤ m. Then

Fg(W, V ) =
k∑

l=1

m∑

j=1

ϑl j . (16)

Thus, given W = Ŵ , minimizing the function is equivalent to minimizing each ϑl j .
Since ϑl j is a strictly convex function, the well-known K–K–T necessary optimization
condition is also sufficient. Therefore, v̂l j is an optimal solution if and only if there
exists λ̂ together with v̂l j satisfying the following system of equations:

∇vl j ϑ̃l, j (vl j , λ) = 0,
n j∑

q=1

v
(q)
l j = 1, (17)

where

ϑ̃l j (vl j , λ) =
n j∑

q=1

|cl jq |
(
1 − v

(q)
l j

)
+ T |cl |

n j∑

q=1

(
v

(q)
l j

)2 + λ

⎛

⎝
n j∑

q=1

v
(q)
l j − 1

⎞

⎠ . (18)

We have

∂θ̃l, j (vl j , λ)

∂v
(r)
l j

= 2T |cl |v(r)
l j − |cl jr | + λ, 1 ≤ q ≤ n j . (19)

From (17) and (19), we obtain that Fg is minimized iff

v
(r)
l j = 1

2T

|cl jr |
|cl | + 2T − 1

2Tn j
(20)

for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j .
According to (20), we can rewrite

v
(r)
l j = f

( |cl jr |
|cl |

)
= a

|cl jr |
|cl | + b, (21)

where a = 1
2T and b = 2T−1

2Tn j
. We can see that v

(r)
l j is linear related to

|cl jr |
|cl | . If the

relative frequency of a categorical value in a cluster is large, its representability in the
cluster is high. Here, a and b are constants when given T . While setting T = 1/2,
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v
(r)
l j = |cl jr |

|cl | , (22)

which reduces the effect of a and b.

3.2 The relation of the validity functions

We know

min Fg(W, V ) = min
V

min
W

Fg(W, V ) = min
W

min
V

Fg(W, V ). (23)

Therefore, let Q(W ) = argmin
V

Fg(W, V ) and G(W ) = Fg(W, Q(W )). The opti-

mization problem of the generalized validity function can be rewritten as follows:

min Fg(W, V ) = min
W

G(W ). (24)

While obtaining Q(W ) according to (22) and plug it into Fg(W, V ), we have

G(W ) = min
V

k∑

l=1

m∑

j=1

n j∑

q=1

|cl jq |
(
1 − v

(q)
l j

)
+ 1

2

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

(
v

(q)
l j

)2

=
k∑

l=1

m∑

j=1

n j∑

q=1

|cl jq |
(
1 − |cl jq |

|cl |
)

+ 1

2

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

=
k∑

l=1

m∑

j=1

n j∑

q=1

|cl jq |−
k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

+ 1

2

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

= mn − 1

2

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

. (25)

According to (5), we rewrite the category utility function as follows:

CU (W ) = 1

n

k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

− P, (26)

where

P = 1

n

k∑

l=1

m∑

j=1

n j∑

q=1

P
(
a(q)
j

)2
.

Given a data set U , P is a constant, which means that maximizing CU is equal to
maximizing the first term.
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From (25) and (26), we obtain

min
V

Fg(W, V ) = mn − n

2
(CU (W ) + P) . (27)

Remark Equation (27) tells us that when setting T = 1/2, minimizing Fg(W, V ) is
equivalent to maximizing CU (W ).

Next, we will discuss the relation between the generalized validity function and the
information entropy function. Liang et al. (2002) applied the complementary entropy
to measure the uncertainty of information tables and showed the equivalence of the
complementary entropy and the Shannon entropy. Thus, we will replace the Shan-
non entropy with the complementary entropy. The information entropy function is
redefined as follows:

Ec(W ) =
k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

|cl jq |
|cl |

(
1 − |cl jq |

|cl |
)

. (28)

We have

Ec(W ) = mn −
k∑

l=1

|cl |
m∑

j=1

n j∑

q=1

( |cl jq |
|cl |

)2

. (29)

From (25) and (29), we obtain

min
V

Fg(W, V ) = 1

2
Ec(W ) + 1

2
mn. (30)

Remark Equations (27) and (30) tell us that when setting T = 1/2, minimizing
Fg(W, V ) is equivalent to maximizing CU (W ) and minimizing Ec(W ).

While we restrict v
(q)
l j ∈ {0, 1} for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j ,

∑n j
q=1

(
v

(q)
l j

)2
is equal to 1. Thus, the generalized validity function becomes

Fg(W, V ) =
k∑

l=1

m∑

j=1

⎡

⎣
n j∑

q=1

|cl jq |
(
1 − v

(q)
l j

)
+ 1

2
|cl |

⎤

⎦

=
k∑

l=1

m∑

j=1

(|cl | − |cl jr |
) + 1

2
mn, (31)

where 1 ≤ r ≤ n j .
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According to (31), we know that given W = Ŵ , F is minimized iff

v
(q)
l j =

⎧
⎨

⎩
1, |cl jr | = n j

max
q=1

|cl jq |,
0, otherwise.

(32)

for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ r ≤ n j .
When V is computed by (32), we find that for each attribute, only one categorical

value with the relatively maximum frequency has the representability in the cluster.
This means that (32) is equivalent to the technique for computing cluster representa-
tives in the original k-modes algorithm. The dissimilarity measure dg is equivalent to
the simple matching dissimilarity measure, i.e.,

dg(xi , cl) = d(xi , zl). (33)

Remark If v
(q)
l j ∈ {0, 1} for 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j , the generalized

validity function is equivalent to the k-modes objective function, i.e.,

min
V

Fg(W, V ) = min
Z

F(W, Z) + 1

2
mn. (34)

Thus, we have

min
V

Fg(W, V ) ≤ min
Z

F(W, Z) + 1

2
mn. (35)

This indicates that if we assume that the optimal solution of Fg is the best clustering
result, the optimal solution obtained by the k-modes algorithm can not guarantee to
be the best clustering result.

By the above analysis, we know that while setting T = 1/2 for Fg , the relations
can be obtained as follow:

G(W ) = min
V

Fg(W, V ) = mn − n

2
(CU (W ) + P)

= 1

2
Ec(W ) + 1

2
mn ≤ min

Z
F(W, Z) + 1

2
mn. (36)

Equation (36) tells us that the category utility function is equivalent to the information
entropy function in evaluating the clustering results, and the obtained optimal solution
of the k-modes objective function on a data set is the upper bound of the optimal
solution of the category utility function.

4 The effectiveness issue

Generally speaking, a good clustering result should have the following two character-
istics:
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• The within-cluster similarity is high.
• The between-cluster similarity is low.

However, the k-modes objective function, the category utility function and the infor-
mation entropy function are based on the within-cluster information only, which are
used to measure the within-cluster compactness. The between-cluster information,
i.e., the between-cluster separation, is not considered. Therefore, we need analyze the
effectiveness of these validity functions and address whether only using the within-
cluster information can effectively evaluate the clustering results. In 1973, Duda and
Hart (1973) showed that the total covariance matrix ST (which is fixed given the data)
is a combination of the within class covariance matrix SW and the between class
covariance matrix SB , i.e.,

ST = SW + SB, (37)

where ST = ∑n
i=1(xi − x̄)

′
(xi − x̄), SW = ∑k

l=1
∑

xi∈cl (xi − al)
′
(xi − al),

SB = ∑k
l=1 |cl |(al − x̄)

′
(al − x̄), x̄ = ∑n

i=1 xi/n and al = ∑
xi∈cl xi/|cl |. The

conclusion (37) is mainly aimed at the numerical data clustering. Besides, in (37), the
between class covariance matrix SB does not directly measure the difference between
any two clusters but measure the difference between each cluster center and the center
of the data set. The tr(SB) value dose not increase as the dissimilarity between clusters
increases. Thus, SB can not effectively reflect the difference between the distributions
of any two clusters.

Next, we will analyze the effectiveness of the k-modes objective function, the
category utility function and the information entropy function, and discuss the relation
between them and the between-cluster information. According to Sect. 3, we have
known the relation of the three validity functions. Thus, we will use the function
G(W )(T = 1/2) instead of them in the analysis below.

We have the sum of all pairwise dissimilarity of data objects in a data set X as
follows:

TD (X) =
n∑

i=1

n∑

j=1

d(xi , x j )

=
k∑

l=1

∑

xi∈cl

∑

x j∈cl
d(xi , x j ) + 2

∑

1≤l<h≤k

∑

xi∈cl

∑

x j∈ch
d(xi , x j ),

where the functiond is the simplematching dissimilaritymeasurementioned in Sect. 2.
We know that TD (X) is a constant for a given data set.

We have

∑

xi∈cl

∑

x j∈cl
d(xi , x j ) =

∑

xi∈cl

∑

x j∈cl

m∑

p=1

δ(xip, x jp)

=
m∑

p=1

∑

xi∈cl

∑

x j∈cl
δ(xip, x jp)
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=
m∑

p=1

n j∑

q=1

|clpq |
(|cl | − |clpq |

)

= m|cl |2 −
m∑

p=1

n p∑

q=1

|clpq |2. (38)

From (38), we know that

G(W ) = 1

2

k∑

l=1

1

|cl |
∑

xi∈cl

∑

x j∈cl
d(xi , x j ) + 1

2
mn. (39)

Furthermore, we can show that

2
∑

xi∈cl

∑

x j∈ch
d(xi , x j ) = 2

∑

xi∈cl

∑

x j∈ch

m∑

p=1

δ(xip, x jp)

= 2
m∑

p=1

∑

xi∈cl

∑

x j∈ch
δ(xip, x jp)

= 2
m∑

p=1

n j∑

q=1

|clpq |
(|ch | − |chpq |

)

= 2m|cl ||ch | − 2
m∑

p=1

ns∑

q=1

|clpq ||chpq |

= |cl ||ch |
⎛

⎝m −
m∑

p=1

ns∑

q=1

|clpq |2
|cl |2

⎞

⎠

+ |cl ||ch |
⎛

⎝m −
m∑

p=1

ns∑

q=1

|chpq |2
|ch |2

⎞

⎠

+ |cl ||ch |
m∑

p=1

ns∑

q=1

|clpq |2
|cl |2 + |cl ||ch |

m∑

p=1

ns∑

q=1

|chpq |2
|ch |2

− 2
m∑

p=1

ns∑

q=1

|clpq ||chpq |

= |ch |
|cl |

∑

xi∈cl

∑

x j∈cl
d(xi , x j ) + |cl |

|ch |
∑

xi∈ch

∑

x j∈ch
d(xi , x j )

+ |cl ||ch |
m∑

s=1

ns∑

q=1

( |clsq |
|cl | − |chsq |

|ch |
)2

. (40)
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According to (39) and (40), we have

T D(X) = nG(W ) − mn2

2
+ S(W ), (41)

where

S(W ) =
∑

1≤l<h≤k

|cl ||ch |
m∑

s=1

ns∑

q=1

( |clsq |
|cl | − |chsq |

|ch |
)2

. (42)

From the above equations, we can see that G(W ) is inversely proportional to S(W ).
Next, we will analyze whether S(W ) contains the between-cluster information.
According to (22), we can rewrite S(W ) as follows.

S(W, V ) =
∑

1≤l<h≤k

|cl ||ch |
m∑

s=1

ns∑

q=1

(
v

(q)
ls − v

(q)
hs

)2
, (43)

subject to the same conditions as those in (8). In this equation, we can see that∑m
s=1

∑ns
q=1

(
v

(q)
ls − v

(q)
hs

)2 takes use of the difference between the clustering models
of clusters cl and ch to reflect the between-cluster separation. For the two clusters, the
closer the representability of each categorical value in cl is to that in ch , the larger the
similarity between cl and ch is. |cl ||ch | is the weight of the two-clusters separation.
Let us consider the following example to demonstrate how the function S reflects the
between-cluster separation. Assume that there are three clusters (c1, c2 and c3) and
an attribute “color”(including three categorical values: ‘Red’, ‘Yellow’ and ‘Blue’).
Table 1 shows the representability of these categorical values in different clusters.
According to Table 1, we can see that the representability of the categorical values in
c1 is very close to c2, compared to that in c3. Thus, in terms of the attribute “color”,
the similarity between c1 and c2 is higher than c2 and c3.

According to the above analysis, we see that the function S can effectively reflect
the difference between clusters. For a clustering result, the larger its function S value
is, the larger its between-cluster separation is. According to (41), we also know that
minimizing G(W ) is equivalent to maximizing S(W ), due to the fact that T D(X)

is a constant for a given data set. This tells us that while using the function G to
obtain a clustering result with the high within-cluster similarity, we don’t ignore the
between-cluster separation. The obtained result has both high within-cluster similarity
and between-cluster dissimilarity.

Table 1 The representability of
these categorical values in
different clusters

Red Yellow Blue

c1 0.7 0.1 0.2

c2 0.75 0 0.25

c3 0.1 0.8 0.1
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Fig. 2 Comparing clusterings of different data sets

5 The normalization issue

According to Sect. 3, we have known the relation of the k-modes objective function,
category utility function and information entropy function. Therefore, we will make
use of the function G(W )(T = 1/2) to discuss the normalization issue of the three
validity functions. Different data sets have different data characteristics, and thus
have different clustering difficulties. In general, while we select a validity function to
evaluate a clustering result, the more it is difficult in clustering the data set, the more
it is possible that a clustering algorithm generates a clustering result with a bad value.
If we judge its effectiveness by only the value of the validity function, the evaluation
may be biased. Let us consider the following example to demonstrate the problem.We
suppose that there are two data sets: X and Y. A specifical algorithm is used to cluster
X and Y and obtain the clustering results Wq

X and Wq
Y , respectively. minG(WX ) and

maxG(WX ) are the minimum and maximum values of the validity function G on the
data set X . minG(WY ) and maxG(WY ) are the minimum and maximum values of
the validity function G on the data set Y . According to Fig. 2, we see that G(Wq

X ) is
equal to G(Wq

Y ). However, this doesn’t illustrate that the specifical algorithm has the

same performance on the data sets X and Y . We can find that
G(Wq

X )−minG(WX )

maxG(WX )−minG(WX )
is

smaller than
G(Wq

Y )−minG(WY )

maxG(WY )−minG(WY )
. This indicates that the performance of the algorithm

on X is better than on Y .
Thus, normalization is critical when it is used to compare clusterings of differ-

ent data sets by a specific clustering algorithm. It represents the relative position
of the original function value between the minimal and maximal values. However,
the minimization and maximization of the function G in the constraints in (2) are
unknown. Therefore, we will analyze the lower G(W ) and upper G(W ) bounds
of the function G and use them to compute NG(W ), instead of the minimal and
maximal solutions of the function G(W ). The normalized function G is defined as
follows:

NG(W ) = G(W ) − G(W )

G(W ) − G(W )
. (44)

In the following, we will introduce how to obtain the bounds of the function G for a
data set.
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5.1 The lower bound of the function G

Let S = [si j ] be a n by n matrix, where si j = m − d(xi , x j ) and H = [hil ] be a n by
k matrix, where

hil =
{ 1√|cl | , xi ∈ cl ,

0, otherwise.
(45)

We have

1

|cl |
∑

xi∈cl

∑

x j∈cl
d(xi , x j ) = m|cl | − h

′
l Shl .

Thus,

G(W ) = 1

2

k∑

l=1

1

|cl |
∑

xi∈cl

∑

x j∈cl
d(xi , x j ) + 1

2
mn

= mn − 1

2

k∑

l=1

n∑

i=1

n∑

j=1

si j hilh jl

= mn − 1

2
tr(H

′
SH). (46)

According to (46), we know that minimizing G(W ) becomes maximizing tr(H
′
SH).

If we relax the restriction that hi j must take discrete values, and allow the entries of
the matrix H to take arbitrary real values. Then the relaxed problem becomes:

max tr(H
′
SH)

subject to

H
′
H = I.

Let eig(S) = {λ1(S), λ2(S), . . . , λn(S)} be the n eigenvalues of thematrix S. These
eigenvalues are assumed to be in decreasing order, that is, λ1(S) ≥ λ2(S) ≥ · · · ≥
λn(S)where λl(S) denotes the lth largest eigenvalue of S. Therefore, the optimal value
of the function G satisfies the lower bound

G(W ) = nm − 1

2

k∑

l=1

λl(S) ≤ G(W ). (47)

According to (36) and (47), we can directly obtain the lower bounds of the function
CU , Ec and F by the value of G.
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Table 2 The data sets from UCI
Data set Objects Attributes Classes

Soybean 47 35 4

Lung cancer 32 56 3

Zoo 101 16 7

Hepatitis 155 19 2

Heart disease 303 8 2

Voting 435 16 2

Credit approval 690 8 2

Dermatology 366 33 6

Breast cancer 699 9 2

Letters (E,F) 1,543 16 2

DNA 3,190 60 3

Mushroom 8,124 22 2

Table 3 Notation for the
contingency table for comparing
two partitions

C\P p1 p2 · · · p
k′ Sums

c1 n11 n12 · · · n
1k′ b1

c2 n21 n22 · · · n
2k′ b2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

ck nk1 nk2 · · · n
kk′ bk

Sums d1 d2 · · · d
k′

5.2 The upper bound of the function G

We can rewrite the function G as follows:

G(W ) = mn − 1

2

k∑

l=1

m∑

j=1

n j∑

q=1

f 2l jq
yl

(48)

where

fl jq = |cl jq |, 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j ,

yl = |cl |, 1 ≤ l ≤ k.

According to (48), we know that maximizing G(W ) becomes minimizing the second
term. If we relax the restriction that fl jq and yl must take discrete values, then the
relaxed problem becomes:

min
k∑

l=1

m∑

j=1

n j∑

q=1

f 2l jq
yl

(49)
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Fig. 3 On the soybean data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑k
l=1 fl jq = |a(q)

j |, 1 ≤ j ≤ m, 1 ≤ q ≤ n j ,

∑n j
q fl jq − yl = 0, 1 ≤ l ≤ k, 1 ≤ j ≤ m,

∑k
l=1 yl = n,

fl jq ≥ 0, yl > 0, 1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j .

(50)

From (49) and (50), we know that the relaxed problem is an linearly constrained
convex programming problem. We can obtain the minimum solutions, f̂l jq and ŷl for
1 ≤ l ≤ k, 1 ≤ j ≤ m, 1 ≤ q ≤ n j , by the existing optimization algorithms which
are available from the Matlab software package. Therefore, the value of the function
G satisfies the upper bound
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Fig. 4 On the lung cancer data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

G(W ) ≤ G(W ) = mn − 1

2

k∑

l=1

m∑

j=1

n j∑

q=1

f̂ 2l jq
ŷl

. (51)

According to the relation of the functionsCU , Ec andG, we can directly obtain the
upper bound of CU and Ec by the upper bound of the function G. However, since the
k-modes objective function F is not equivalent to the function G, we need to discuss
how to obtain the upper bound of the function F .

For the k-modes objective function F , we have

min
Z

F(W, Z) =
k∑

l=1

m∑

j=1

(
|cl | − n j

max
q=1

|cl jq |
)

= mn −
k∑

l=1

m∑

j=1

n j
max
q=1

|cl jq |. (52)
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Fig. 5 On the zoo data, a the k-modes objective function F values against the ARI values, b the negative
category utility function −CU values against the ARI values, c the k-modes objective function F values
against the NMI values, d the negative category utility function −CU values against the NMI values

According to (52), we know that maximizing minZ F(W, Z) is equivalent to mini-
mizing

∑k
l=1

∑m
j=1 max

n j
q=1 |cl jq |. Hence, we can transform the computation of the

upper bound of minZ F(W, Z) into solving the following problem:

min
k∑

l=1

m∑

j=1

n j
max
q=1

fl jq (53)

subject to the same constraints in (50). Because of
∑n j

q=1
fl jq
yl

= 1 for 1 ≤ l ≤ k and
1 ≤ j ≤ m, we know

n j∑

q=1

(
fl jq
yl

)2

≤ n j
max
q=1

fl jq
yl

. (54)

Therefore, we have
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Fig. 6 On the hepatitis data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

k∑

l=1

m∑

j=1

n j∑

q=1

f 2l jq
yl

≤
k∑

l=1

m∑

j=1

n j
max
q=1

fl jq . (55)

From (55), we see that the upper bound of the k-modes objective function can be
also obtained by using the minimum solution of the problem (49).

6 Experimental analysis

In this section, we will use 12 data sets from the UCI Machine Learning Repository
(UCI 2012) Kindly provide link (shown in Table 2). In our experiments, we apply the
k-modes algorithm for clustering the input data sets and set the number of clusters
k as the “true” cluster number for each given data set. Furthermore, we employ the
adjusted rand index (ARI) and the normalized mutual information (NMI) (Yang 2004)
to test the effectiveness of the above validity functions. BothARI andNMI are external
validity functions which attempts to measure similarity between the clustering results
and the “true” partition determined by the class label information. Given a set U
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Fig. 7 On the heart disease data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

of n data objects and two groupings (e.g. clusterings) of these objects, namely C =
{c1, c2, . . . , ck} and P = {p1, p2, . . . , pk′ }, the overlappings betweenC and P can be
summarized in a contingency table where ni j denotes the number of common objects
of groups ci and pl j : ni j = |ci ∩ pl j |.

The adjusted rand index is defined as AdjustedIndex = Index−ExpectedIndex
MaxIndex−ExpectedIndex , more

specifically,

ARI =
∑

i j

(ni j
2

) −
[∑

i

(bi
2

) ∑
j

(d j
2

)]
/
(n
2

)

1
2

[∑
i

(bi
2

) + ∑
j

(d j
2

)] −
[∑

i

(bi
2

) ∑
j

(d j
2

)]
/
(n
2

)

where ni j , bi , d j are values from the contingency table (Table 3). The normalized
mutual information is defined as

NMI =
2

∑k
i=1

∑k
′
j=1

ni j
n log

ni j n
bi d j

∑k
i=1 − bi

n log bi
n + ∑k′

j=1 − d j
n log

d j
n
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Fig. 8 On the voting data, a the k-modes objective function F values against the ARI values, b the negative
category utility function −CU values against the ARI values, c the k-modes objective function F values
against the NMI values, d the negative category utility function −CU values against the NMI values

Both ARI and NMI take the values within the interval [0,1]. The closer a clustering
result is to the “true” partition, the higher the ARI and NMI values are. The two
validity functions have been widely used to evaluate the performance of clustering
algorithms. For an internal validity function, we can not directly test its effectiveness
in evaluating the clustering results, due to its lack of the class label information. Thus,
we need to employ the external validity functions to indirectly test its effectiveness.
If the evaluation results of an internal validity function are close to those of ARI and
NMI, it is thought to be effective in evaluating the clustering results. Therefore, wewill
make use of the linear regression to analyze the correlations or consistencies between
the external and internal validity functions. The coefficient of determination R2 is
employed to reflect the “goodness-of-fit” of linear regression. For a linear regression
fitting line about an internal validity function and an external validity function, the
larger the R2 value is, the higher their correlationor consistency in evaluating clustering
results is, and themore the internal validity function can effectively evaluate clustering
results.
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Fig. 9 On the credit approval data, a the k-modes objective function F values against the ARI values, b
the negative category utility function−CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

6.1 The comparison of the validity functions

Due to the fact that the category utility function CU is equivalent to the information
entropy function Elog in evaluating clustering results, we only test the performance
of the k-modes objective function F and the category utility function CU . In the
experiment, we use the 12 data sets shown in Table 2 and compare the effectiveness
of these functions from the two aspects.

The one is to use the linear regression analysis to illustrate the performance of
these internal validity functions. We first employ the k-modes algorithm to randomly
produce the 100 clustering results on each given data set, respectively. Based on the 100
clustering results on each data set, we analyze the correlations between the external
validity functions (ARI and NMI) and the internal validity functions (F and CU ).
Figures 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 illustrate the linear regression analysis
of ARI and F , ARI and −CU , NMI and F , NMI and −CU on each of the 12 data
sets, respectively. In these figures, we see that the values of F and −CU are inversely
proportional to those of ARI and NMI in these linear regression fitting lines. We also
observe that the R2 values of F are always smaller than those of −CU on these data
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Fig. 10 On the dermatology data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

sets. This illustrates that the function CU has the more consistencies with the external
validity functionsARI andNMI than the function F in evaluating the clustering results.
Besides, according to Fig. 13, we not only see that the R2 values of F are smaller than
those of −CU on the DNA data set, but also observe that the correlations between
the internal and external validity functions are very weak on it. In the case, we cannot
determine which one of these internal validity functions is bad. We only conclude that
they may be not appropriate to find out the cluster structure of the true class labels on
the data set. The case is inevitable. Because the internal validity functions are defined
based on users’ subjective assumptions, and the “true” class labels of a data set are
obtained based on users experiences.

The other is to compare the effectiveness of clustering results produced by opti-
mizing the functions F and CU , respectively. The comparison is carried out on the
12 data sets. We employ the alternating optimization (AO) method to optimize the
functions F and CU . The AO method can obtain the local optimal solutions for an
optimization problem. It requires an initial solution to start and end up with different
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Fig. 11 On the breast cancer data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

finial solutions from different initial solutions in the process of solving an optimization
problem. Therefore, on each of the data sets, we randomly select 100 initial solutions
and carry out 100 runs of optimizing the functions F and CU , respectively, by the AO
method. In each run, the same initial solution is used in optimizing both the functions.
Table 4 shows the average andmaximumARI and NMI values of the clustering results
produced by different objective functions on each of the 12 data sets. According to
the table, we see that the function CU are better than the function F in being as the
objective functions to cluster most of the data sets, except the zoo and credit approval
data sets. On the zoo data set, the function F is better than the function CU accord-
ing to the index values from Table 4. On the credit approval data set, the function
F is better in the average ARI and NMI values but less in the maximum ARI and
NMI values than the function CU . These indicate that any validity function is defined
based on certain assumptions which impossibly conform to characteristics of all the
data sets.
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Fig. 12 On the letters data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

6.2 The effectiveness of the normalized validity functions

In the subsection,we test the effectiveness of the normalized function NG in evaluating
the clustering results from different data sets. The test is carried out on the 12 data sets
(shown in Table 2). On each of the data sets, we first use the k-modes algorithm to
randomly produce the 100 clustering results, and compute the values of the clustering
results for ARI, NMI and G. Furthermore, we use the following two methods to
compare the effectiveness of the clustering results from different data sets. The one is
to compute the average one of the 100 clustering results on each of the 12 data sets and
compare their effectiveness, which is denoted as AVG. Table 5 shows some external
and internal validity function values produced by the AVG method on the 12 data
sets. The other is to select the one with the minimum G value of the 100 clustering
results on each of the 12 data sets and compare their effectiveness, which is denoted
as MIN. Table 6 shows some external and internal validity function values produced
by the MIN method on the 12 data sets. In the following, we make use of the linear
regression and the coefficient of determination R2 to analyze the correlations between
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Fig. 13 On theDNAdata, a the k-modes objective function F values against the ARI values, b the negative
category utility function −CU values against the ARI values, c the k-modes objective function F values
against the NMI values, d the negative category utility function −CU values against the NMI values

the external (ARI and NMI) and internal (the original and normalized functions G)
measures based on the contents of Tables 4 and 5. For a normalization method, if the
normalized function NG enhances the correlation between the external measures and
the original functionG, it is thought to be effective. Table 7 shows the lower and upper
bounds of the function G on the 12 data sets computed by our proposed method. In
the experiment, we not only test the changes of the correlations while the normalized
function NG is used, but also compare the effectiveness of the normalized function
NG with a traditional normalized function T NG often used in bioinformatics. The
function T NG is described as

T NG(W ) = G(W )∑
W∈Ω G(W )/N

,

where Ω is a set of the N clustering results on a data set.
Figure 15 shows the comparisons of the correlations between the external functions

(ARI and NMI) and the internal functions (G, T NG and NG) on the 12 data sets,
according to the content of Table 5. In Fig. 15b, e, we see that all the function T NG
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Fig. 14 On the mushroom data, a the k-modes objective function F values against the ARI values, b the
negative category utility function −CU values against the ARI values, c the k-modes objective function
F values against the NMI values, d the negative category utility function −CU values against the NMI
values

values are equal to 1. This indicates that the function T NG can not compare the
effectiveness of the average clustering results from the different data sets. Therefore,
we also compare the correlations between the external functions (ARI and NMI)
and the internal functions (G, T NG and NG) on the 12 data sets, according to the
content of Table 6. The comparisons are shown in Fig. 16. According to the linear
regression fitting lines in Figs. 15 and 16 (except Fig. 15b, e) , we see that the values
of the function G , T NG and NG are inversely proportional to those of ARI and
NMI. Furthermore, we observe that the R2 values of NG and T NG are larger than
those of G. This illustrates that the normalized functions NG and T NG enhance the
correlations between the external measures and the function G. We also see that the
R2 values of NG are largest among those of G, T NG and NG. This shows that the
normalized function NG performs the original functionG and the normalized function
T NG in comparing the effectivenss of the clustering results from the different data
sets.
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Table 4 The comparisons of optimizing the functions F and CU on the 12 data sets

Data set\ index Internal function Average ARI Maximum ARI Average NMI Maximum NMI

Soybean F 0.7088 1.0000 0.8188 1.0000

CU 0.7479 1.0000 0.8552 1.0000

Lung cancer F 0.0864 0.2537 0.1831 0.3942

CU 0.1024 0.2912 0.2050 0.4088

Zoo F 0.6312 0.9045 0.7509 0.8800

CU 0.5973 0.8674 0.7491 0.8735

Hepatitis F 0.1161 0.2250 0.1217 0.1744

CU 0.1772 0.2846 0.1851 0.2226

Heart disease F 0.2781 0.3869 0.2987 0.3181

CU 0.3779 0.4382 0.2987 0.3456

Voting F 0.5220 0.5368 0.4519 0.4866

CU 0.5673 0.5779 0.4842 0.4947

Credit approval F 0.2102 0.4432 0.1858 0.3607

CU 0.1777 0.5036 0.1585 0.4259

Dermatology F 0.4505 0.6945 0.5703 0.7800

CU 0.6690 0.9531 0.8128 0.9461

Breast cancer F 0.5137 0.7967 0.4667 0.6881

CU 0.7952 0.7983 0.7220 0.7249

Letters(E,F) F 0.1624 0.3907 0.1320 0.3050

CU 0.3723 0.6869 0.3182 0.6152

DNA F 0.0172 0.0485 0.0339 0.0899

CU 0.4993 0.6431 0.4720 0.5895

Mushroom F 0.2526 0.6144 0.2449 0.5613

CU 0.4029 0.6229 0.3963 0.5837

Table 5 The validity function
values produced by the AVG
method on the 12 data sets

Data set\index ARI NMI G TNG NG

Soybean 0.7086 0.8184 957.4000 1.0000 0.1686

Lung cancer 0.1089 0.2126 1.2340e+03 1.0000 0.3437

Zoo 0.6318 0.7510 927.6500 1.0000 0.2439

Hepatitis 0.1110 0.1254 2.2300e+03 1.0000 0.4313

Heart disease 0.2776 0.2286 1729.8000 1.0000 0.4121

Voting 0.5366 0.4497 4.6953e+03 1.0000 0.1817

Credit approval 0.2232 0.1915 4.4246e+03 1.0000 0.4206

Dermatology 0.4507 0.5705 7.9727e+03 1.0000 0.3111

Breast cancer 0.5137 0.4667 4.9093e+03 1.0000 0.4124

Letters (E, F) 0.2467 0.2264 2.2240e+04 1.0000 0.5344

DNA 0.0170 0.0324 1.6529e+05 1.0000 0.6007

Mushroom 0.2526 0.2449 1.2991e+05 1.0000 0.2880
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Table 6 The validity function
values produced by the MIN
method on the 12 data sets

Data set\index ARI NMI G TNG NG

Soybean 1.0000 1.0000 938.9400 0.9807 0.0317

Lung cancer 0.1885 0.3544 1.2236e+03 0.9915 0.2233

Zoo 0.6440 0.8071 904.8600 0.9754 0.1600

Hepatitis 0.2285 0.1760 2.2188e+03 0.9950 0.3297

Heart disease 0.3788 0.2954 1.7151e+03 0.9915 0.3153

Voting 0.5181 0.4555 4.6905e+03 0.9990 0.1755

Credit approval 0.4432 0.3607 4.4129e+03 0.9974 0.3850

Dermatology 0.6945 0.7800 7.8548e+03 0.9852 0.1984

Breast cancer 0.7712 0.6534 4.8009e+03 0.9779 0.1938

Letters (E, F) 0.1533 0.1253 2.2097e+04 0.9936 0.3597

DNA 0.0353 0.0521 1.6498e+05 0.9981 0.5043

Mushroom 0.6059 0.5465 1.2860e+05 0.9899 0.1255

Table 7 The bounds of the
function G on the 12 data sets

Data set\Bounds Lower bound G Upper bound G

Soybean 934.6659 1.0695e+03

Lung cancer 1.2042e+03 1.2910e+03

Zoo 861.3671 1.1332e+03

Hepatitis 2.1823e+03 2.2929e+03

Heart disease 1.6672e+03 1.8191e+03

Voting 4.5555e+03 5.3247e+03

Credit approval 4.2872e+03 4.6138e+03

Dermatology 7.6473e+03 8.6933e+03

Breast cancer 4.7048e+03 5.2007e+03

Letters (E, F) 2.1803e+04 2.2621e+04

DNA 1.6338e+05 1.6656e+05

Mushroom 1.2759e+05 1.3563e+05

6.3 The effect of the parameter T on the generalized function

In the subsection, we test the effect of the parameter T on the generalized function Fg .
The test is carried out on the soybean, zoo and voting data sets. We first employ the k-
modes algorithm to randomly produce the 100 different clustering results on each given
data set and compute the ARI and NMI values of each clustering result. Furthermore,
we select several values of the parameter T . For each value of T , we compute the
function Fg value of each clustering result, and analyze the correlations between its
values and the values of the ARI and NMI. Finally, we analyze how the parameter
T effects on the evaluation quality of the generalized function Fg by observing the
effect of the parameter T on the correlations. According to Figs. 17, 18 and 19, we see
that if the parameter T value is less than a certain value, the changes of the R2 values
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Fig. 15 Based on the AVG method, a the G values against the ARI values, b the T NG values against the
ARI values, c the NG values against the ARI values, d the G values against the NMI values, e the T NG
values against the NMI values, f the NG values against the NMI values

are not obvious as the T values increase. This illustrates that the generalized function
Fg are robust in evaluating the clustering results when the T value is small. However,
while the T value continue to grow, the R2 values drop sharply. This indicates that
the representability of each categorical value to clusters can not be recognized when
the T value is very large. At this point, the generalized function Fg can not effectively
evaluate clustering results. From these figures, we also see that the effects of the
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Fig. 16 Based on the MIN method, a the G values against the ARI values, b the T NG values against the
ARI values, c the NG values against the ARI values, d the G values against the NMI values, e the T NG
values against the NMI values, f the NG values against the NMI values

parameter T on the generalized function Fg are different on different data sets. This
tells us that it is difficult to directly compute the best value of the parameter T for all the
data sets, since its effect on the generalized function Fg depends on the characteristics
of a data set itself. Besides, we observe that the R2 values of the generalized function
Fg with T > 0 are larger than those of the generalized function Fg with T = 0. The
phenomenons are consistent with our conclusion in Sect. 3.
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Fig. 17 The effect of the
parameter T on the generalized
function Fg on the soybean data
set
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Fig. 18 The effect of the
parameter T on the generalized
function Fg on the zoo data set
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Fig. 19 The effect of the
parameter T on the generalized
function Fg on the voting data
set
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7 Conclusions

Cluster validation is a critical problem in the clustering area. In this paper, we have
presented a generalized validity function for categorical data. Based on it, we have
discussed the relation of the three widely-used cluster validity functions: the k-modes
objective function, the category utility function and the information entropy function.
The analysis results tell us that the category utility function is equivalent to the infor-
mation entropy function in evaluating the clustering results, and the obtained optimal
solution of the k-modes objective function on a data set is the upper bound of the
optimal solution of the category utility function. Furthermore, we have discussed the
relation of the within-cluster and between-cluster information in using these valid-
ity functions to evaluate the clustering results. It has been shown that these validity
functions can effectively evaluate the clustering results by using the within-cluster
information only. Finally, we have highlighted the importance of normalization when
applying an internal validity function to compare the clustering results of different
data sets. Along this line, we have provided a theoretic analysis for the bounds of the
three validity functions. The experimental studies have illustrated that the normalized
validity functions have better performance than the original functionswhen comparing
clusterings of different data sets.
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