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Manifold learning has become a hot issue in the field of machine learning and data mining. 
There are some algorithms proposed to extract the intrinsic characteristics of different 
type of high-dimensional data by performing nonlinear dimensionality reduction, such as 
ISOMAP, LLE and so on. Most of these algorithms operate in a batch mode and cannot be 
effectively applied when data are collected sequentially. In this paper, we proposed a new 
incremental version of ISOMAP which can use the previous computation results as much 
as possible and effectively update the low dimensional representation of data points as 
many new samples are accumulated. Experimental results on synthetic data as well as real 
world images demonstrate that our approaches can construct an accurate low-dimensional 
representation of the data in an efficient manner.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Data from the real world is of a high-dimensional na-
ture, and so it is very difficult to understand and ana-
lyze. Some linear dimensionality reduction techniques at-
tempted to solve this problem by lowering the data di-
mensionality, such as PCA [8], MDS [18]. But they only 
can solve linear data. Since 2000, manifold learning has be-
come a hot issue in the field of machine learning and data 
mining. Its main goal is to find a smooth low-dimensional 
manifold embedded in nonlinear high-dimensional data 
space. There are some algorithms proposed to extract 
the intrinsic characteristics of different types of high-
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dimensional data, such as ISOMAP [19], LLE [17] and so 
on. These algorithms aim to presever different geometrical 
properties of the data manifold, and formally transform the 
dimensionality reduction problem into an eigen-problem 
of matrices. Therefore, they are often mentioned as spec-
tral embedding methods [21].

Most of these manifold learning algorithms operate in a 
batch mode, meaning that they have no incremental ability 
and all data points are need to be available during train-
ing [12]. However, in applications like video surveillance, 
and speech recognition, where data come sequentially, the 
batch methods seem clumsy: running them repeatedly is 
not only time consuming, but also wasteful to discard pre-
vious results [5]. So it is urgently necessary to develop 
incremental methods to efficiently find intrinsic properties 
of high-dimensional data. As more and more data points 
are obtained, the evolution of data manifold can reveal in-
teresting properties of the data stream [12].

There have been some attempts to create incremen-
tal manifold algorithms, which can be roughly catego-
rized into two groups. One group, known as out-of-sample 
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extension, attempts to parameterize new observations 
based on the assumption that all the known results are 
correct. Out-of-sample extensions for LLE, ISOMAP, LE are 
given by Bengio et al. [2], using kernel tricks to refor-
mulate these algorithms. But the method may fail if the 
data manifold is non-uniformly sampled [16]. The another 
group tries to give more credible results, not only embed-
ding new points but also updating the known results, such 
as incremental LLE [16], incremental Isomap [12], incre-
mental LTSA [11], incremental LE [6], etc. All the recent 
methods in the latter group are restricted to dealing with 
only one new point per running, and thus they are forced 
to rerun as many times as the number of new data points. 
The total cost of the time complexity and memory require-
ment is high and even higher than those of re-running the 
original algorithms. As a further imperfection, the geomet-
ric structure of the manifold may be destroyed if the new 
sample does not lie in original sampled area.

In this paper, an improved incremental version of 
ISOMAP is proposed, which can use the previous compu-
tation results as much as possible and effectively update 
the low dimensional representation of data points as many 
new samples are collected simultaneously. The algorithm 
not only is more fit to the cognitive mechanism in our 
brain, but also improves the efficiency while the accuracy 
of the embedding results are not be decreased obviously. 
The experimental results on both synthetic “Swiss-roll” 
data set and two real images data sets show that the algo-
rithm is feasible.

The corresponding works (main contributions) of our 
approaches include

• An effective method to update the neighborhood graph 
and geodesic distances matrix. Different from ISOMAP 
[19] and its incremental versions [12], the method 
does not re-compute and update k-NN neighborhood 
graph. It keeps the previous neighborhood relations as 
much as possible, only adds the new neighborhood re-
lations related to some new points and deletes the 
original links leading to short circuits. And the method 
also does not update the geodesic distances one by 
one. It only updates the distances of two kinds of 
paths: the paths leading to the conflicting predeces-
sor matrix; the paths including short circuits.

• A simple method to detect the short circuits in the 
neighborhood graph. The method re-estimates all 
weights of the edges in the original neighborhood 
graph in view of the newest “geodesic distance” be-
tween new points and all points (including all the
original points and new points). At the same time, the 
thresholds of the weights are also estimated by com-
puting the maximum distances of two neighborhood 
pitches. If its weight is larger than its threshold, the 
edge can be marked as a short circuits edge.

• A better solution of the incremental eigen-decomposi-
tion problem with increasing matrix size, which com-
putes eigen-values and eigenvectors by subspace itera-
tion with Rayleigh–Ritz acceleration. This differs from 
previous incremental ISOMAP version [12] where only 
one new sample is increased and its coordinate is di-
rectly estimated.
The rest of the paper is organized as follows: Section 2
reviews the related works. Section 3 describes the pro-
posed incremental version of ISOMAP. Section 4 shows 
the complexity of the proposed algorithm and compares it 
with those of ISOMAP and law-IISOMAP. Section 5 presents 
the experimental results and finally Section 6 gives a con-
clusion.

2. Related works

Suppose that M ⊂ R D is a smooth manifold. A set of 
data points {x1, ..., xn} is sampled from it. ISOMAP assumes 
that the data lie on a (Riemannian) manifold and maps xi
to its d-dimensional representation yi in such a way that 
the geodesic distance between xi and x j is as close to the 
Euclidean distance between yi and y j in Rd as possible.

ISOMAP algorithm has three steps:

i. Constructing the neighborhood graph. ISOMAP re-
quires specifying a parameter of the neighborhood: 
k-nearest neighbors (k-NN) or ε-hyper sphere. The 
k-NN version is more common since the sparseness 
of the resulting structures is guaranteed. The weighted 
undirected neighborhood graph NG = (V , E) is con-
structed with the vertex vi ∈ V corresponding to xi . 
An edge e(i, j) between vi and v j exists if xi is a 
neighbor of x j . The weight of e(i, j), denoted by wij , 
is the value of the Euclidean distance. If the set of 
the k-NN neighborhood of xi is denoted by knn(i) and 
the set of indices of the vertices adjacent to vi in G
is denoted by adj(i), then adj(i) is corresponding to 
knn(i) 

⋃{v j |vi ⊂ knn( j)}.
ii. Estimating the geodesic distances. The key assump-

tion is that the geodesic between two points on the 
manifold can be approximated by the shortest path 
between the corresponding vertices in the neighbor-
hood graph. Let gij denote the length of the shortest 
path sp(i, j) between vi and v j . The shortest paths 
can be found by the Dijkstra’s algorithm with differ-
ent source vertices. The shortest paths can be stored 
efficiently by the predecessor matrix Π , where πi j = k
if vk is immediately before v j in sp(i, j). Since gij is 
the approximate geodesic distance between xi and x j , 
we shall call gij the geodesic distance. So the geodesic 
distance matrix G = {gij} is symmetric.

iii. Recovering the embedding results {y1, ...yn} by using 
the classical MDS on the geodesic distances. Let B be 
the target inner product matrix, i.e., the matrix of the 
target inner products between different yi . If restrict-
ing 

∑
i yi = 0, B is recovered as B = −H AH/2, where 

aij = g2
i j , H = In − Jn/n, In is an identity matrix and 

Jn is a matrix with n × n ones. We seek Y T Y to be as 
close to B as possible in the least square sense. Then 
the embedding result Y = diag(

√
λ1...

√
λd)[u1...ud]T

is achieved, where λ1, ..., λd are the d largest eigen-
values of B , with corresponding eigenvectors u1, ..., ud .

3. Incremental ISOMAP

According to the original ISOMAP algorithm, the main 
works in incremental algorithms involve three steps: up-
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Fig. 1. (a) 600 points sampled randomly from the “Swiss roll”; (b) the 2-dimension embedding results; (c) the neighborhood of a1 and a2. When new 
samples c1 and c2 are added to be the neighbors of b1, the edges (a1, b1) and (b6, b1) are deleted. The “geodesic distance” between a4 and b4 is enlarged 
and the accurate is reduces.
dating the neighborhood graph, re-estimating the geodesic 
distances matrix and solving the incremental eigen-decom-
position problem.

Step 1: updating the neighborhood graph.

The construction of the neighborhood is critical step of 
the manifold learning algorithms, because it can be ex-
tended to extract an optimum topological structure from 
the data by means of Hebbian updates of the neighbor-
hood graph [14]. When new samples X1 = {xn+1, ..., xn+m}
arrive, the neighborhood graph is changed because it is 
influenced in its construction by the parameters of k-NN 
algorithm and the sampled data. But the topology of man-
ifold would not be changed because it always represents 
the same manifold.

Suppose that the incremental ISOMAP still use k-NN to 
update its neighborhood graph. The deleted edges break 
the existing shortest paths, and the added edges may cre-
ate the improved shortest paths which should be shorter 
than the “original shortest paths”. This is much more in-
volved than it appears, because the change of a single edge 
can modify the shortest paths among multiple vertices. 
The process to update the neighborhood graph is complex. 
But the accurate of the “geodesic distances” may not be 
improved. In Fig. 1(c), when new samples c1 and c2 are 
added to be the neighbors of b1, two neighborhood rela-
tionships (a1, b1) and (b6, b1) need to be deleted because 
of the parameter k. That leads to an enlarged “geodesic 
distance” between a4 and b4. So the neighborhood size 
should not be fixed to be a global setting, and the selection 
of the neighborhood should be data-driven [22]. In fact, the 
stable parameter k in k-NN is always less than the local 
optimal neighborhood size, except that the manifold curva-
ture of the point is too high or its sampling density is too 
low [10]. Some dynamical neighborhood algorithms [22,20,
9,15] have been proposed, in which the neighborhood size 
of each sample is different. These algorithms enlarge their 
local neighborhood and the paths between a pair of points 
in neighborhood graph become more. So the accuracy of 
the shortest paths and “geodesic distances” are improved.

Our incremental ISOMAP algorithm uses dynamicalKNN 
algorithm (Algorithm 1) to construct the new neighbor-
hood graph. They are incident to: (1) the new edges are 
added in the neighborhood graph if and only if they are 
the newest k nearest neighbors; (2) the original edges are 
deleted in the neighborhood graph if and only if the topol-
ogy of the neighborhood graph is destroyed (that is to say, 
the short circuits1 occur). In the algorithm, the parameter 
k is not a fixed parameter any more. It is equal with or 
greater than k.2

The accuracy of “geodesic distances” in incremental 
ISOMAP algorithm can be improved because the local 
neighborhood of each sample is enlarged (which is larger 
than k-NN). The newer k-NN neighbors can be added to 
original neighborhood graph which is constructed by k-NN 
algorithm, and the original neighbors do not need to be 
deleted except that they leading to “short circuits”. That is 
to say, the original neighborhood graph is kept as much 
as possible. So the efficiency to update the neighborhood 
graph would be improved greatly.

Algorithm 1 (dynamicalKNN). Updating the neighborhood 
graph.
Input: X , the original dataset; X1, the set of new samples; 
adjold , the adjacent relationships matrix; G; Π ;
Output: adjnew , the new adjacent relationships matrix;
1: computing adjnew using k-NN of X and X1;
2: computing the geodesic distances and predecessor ma-
trix of xiε X1 using adjnew in Dijkstra’s algorithm, then up-
dating G and Π ;
3: shortEs := φ;

for i = 1:n
shortEs := shortEs

⋃
judgeShortCircuits(i, G, Π, adjold,

adjnew);
end for;

4: adjnew := adjnew
⋃

adjold; adjnew := adjnew − shortEs;

In dynamicalKNN algorithm, it is simple to add new 
neighborhood edges in the neighborhood graph while it is 
difficult to check out the short circuits edges. The main 
task of the judgeShortCircuits algorithm (Algorithm 2) is 
to check out the short circuits edges. Firstly, the newest 

1 The short circuits mean that some neighbors of one point come from 
other different folds so that these neighbors are not the nearest ones on 
manifold.

2 In dynamicalKNN algorithm, the newest k-NN of each point are al-
ways added to its original neighborhood. Even though some short circuit 
edges are deleted, the neighbor size of each point is equal with or greater 
than k.
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Fig. 2. (a) 600 points sampled randomly from the “Swiss roll”; (b) the 2D embedding results (the short circuits occur); (c) the 2D embedding results after 
adding 50 new points; (d) the neighborhood of a and b. e(a, b) is short circuit edge. When new sample c is added to the neighborhood of a, the new value 
of ga,b can be re-estimated to be ga,c + gc,b . At the same time, the threshold is estimated to be max{ga,adj(a)} + ga,b + max{gb,adj(b)} + ga,c . According to 
the relationships among the three edges of triangle, if ga,b is larger than its threshold, the edge e(a, b) is judged to be a short circuit edge.
“geodesic distances” between the new points and all points 
are computed in view of the new k-NN. Secondly, the 
weights wij of e(i, j) in the neighborhood graph are re-
estimated if and only if the original edge e(i, j) does not 
exist in the new k-NN. Thirdly, the algorithm computes 
the threshold of the original neighborhood edges using the 
newer neighborhood relationships.

In Fig. 2, the point b is the neighbor of the point a
and the e(a, b) is a “short circuit” edge. In Fig. 2(c), the 
new point c is added into the neighborhood of a and 
its geodesic distances to all points are computed using 
the newest k-NN. Then the re-estimated geodesic distance 
g̃a,b = ga,c + gc,b . Although g̃a,b > ga,b , the difference is 
significant because ga,c is little. And the threshold of g̃a,b
is defined as follow:

threshold(ga,b) = dmax(Nb, Nc) + gc,a and

dmax(Nb, Nc)

= max
(

wa,i
∣∣i ∈ adj(a)

) + ga,b + max
(

wb, j
∣∣ j ∈ adj(b)

)
.

dmax(Nb, Nc) represents the maximum distances of two 
neighborhood pitches of a and b, because c is a neighbor 
of the point a.

That is to say, the short circuit edges e(a, b) is judged if 
its newer weight wab is larger than the threshold.

Algorithm 2 (judgeShortCircuits). Finding the short circuit 
edges.
Input: i, the index of the existing vertex; G; Π ; adjold , 
the original adjacent relationships matrix; adjnew , the new 
k-NN relationships matrix;
Output: scEdges, the set of the short circuit;
1: oldN := adjold(i); newN := adjnew(i);

delN := oldN − newN; upN := newN − oldN;
2: for k ∈ delN

newIK := min{dD|dD = gi, j + g j,k, j ∈ newN};
threshold := max{gnewN,i} + max{gadjnew(k),k} + gi,k +
max{gupN,i};
if (newIK > threshold)

scEdges := scEdges
⋃

e(i, k);
iN := adjold(i) − {k}; kN := adjold(k) − {i};
temp := {e(a, b)|ga,b < ga,i + gi,k + gk,b, a ∈ iN, b ∈ kN};
for e(a, b) ∈ temp

if ((a /∈ adjnew(b)) ∧ (b /∈ adjnew(a)) ∧ (πa,b = a) ∧
(πb,a = b))

scEdges := scEdges
⋃

e(a, b);
end if;
end for;

end if;
end for;

Step 2: re-estimating the geodesic distances.

ISOMAP algorithm uses the shortest path between the 
corresponding vertices in the neighborhood graph to ap-
proximate the geodesic distance between two points on 
the manifold. After the neighborhood graph is updated, the 
geodesic distances also need to be updated.

When the manifolds are sampled enough and each 
sample has enough neighbors, the geodesic distances can 
be estimated accurately in view of the neighborhood 
graph. But the sampling is always sparse and each sample 
has limited neighbors. In other words, no matter which 
neighborhood graph is used, the estimated geodesic dis-
tances are always not accurate. Since the original neigh-
borhood graph and the newer one represent the topolo-
gies of same manifold, the deviation between the original 
geodesic distances and the new ones should be very small, 
except that the samples are too sparse or the short circuits 
occur. That is to say, Gnew = [ G+�G G1

GT
1 G2

]
and gij � �gij , 

where G1 is corresponding to the geodesic distances of the 
new samples to the existing ones and G2 is the geodesic 
distances among new samples. As mentioned in Section 2, 
Bnew = −H Anew H/2, aij = g2

i j and H = In − Jn/n. If �G is 
ignored,

B = −1

2

[
H0 H1

H T
1 H2

][
A A1

AT
1 A2

][
H0 H1

H T
1 H2

]
and

�B = −1

2

[
H0 H1

H T
1 H2

][
�A 0

0 0

][
H0 H1

H T
1 H2

]
.

It is obviously that �bij � bij . So �G can be ignored and 
the original “geodesic distances” do not need to be up-
dated one by one except two kinds of paths must be up-
dated: the paths leading to conflicted predecessor matrix; 
the paths including short circuits.

The information of paths is kept in the predecessor ma-
trix. If there are conflicts in paths, the predecessor matrix 
cannot remember the right path, the incremental algo-
rithm cannot continue. So the original paths must be up-
dated. And if there are “short circuits” edges in the neigh-
borhood graph, the topological structure of the manifold 
would be destroyed. So the “short circuits” must be found. 



496 X. Gao, J. Liang / Information Processing Letters 115 (2015) 492–501
Fig. 3. (a) The shortest paths sp(a1, a5) = [a1 a2 a3 a4 a5] and sp(a5, a1) = [a5 a4 a3 a2 a1]. (b) After adding new point a6 to the neighborhood graph, 
the shortest paths are changed to be sp(a1, a5) = [a1 a6 a4 a5] and sp(a5, a1) = [a5 a4 a6 a1]. But the original geodesic distances and predecessors are 
not updated. The predecessor of a4 in sp(a1, a5) is a3. (c) After adding new point a7 to the neighborhood graph, the predecessor matrix produces the 
conflicting data. The predecessor of a1 in sp(a7, a1) is a6. So sp(a1, a7) = [a1 a2 a3 a4 a5 a7] and sp(a7, a1) = [a7 a5 a4 a6 a1].
Algorithm 3 and Algorithm 4 would solve the two ques-
tions.

In general, the conflicts of paths are always related to 
new samples (see Fig. 3). So the updateConflictPaths al-
gorithm (Algorithm 3) checks and updates the paths in-
cluding new samples one by one: (1) If the weight of a 
new path is less than the original geodesic distance, the 
shortest path should be updated to shorten the geodesic 
distances; (2) If the new paths include the path such 
as ... → vi → vn+k → v j ... or ... → vi → vn+k1 → ... →
vn+k2 → v j → ... , the vertex pair (vi, v j) which is adjacent 
to the new vertices is propagated to the whole updated 
graph for checking and updating their shortest paths.

Algorithm 3 (updateConflictPaths). Updating the geodesic 
distances matrix and the predecessor matrix.
Input: i, the index of the new vertex; G; Π ;
Output: G; Π ;
1: List := Φ;
2: for all s ∈ adj(i)

δs := Φ;
if s is not a new sample then δs := {s}; else

R := {s}; P := {i};
while (R 
= Φ)

a := the first element of R; N := adj(a);
P := P

⋃{a}; N := N − P ;
M := {k| k is a new sample, k ∈ N};
δs := δs

⋃
(N − M); R := (R − {a}) ⋃ M;

end while;
end if;

end for;
3: for all s, t ∈ adj(i)

for all a ∈ δs

bList := {b|b ∈ δt , gab > gai + gib};
for all b ∈ bList

gab := gba := gai + gib; πab := πib;
end for;
cList := {c|c ∈ δt , πac = πic, πca = πia}
for all c ∈ cList, List := List

⋃{(a, c)}; end for;
end for;

end for;
4: for all (a, b) ∈ List

aChild := {k|πki = πai}; bChild := {k|πki = πbi};
for all {(s, t)|s ∈ aChild, t ∈ bChild, gst 
= ∞, gst > gsi + git}

gst := gts := gsi + git ; πst := πit ; πts := πis;
end for;

end for;

The updateShortCircuits algorithm (Algorithm 4) checks 
and updates the paths including the short circuits which 
are checked out in Algorithm 2. Suppose that e(i, j) is a 
short circuit edge. If it is included in the shortest path 
sp(s, t), the predecessor of v j in sp(s, j) is vi and the pre-
decessor of vi in sp(t, i) is v j . This fact can be used in 
turn to find all vertex pairs Rij whose shortest paths are 
invalidated due to the removal of edge. Then their new 
shortest paths are computed and the geodesic distances 
are updated. The process of computing and updating is 
similar to the Dijkstra’s algorithm, except that only a part 
of the geodesic distances from source vertex vi to destina-
tion vertices (instead of all the vertices) are unknown.

Algorithm 4 (updateShortCircuits). Updating the shortest 
paths including the short circuits.
Input: {e(i, j)}, the set of the short circuits; G; Π ;
Output: G; Π ;
1: for all e(i, j)

iChild := {k|πkj = i}; jChild := {k|πki = j};
Rij := Rij

⋃{(s, t)|s ∈ iChild, t ∈ jChild, πst = π jt ,

πts = πis, s /∈ adj(t), t /∈ adj(s)};
gij := g ji := ∞; πi j := 0; π ji := 0;

end for;
2: for all xi , i = 1, ..., n

jSet := { j|g ji = ∞, j = 1, ..., n}; H := ϕ;
2.1 for all j ∈ jSet

tN := adj(i) − jSet; δ j := mink∈tN(gik + gkj);
H := H

⋃{δ j};
if δ j 
= ∞ then

k := arg(δ j = gik + gkj); π ji := πki ; π ji := πki ;
end if;

end for;
2.2 while H 
= Φ do

k := arg min j{δ j, δ j ∈ H};
jSet := jSet − {k}; H := H − {δk}; gik := gki = δk;
for all j ∈ adj(k) 

⋂
jSet

dist := gik + gkj ;
if dist < δ j then

δ j := dist;
update the value of δ j in H ;
πi j := k; π ji := πki ;

end if;
end for;

end while;
end for;

Step 3: constructing the embedding results.

The new embedding results {y1, ..., yn+m} should be 
updated in view of Bnew . This also can be viewed as an 
incremental eigen-value problem, as yi can be obtained 
by the eigen-decomposition of Bnew . In order to use the 
previous computation results as much as possible and ef-
fectively get the eigen-values and eigenvectors of Bnew , we 
give a good initial guess Ũnew for dominant vector sub-
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space of and use subspace iteration with Rayleigh–Ritz ac-
celeration [4] to find the better eigen-space for it:

• Estimating Ũnew .

According to MDS, the distance matrix G is converted 
to a symmetric and positive semi-definite matrix B =
− 1

2 (In − Jn
n )A(In − Jn

n ) = Y T Y , where aij = g2
i j . Then B

can be decomposed into B = U
∑

U T , where U is a ma-
trix whose columns are orthonormal eigenvectors and 

∑
is a diagonal matrix of eigen-values. The d-dimensional co-
ordinate vectors that would give rise to the kernel matrix 
B are the scaled rows of U . In order to minimize the dif-
ference between the embedded and original distances with 
a fixed number of dimensions d, the eigenvectors with the 
top d eigen-values are retained. Assuming that the eigen-
values are ordered by decreasing eigen-value, the coordi-
nate vector is Y = ∑1/2

d U T
d = diag(λ

1/2
1 , ..., λ1/2

d )[u1...ud]T . 
So Ud = Y T ∑−1/2

d .
When new data arrive, the coordinates of the new sam-

ples can be estimated by Nyström method [7,1,3]. Sup-

pose that Ynew = [ Ỹ Y1 ] and Ỹ ≈ Y , then Bnew = [ B̃ B1

BT
1 B2

] =[ Ỹ T Ỹ Ỹ T Y1

Y T
1 Ỹ Y T

1 Y1

]
. Y1 = (Ỹ T )

−1
B1 ≈ (Y T )

−1
B1 = ∑−1/2

d U T
d B1. 

Because the topology of the manifold do not changed, 
the eigen-values of Bnew change slightly. Suppose that the 
eigen-values of Bnew are not changed, the eigenvectors 
U1d = Y1

T ∑−1/2
d = BT

1 Ud
∑−1

d are decided. In order to re-
strict Ũnew to be orthogonal matrix and 

∑
Ynew = 0, U1d is 

centered and Gram–Schmidt orthogonalized, and then the 
column space of Ũnew = 1√

2
[ Ud U1d ]T is the good initial 

guess for the subspace of dominant eigenvectors of Bnew .

• Finding the better eigen-space for Bnew .

After giving the estimation of Ũnew , we can use sub-
space iteration with Rayleigh–Ritz acceleration to find the 
better eigen-space for Bnew . 1) Compute Z = BnewŨnew and 
perform QR decomposition on Z , that is to say, Z = QR
and let V = Q d . 2) Form Z∗ = V T Bnew V and perform 
eigen-decomposition of the d × d matrix Z∗ . Let λi and 
ui be the i-th eigen-value and the corresponding eigenvec-
tor. Since d is small, the time for eigen-decomposition of 
Z∗ is negligible. 3) Unew = V [u1...ud] is the improved set 
of eigenvectors of Bnew , and [λ1...λd] is the corresponding 
eigen-values.

4. Computational complexity

The computational complexity of the proposed incre-
mental algorithm (it is called our-IISOMAP as follows) is 
undoubtedly one of the most crucial issues. To clarify 
this point, its computational efficiency is theoretically ana-
lyzed. For comparison, we also take ISOMAP [19] and Law-
IISOMAP [12].

First, we present the computational complexity of 
ISOMAP. It should be recalled that ISOMAP contains three 
steps: neighborhood graph construction, geodesic distances 
computation, and embedding results calculation. For a 
data set with size n, the complexity for constructing a 
k-NN neighborhood graph is O (n log n); for computing 
the geodesic distances, it is O (kn2 log n); and for calcu-
lating the eigenvalues and eigenvectors of a full n × n
matrix, it is O (n3). Therefore, the total computational 
complexity of ISOMAP is O (n log n + kn2 log n + n3). For 
comparison, When m new points are accumulated to n
original points, the computational complexity of ISOMAP 
is O ((n + m) log(n + m) + k(n + m)2 log(n + m) + (n + m)3).

In law-IISOMAP algorithm [13], the complexity of up-
dating the neighborhood graph is O (nq). The complexity 
of updating geodesic distance is O (q(|F | + |H |)), where 
F and H contain vertex pairs whose geodesic distances 
are lengthened and shortened because of the new point 
vn+1, respectively. The complexity of computing the new 
embedding results is n2 because of the matrix multiplica-
tion in the subspace iteration. Since d is small, the time 
for eigen-decomposition is negligible. Hence, the computa-
tional complexity of law-IISOMAP is O (nq + q(|F | + |H |) +
n2). For comparison, when m new points are accumulated 
to n original points, the computational complexity of law-
IISOMAP is O (

∑n+m
i=n+1(iq + q(|F | + |H |) + i2)).

For the proposed incremental algorithm (our-IISOMAP), 
the dynamicalKNN algorithm spends O (m2 log m + nq3) to 
re-construct the neighborhood graph, where q is the max-
imum degree of all vertices in neighborhood graph af-
ter inserting the new points; In the worst case, the up-
dateConflictPaths and updateShortCircuits algorithm take 
O (m(nq + nq2) + |C |) and O (|S| log |S| + q|S|) time for up-
dating the geodesic distances, where |C | is the number 
of conflict paths and |S| is the number of short circuits 
edges. In practice, |S| is generally small, and the overall 
complexity of updating of geodesic distance can be loosely 
bounded by O (mnq2 +|C |). Computing the new embedding 
results also spends n2. The total computational complexity 
of our-IISOMAP is O (m2 log m + nq3 + mnq2 + |C | + n2).

Accordingly, ISOMAP algorithm runs in a batch mode 
and its computational complexity is related to n + m. So it 
cannot be effectively applied when data are collected se-
quentially. The law-IISOMAP algorithm must run m times 
iteratively when m new points are accumulated. Because 
the change of a single edge can modify the shortest paths 
among multiple vertices, the larger the m is, the larger the 
|F | + |H | may be. So the law-IISOMAP algorithm may be 
slowest in three algorithms. The proposed algorithm not 
only can be applied to the accumulated points, but also 
its computational complexity is better than that of law-
IISOMAP. Therefore, the efficiency of the our-IISOMAP al-
gorithm is evident in the theoretical analyses.

5. Experiments

In order to evaluate the accuracy and efficiency of 
the proposed approach, ISOMAP [19], law-IISOMAP [12]
and our-IISOMAP (the proposed incremental ISOMAP al-
gorithm) are respectively run on several datasets in five 
sets of experiments. To quantify the accuracy of embedding 
results update of the incremental algorithms, the residual 
variance δ = 1 − ρ2

Dx D y
is used as an error measure. Here, 

D X is the matrices of geodesic distances between pairs 
of points in input space, DY is the matrices of Euclidean 



498 X. Gao, J. Liang / Information Processing Letters 115 (2015) 492–501
Fig. 4. Comparing the residual variances and running times of ISOMAP, law-IISOMAP and our-IISOMAP running on “Swiss roll” dataset. (a) The residual 
variances varying with the iteration of running three approaches; (b) the running time varing with the iteration of running three approaches.
distances between pairs of points in output spaces, respec-
tively, and ρ is the standard linear correlation coefficient 
taken over all entries of D X and DY .

A. The effect of the parameter m

According to the analysis of complexity, the running 
time of the proposed algorithm is related to some fac-
tors. The number of original points (n) and the size of 
neighborhood graph (k) cannot be changed in incremen-
tal algorithms. But the number of new points (m) can be 
controlled. So the experiment is designed to show the ef-
fect of the parameter m.

1200 points are sampled randomly from the “Swiss 
roll”. 800 points are fixed to be original points, three al-
gorithms are run 8 times respectively, with m increasing 
from 50 to 400, the residual variances and the running 
times are shown in Fig. 4.

In Fig. 4(a), following the increase of m, the residual 
variances of three algorithms are all decreased gradually. 
Although the residual variance of our-IISOMAP is better 
than other two, the difference is not significant. So the 
accuracy of the incremental algorithm is not sensitive to 
the parameter m. In Fig. 4(b), the running time of two 
incremental algorithms are sensitive to m, especially the 
law-IISOMAP, which validates the theoretical analysis in 
computational complexity. But when m is increased from 
50 to 300, the running time of our-IISOMAP is shorter than 
those of other two algorithms. That is to say, the proposed 
algorithm would be effective only if m is limited to a small 
value (such as m � n).

B. Experiments on synthetic “Swiss roll” dataset

1000 points are sampled randomly from the “Swiss 
roll”. 600 points are used to be original points and other 
400 points are divided into 8 sets to be new data sets. That 
is to say, n is accumulated from 600 to 1000 by adding 
m = 50 points each time. After respectively running three 
algorithms 8 times, with a k-nn neighborhood of size 8, 
five sets of embedding results are shown in Fig. 5, and 
the residual variances and the running times are shown 
in Fig. 6.
It is apparent that (1) as more and more data points 
are accumulated, the decrease of their residual variances 
show that the accuracy of three algorithms are all gradu-
ally improved; (2) the law-IISOMAP is almost as accurate 
as rerunning ISOMAP, because it aims to construct same 
geodesic distances and embedding results with ISOMAP; 
(3) when more data are accumulated, the accuracy of our-
IISOMAP is slightly better than those of other two al-
gorithms because its neighborhood relationship is more 
enough; (4) the running time of our-IISOMAP is shortest 
in three algorithms, and its speed of growth is obviously 
lowest because m is fixed to a small value.

C. Experiments of data visualization

The CMU hands dataset includes a motion sequence 
with 481 images of a hand holding a rice bowl under over-
cast sky. Each image is 480 ∗512 grayscale, but for comput-
ing flexibility, we reduce images in 30 ∗32 grayscale. So the 
dataset can be seen as 481 points in a 960 high dimen-
sional space. Some typical images are shown in Fig. 7(a). 
300 points are used to be original points and the initial 
coordinates are computed by running ISOMAP, with a k-nn 
neighborhood of size 8. Then other 180 points are divided 
into 9 sets to be new data sets and three algorithms are 
used to update the coordinates. That is to say, n is accu-
mulated from 300 to 480 by adding m = 20 new samples 
each time. The 2-dimension embedding results are shown 
in Fig. 7(b)–(d), and the residual variances and running 
time are shown in Fig. 8. We can see that our-IISOMAP still 
can construct an accurate low-dimensional representation 
of the real images datasets in an efficient manner.

D. Experiments of classification on MNIST dataset

The MNIST database of handwritten digits has a train-
ing set of 60 000 examples and a test set of 10 000 exam-
ples. The digits have been size-normalized and centered in 
28 × 28 pixels grayscale images. The dataset is comprised 
of handwriting digit 0 ∼ 9 with its category information. 
500 different 2, 3, 5 and 6 images are randomly selected 
from the training set while 1000 corresponding images are 
selected from the testing set. 500 points in the testing set 
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Fig. 5. Comparing the embedding results of ISOMAP, law-IISOMAP and our IISOMAP running on “Swiss roll” dataset. (a) The embedding results of “Swiss 
roll” after re-running ISOMAP; (b) the embedding results of “Swiss roll” after running law-IISOMAP; (c) the embedding results of “Swiss roll” after running 
our IISOMAP.

Fig. 6. Comparing the residual variances and running times of ISOMAP, law-IISOMAP and our-IISOMAP running on “Swiss roll” dataset. (a) The residual 
variances varying with the iteration of running three approaches; (b) the running time varing with the iteration of running three approaches.
are used to be original points and the other 500 points are 
divided into 10 sets to be new data sets. After the three 
algorithms updating the coordinates, with a k-nn neigh-
borhood of size 8, the k-NN (k = 5) classifier is used for 
classification because of its simplicity, and the mean clas-
sification accuracies of k-NN are shown in Table 1.

Obviously, following the accumulation of the samples, 
the classification accuracies on the MNIST dataset are im-
proved. The classification accuracies of law-IISOMAP are 
always equal to those of re-running ISOMAP, because their 
embedding results are always same. The classification ac-
curacies of our-IISOMAP are better than those of other ap-
proaches, which verify the proposed approach further.

E. Experiments on large-scale dataset

In order to validate the efficiency of the proposed al-
gorithm running on the large-scale datasets, three algo-
rithms are running on 4 sets of data. The “Swiss roll” and 
“S-curve” are standard benchmark for manifold learning. 
The “Frey face” and “MNIST” datasets are typical real-world 
image datasets. When the same m new points are accumu-
lated to the same n original points, three algorithms are 
run respectively, and their residual variances and running 
time are compared in Table 2.

According to the comparison, the efficiency of our-
IISOMAP is the best in three algorithm, and its running 
time is less than those of other two algorithms obviously, 
especially when m is small. The running time of law-
IISOMAP is the longest in three algorithms, and it may be 
not fit for large-scale datasets.

6. Conclusion

We have presented a novel method to incrementally 
update the coordinates produced by ISOMAP. It can make 
full use of the previous computation results to construct 
the accurate low-dimensional representation of the new 
data sets in an efficient manner, when many new data are 
accumulated into the original date sets. Its performances, 
especially on the running time, are improved gradually. 
The main contributions in this paper include: (1) the dy-
namicalKNN algorithm which updating the neighborhood 
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Fig. 7. Comparing the embedding results of ISOMAP, law-IISOMAP and our-IISOMAP running on CMU hands dataset. (a) Typical CMU hand images; 
(b) 2D embedding results of ISOMAP; (c) 2D embedding results of law-IISOMAP; (d) 2D embedding results of our-IISOMAP.

Fig. 8. Comparing the residual variances and running times of ISOMAP, law-IISOMAP and our-IISOMAP running on CMU hands dataset. (a) The residual 
variances varying with the iteration of running three approaches; (b) the running time varing with the iteration of running three approaches.
graph simply and efficiently; (2) the algorithm to re-
estimate the geodesic distances matrix; (3) the algorithm 
to check out the short circuits and (4) the method to solve 
the eigen-decomposition problem. And the experiments 
on synthetic data as well as real world images datasets 
demonstrate the accuracy and efficiency of the algorithms.

There is still room to improve the accuracy or effi-
ciency of the proposed algorithm. The dynamical neighbor-
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Table 1
Comparison of the mean classification accuracies of k-nearest neighbor (k = 5). Following the accumulation of the samples, the classification accuracies are 
improved.

The number of running three approaches

1 2 3 4 5 6 7 8 9 10

ISOMAP 82.74 82.90 83.31 82.75 84.6 84.62 85.15 85.37 85.66 85.91
Law-IISOMAP 82.74 82.90 83.31 82.75 84.6 84.62 85.15 85.37 85.66 85.91
Our-IISOMAP 82.71 83.55 85.43 84.87 85.31 85.84 85.8 85.97 85.92 86.16

Table 2
Comparison of the residual variances and running time of ISOMAP, law-IISOMAP and our-IISOMAP running on large-scale datasets.

n m ISOMAP Law-IISOMAP Our-IISOMAP

Residual 
variance

Running 
time

Residual 
variance

Running 
time

Residual 
variance

Running 
time

Swiss roll 2000 500 4.2639e−04 252.2107 4.2639e−04 3.7568e+03 3.9637e−04 141.8703
S-curve 2000 500 7.6998e−04 227.5863 7.6998e−04 7.7918e+03 6.3271e−04 211.5516
Frey face 1500 300 0.2476 119.1626 0.2476 2.9894e+03 0.2396 88.8094
MNIST 4500 500 0.3265 1.7650e+03 0.3265 9.9391e+04 0.3258 1.2399e+03
hood can be used instead of k-NN. The update strategy for 
geodesic distances and coordinates can be more aggressive. 
In the future, we plan to continually improve its perfor-
mances and extent the approach to large data.
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