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Abstract

In this paper, we present a new fuzzy clustering algorithm for categorical data. In the algorithm, the objective function of the fuzzy
k-modes algorithm is modified by adding the between-cluster information so that we can simultaneously minimize the within-cluster
dispersion and enhance the between-cluster separation. For obtaining the local optimal solutions of the modified objective function,
the corresponding update formulas of the membership matrix and the cluster prototypes are strictly derived. The convergence of
the proposed algorithm under the optimization framework is proved. On several real data sets from UCI, the performance of the
proposed algorithm is studied. The experimental results illustrate that the algorithm is effective and suitable for categorical data sets.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Cluster analysis is a branch in statistical multivariate analysis and unsupervised machine learning which has extensive
applications in various domains, including financial fraud, medical diagnosis, image processing, information retrieval
and bioinformatics. The goal of clustering is to group a set of objects into clusters so that the objects in the same cluster
have high similarity but are very dissimilar with objects in other clusters. Therefore, data clustering can help us to gain
insight into the distribution of data. Various types of clustering algorithms have been developed in the literature (e.g.,
[25] and references therein). Recently, increasing attention has been paid to clustering categorical data, since this task
is of great practical relevance in several fields ranging from statistics to psychology [1-3,16,31].

There are a number of challenges in clustering categorical data (which were introduced in [10,12]). First, the lack
of an inherent order on the domains of the individual attributes prevents the definition of a notion of similarity, which
measures resemblance between categorical data objects. Furthermore, for numerical data, the prototype of a cluster
often consists of the mean of the objects in each attribute domain of the cluster, which is used to represent the cluster.
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However, it is infeasible to compute the mean for categorical values. This implies that the techniques used in clustering
numerical data are not directly applicable to categorical data. Therefore, it is widely recognized that designing clustering
techniques to tackle categorical data is very important for many applications.

Several algorithms for categorical data have been reported [4-6,8,13,15,18,21,22]. Among them, the k-modes cluster-
ing algorithm [21,22] is one of the most efficient clustering methods, which was proposed by Huang [21] in 1997. This
algorithm is an extension of the k-means clustering algorithm [29] by using a simple matching dissimilarity measure
for categorical objects, modes instead of means for clusters, and a frequency-based method for updating modes in the
clustering process to minimize the clustering cost function. These treatments have removed the numeric-only limitation
of the k-means algorithm, which enable the k-means clustering process to effectively cluster large categorical data sets
from real world databases. Furthermore, a fuzzy version of the k-modes clustering algorithm has been reported in [23],
where each pattern is allowed to have memberships in all clusters rather than just a distinct membership to a single
cluster. The membership matrix provides more information to help the users to decide the core and boundary objects
of clusters. Such information is extremely useful in applications [17,32,36], such as data mining in which the uncertain
boundary objects are sometimes more interesting than objects which can be clustered with certainty. Lee et al. [28]
introduced a generalization of the k-modes type clustering algorithm with fuzzy p-mode prototypes. A fuzzy p-mode
cluster prototype at a categorical attribute is expressed as a list of p categorical values that have larger frequencies than
others in the cluster.

The fuzzy k-modes clustering algorithm begins with an initial set of cluster prototypes and uses the alternating
minimization method to solve a non-convex optimization problem in finding cluster solutions [25]. However, in the
clustering process, the update formulas of the membership matrix and cluster prototypes are based on the within-
cluster information only, i.e., the within-cluster compactness. The between-cluster information, i.e., the between-cluster
separation, is not considered, which often results in the clustering results with weak between-cluster separation. For
example, while computing the membership of an object to a cluster, we only consider the distance between the object
and the cluster prototype and overlook the overlapping degrees between the cluster and other clusters. If the cluster has
weak separation with other clusters, we should reduce the memberships of the objects in the boundary area between
the cluster and other clusters to it. When selecting a categorical value from an attribute domain to represent a given
cluster, we only consider the frequency of the categorical value within the cluster. However, the representability of
the attribute value in this cluster is likely to be overestimated because other clusters also contain this value with high
frequency. A detailed analysis on the importance of the between-cluster information will be provided in Section 2.

On the basis of the above idea, we will integrate the within-cluster and between-cluster information to update the
membership matrix and cluster prototypes, which can effectively produce the clustering results with high within-cluster
similarity and low between-cluster similarity. In this paper, the major contributions are as follows:

e Both the within-cluster and between-cluster information is employed to develop a new optimization objective func-
tion, which is used to derive a novel fuzzy clustering algorithm.

e The updating formulas of the membership matrix and cluster prototypes are derived, and the convergence of the
proposed algorithm under the optimization framework is proved.

o The performance of the proposed algorithm is investigated by using several real data sets from UCL.

The rest of this paper is organized as follows. A detailed review of the fuzzy k-modes algorithm is presented in
Section 2. In Section 3, a new objective function based on the between-cluster information is proposed to evaluate
the between-cluster separation. In Section 4, the new fuzzy k-modes algorithm is proposed and analyzed. Section 5
illustrates the performance of the proposed algorithm. Finally, a concluding remark is given in Section 6.

2. The fuzzy k-modes clustering algorithm

In [22], Huang et al. provided the notations of categorical data which are introduced as follows:
Let U = {x1,X2, ..., X,} be a set of n objects, A = {ay, az, ..., an} be a set of m attributes and Daj be the domain
of attribute a; for 1< j<m. Here, we only consider two general types of the attribute domains, numerical and cate-
gorical, and assume that other types used in database systems can be mapped to one of these two types. A numerical
domain consists of real numbers. A domain Da_/. is defined as categorical if it is finite and unordered, i.e., Da_/. =
1) q®

; JEREEE aﬁn" )} where n; is the number of categories of attribute a; for 1< j<m. For any 1< p<qg=<n;, either
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a'? = 4P or a'? ;ﬁaiq) For 1<i<n,objectx; € U canbe represented as a vector [x;1, X;2, ..., Xim], Where x;j € Dq;

is the value of object x; in attribute a; for 1< j<m. If each attribute in A is categorical, U is called a categorical data set.

In the fuzzy k-modes algorithm, the objective of clustering the objects in U into k clusters is to find W and Z that
minimize [22]

k n
FOW.Z)=>"Y " wid(@.x) 0
I=1 i=1
subject to
wy; € [0, 1], I<l<k,1<i<n,
k
Z:w” =1, 1<i<n, o

n
0< > wy <n, I<I<k,
i=1

where n is the number of objects in U; k(<n) is a known number of clusters; o € (1, 4+00) is the fuzzy index;

W = [w;;] is a k x n real matrix, wy; is the membership degree of x; to the I/th cluster; Z = {z1, z, ..., zx} € R,
where R = Dy, X Dy, X -+ X Dy, and z; = [z;1, 212, ..., Zim] 18 the Ith cluster prototype with categorical attributes
ai, asz, ..., an; d(z;, X;) is the simple matching dissimilarity measure between the object x; and the prototype z; of the
Ith cluster which is defined as

m
d(z1, %) =Y _ 8z, xij). 3)

Jj=1

where
L, zi; #xij,

S(z1j, xij) = { ! 4
Goxp =g o “

Minimization of F with the constraints in (2) forms a class of constrained nonlinear optimization problems whose
solutions are unknown. The usual method towards optimization of F is to use partial optimization for Z and W. In this
method, we first fix Z and find necessary conditions on W to minimize F. Then, we fix W and minimize F with respect
to Z. The above optimization problem can be solved by iteratively solving the following two minimization problems:

Problem P;. Fix Z = 7, solve the reduced problem F(W, 7 ) with the constraints in (2);
Problem P,. Fix W = W, solve the reduced problem F (W, Z) with the constraints in (2).

Given Z = Z , if we compute W as follows [23]:

1 if d(Z;,x;) =0,
if d(zn,x;) =0, h#1,
Wy = " (%)
| Zh 1 d(ZZ’Xl) e if d(zp, x;)#0, 1<h<k,
d(Zh, Xl) - -
for1<i<n, 15]5 k, problem Pj is solved.
Given W = W, if we compute Z as follows [23]:
Zl/ —a( eDaj» (6)
where
Zx]_a( XU l“ n;j ij_a( XU 1“
= max , 7

ineU wli g=1 ineU wli

for 1< j<m, 1<I<k, problem P; is solved.
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In (7), the term fj;, = )

Ith fuzzy cluster. Here, a fuzzy cluster is represented by “mode”, which is composed of the attribute value that occurs
most frequently in each attribute domain of the cluster.
This process is formalized in the fuzzy k-modes algorithms as follows [22]:

o o : (r)
X =a3~r),x,- v Wi/ le_ <y Wy; can be seen as the frequency of the categorical value a;’in the

Step 1. Choose an initial point set Z() € R. Determine W' such that F(W, Z(") is minimized. Set r = 1.

Step 2. Determine ZU*1 such that F(W®, ZU+D) is minimized. If F(W®, Z(+TD) = F(W®, Z®), then stop;
otherwise goto Step 3.

Step 3. Determine WU*D such that F(WY+D | Zz0+D)y is minimized. If F(WUFD, zt+Dy = p(w®  z+D) then
stop; otherwise set t = ¢ + 1 and goto Step 2.

The fuzzy k-modes clustering algorithm performs iteratively the partition step and the cluster prototypes generation
step until convergence. The computational complexity of the algorithm is O(nmkt) where ¢ is the number of iterations
in the clustering process.

Itis noted that the fuzzy k-modes clustering algorithm faces the local minimum problem. That is, the clustering results
guarantee local minimum solutions only. Its performance heavily depends on the initial cluster prototypes. Furthermore,
according to (5) and (7), we remark that the update formulas of W and Z are only based on the within-cluster information.
However, good cluster criteria should have high within-cluster similarity and low between-cluster similarity. The fuzzy
k-modes algorithm ignores the between-cluster information, which often results in weak separation between clusters.

Let us demonstrate the importance of the between-cluster information from the following two respects. The one is
to compute W when Z is fixed. The other is to compute Z when W is fixed.

(1) According to Fig. 1, we see that d(x;, z) is equal to d(x;, zp). If the dissimilarity between the object and the
cluster prototypes is only taken into account to compute W, z; has no more representability to x; than z,. However,
the separation between z and other cluster prototypes is weak, compared to that between z; and other cluster
prototypes. In order to obtain a clustering result with low between-cluster similarity, we should take advantage
of the between-cluster information to enhance the representability of z; and reduce that of z;, which makes the
objects in the boundary area between Cluster 1 and Cluster 2 more prone to belong to z; than z;.

(2) When giving W to compute Z, the representability of each categorical value in a cluster is evaluated only based
on its frequency in the cluster. This will lead to high importance when the value occurs frequently in this cluster.
However, the representability of the categorical value in this cluster is likely to be overestimated because other
clusters also contain this value with high frequency. For example, Fig. 2 shows an attribute distribution in the
three clusters. The categorical value C is the most frequent value in Cluster 1. However, the categorical value
C also occurs frequently in other clusters. In contrast, although the categorical value D is less frequent than the
categorical value C in Cluster 1, the categorical value D mostly occurs in Cluster 1. Therefore, the categorical value
D should have more representability in Cluster 1 than the categorical value C. This means that when we evaluate
the importance of a categorical value in a cluster, we should not only consider the within-cluster information,
i.e., the frequency in the cluster, but also consider the between-cluster information, i.e., its distribution between
clusters.

— Cluster1
— Cluster2

Cluster 3
— Cluster4

Fig. 1. The importance of the between-cluster information in computing W.
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ig. 2. The importance of the between-cluster information in computing Z.

According to the above analysis, we see that adding the between-cluster information to the iterative process can
help us to obtain better W and Z. Therefore, in the next sections, we will first give the definition of the between-
cluster information. Furthermore, a novel fuzzy clustering algorithm for categorical data will be proposed, where the
within-cluster and between-cluster information is simultaneously considered.

3. The between-cluster information

We will present an objective function to evaluate the between-cluster separation which is defined as follows:

k n
BW.Z)=> "> wiS() 8)

I=1i=1

where S(z;) denotes the similarity between the /th cluster represented by z; and other clusters, Y 7_, w}: is a weight of
S(z;), which reflects the number of objects in the /th fuzzy cluster.
The similarity between the /th cluster and other clusters is generally measured by using the mean of the similarity

between z; and other cluster prototypes as

k

1
S@)=r—7 Y s@.m). )

h=1,h#1
Here, s(z;, z3,) is a similarity measure between z; and z; which is defined as
m
s(zy,2p) = Z d(21j5 Znj)s
j=1
where

1, zi; = zn,

O(zij, znj) = 0. 2%

Similar to solving (1), the function B with the constraints in (2) is minimized by iteratively solving the following

two minimization problems:
Problem P;. Fix Z = VA , obtain W to minimize B(W, 2);

Problem P;. Fix W = W, obtain Z to minimize B(W, Z).

Please cite this article as: L. Bai, et al., A novel fuzzy clustering algorithm with between-cluster information for categorical data, Fuzzy Sets
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Given Z = Z fixed, we can obtain the minimum value of B(W, Z) by the Lagrangian multiplier technique:
B(W, ))—Zzwl,S(mHZl (th - 1) (10)
=1 i=1 i=1

where A = [11, 42, ..., 4,] is the vector containing the Lagrangian multipliers. If (W, 2) is a minimizer of ®(W, A),
the gradients in both sets of variables must vanish. Thus,

OD(W, 1) (1)

— =ow; 'S@)+4 =0, 1<I<k, 1<i<n, (11
owyi
and
OD(W, ) .
o0 = E w; —1=0, 1<i<n. (12)

From (11) and (12), we obtain
1
S(Z ) ] 1/(a—1)

for 1</<k and 1A§ i<n. This shows that (13) is the necessary condition for the optimization problem Ps to reach its
minimum when Z is fixed.
Given W = W fixed, let

szl — Z &z, znj) (14)

i=l1 h 1,h#1

A

Wi =

13)

for 1</<k and 1<j<m Then,

k
B(W, Z)—Zth — Z s(zy, zp)
I=1 i=1 h 1Lh#k
k m
_Zzwll _ Z ZQS(ZIJ’Zh])
=1 i=1 h Lh#k j=1
m k n 1 k
=> > i > by )
j=11=1 i=I h=1,h#k

According to (14), we see that if one wants to compute z;; to minimize k;, ;, z;; must be given for 1< h #1< k. However,
we do not know zj;.

To compute z;; independent of z;,;(1<h #[<k), we consider to employ the mean of the similarity between z; and
all the objects in the data set to evaluate the separation between clusters, instead of the mean of the similarity between
z; and other cluster prototypes. That is,

n

1
S@) =~ 5@, %), (15)

i=1

Next, we will analyze whether S(z;) can be used to measure the separation between clusters. Given a set U of
objects, if there is a data point v € R which can minimize the mean of the similarity between it and all the objects in
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U, i.e., miny(1/|U|) ineU s(v, X;), the data point will be used as the representative point of U to reflect the global
features of U. Therefore, the larger S(z;) is, the closer z; is to the representative point of U, and the more global features
of U z; reflects. This means that if S(z;) is large, z; reflects not only some features of the /th cluster but also some
features of other clusters. In this case, z; may be a boundary point among clusters, which has weak representability in
the Ith fuzzy cluster. If it is selected as a representative point of the /th fuzzy cluster, the separation between the /th
fuzzy cluster and other clusters will be weak.

On the basis of the above idea, the between-cluster separation is evaluated by

k n

BW.Z)=>>" wf‘,% > sz xp).

=1 i=1 p=1

Given W = W fixed, let

n n
1
K;,j = Z wz(f; Z dzij, Xpj) (16)
i=1 p=1
for 1<l<k and 1< j<m. Then,
k n 1 n
BOW,Z)=3 Y iji~ s, xp)
=1 i=1 p=1
k n

Aal n m
=Zzwzi; DD by xp)

=1 i=1 p=1j=1

m Aal n
= p=

Since each «; F is nonnegative and independent of each other. Thus, minimizing B (W, Z)is equivalent to minimizing
7, ;- Note that

n 1 n
/ ~ O
Kij= Z Wi, Z D(zijs Xpj)
p=1

i=1

:Z@gl DR T E D S T

n

i=l1 p=1,xpj=z; P=]-,ij7lej
n | n
Ao
=> Wi > by ap)
i=1 p=1,xpj=z;

n
a1
:Zwlxi;|{xi|xij =z;,%; € U}

i=1

It is clear that K; j is minimized iff z;; = ay) which satisfies

"
[xifxiy = a,x; € U)| = min{x;|xi;; = ai’, x; € U} (17)

forl<j<mand 1<I<k.
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4. A novel fuzzy k-modes algorithm

In this section, we will present a new fuzzy k-modes algorithm for categorical data. In the new algorithm, we modify
the objective function (1) by adding the between-cluster information to it so that one can simultaneously minimize the
within-cluster dispersion and enhance the between-cluster separation.

The new objective function is written as follows:

FW,Z,))=FW,Z)+yB(W, Z)

n n

k n
=Z wﬁd(zl,xi)-i-vzz:wfi%Zs(zl,xp) (18)

=1 i=1 =1 i=1 p=1

subject to the same conditions as in (2), where the parameter 7 is used to maintain a balance between the effect of the
within-cluster information and that of the between-cluster information on the minimization process of (18). It has the
following features in control of the clustering process:

e When y > 0, the between-cluster similarity term B(W, Z) will play an important role in the minimization of (18). The
clustering process will attempt to assign each object to a cluster farther from the representative point of U to make the
between-cluster similarity term smaller. When the locations of objects are fixed, in order to minimize the term, the
clustering process will move the cluster prototypes to some locations which is farther from the representative point of
U. However, the value of y should not be too large. The reason is that when 7 is very large so that the between-cluster
similarity term dominates the clustering process, the cluster prototypes are moved to the locations of outliers in U.

e When y = 0, the between-cluster similarity term will not play any role in the clustering process. The new objective
function (18) will become the original objective function (1). The clustering process turns to minimize the within-
cluster dispersion.

e When y < 0, the clustering process will try to move the cluster prototypes to the location of the representative point
of U. This is contradictory to the original idea of clustering. Therefore, y cannot be smaller than zero.

The above properties tell us that an appropriate y can enhance the performance of the fuzzy k-modes algorithm in
clustering categorical data. However, the appropriate setting of y depends on the domain knowledge of the data sets,
it is difficult to directly choose a suitable value. Therefore, in the new clustering algorithm, we will not select a fixed
7y value but a sequence I" which includes several y values. In clustering process, a larger y value will be first used
to obtain a clustering result (W, Z). Furthermore, we will gradually reduce the y value and weaken the effect of the
between-cluster information in clustering the given data set until the y value is equal to 0 which makes minimizing
the new objective function (18) is equivalent to minimizing the original objective function (1). This means that in the
proposed clustering algorithm, instead of directly minimizing the objective function (1) with the constraints in (2), we
consider a scheme of obtaining a solution of the problem at the limit of y | 0 of

min F,,(W, Z, 7) subject to (2).
The basic description of the scheme is as follows:

Step 1. Let I = {y, 2, ..., },} be a sequence such that y; > y, > --- > y, = 0. Choose an initial point set Z; C R
and sete = 1. o
Step 2. Use Z, as an initial set of cluster prototypes to compute (W,, Z,) which is a local optimal solution of

min F,(W, Z, y,) subject to (2).
Step 3. Set Zoy1 = 26. If e>o0, then output (We, 26) and stop; otherwise set e = e + 1 and goto Step 2.
According to the above description, we know that since
Fa(W, Ze, 7002 Fa(We, Ze, 1002 Fa(W, Zes Yoy D2 Fa(Wet, Ze1, Jesn)s

the sequence Fy(, -, -) produced by the above procedure is decreasing. This indicates that we can search a good
clustering result by gradually updating W, Z and y. When the initial set Z, of cluster prototypes and y, are given,
for 1<e<o, a key issue is how to derive rigorously the updating formulas of W and Z and guarantee that a local
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minimal solution of F,,(W, Z, y,) can be obtained in a finite number of iterations. The matrices W and Z are calculated
according to the following two theorems:

Theorem 1. Let Z and 7. be fixed and consider the problem:

min F,(W, Z.7,) subject to (2).

The minimizer W is given by

1 n
17 d(ilsxi)—i_ﬂ))e_ Z S(il,Xp)zo,
n [7:1
1 2
0, d(ih,xi)-l—ve; Y s(@n,xp) =0, h#l,
A p=1

Wy =
li 1

. 1 .
d(Z[, Xi) + ye; Z;lj:l S(Z[, Xp)

= Otherwise.

k
Y=t

N 1 .
d(Zh, Xi) + ye; Z;:] S(Zh, Xp)

Proof. Given that Z fixed, the Lagrangian multiplier technique is used to obtain the following unconstrained mini-
mization problem:

n

k n n k
PW,2) =) wj|d@,x)+ ye% Y s xp) |+ Y A <Z wyi — 1) : (19)
=1

I=1 i=1 p=1 i=1

where A = [41, 12, ..., 4,] is the vector containing the Lagrangian multipliers. If (W, 2) is a minimizer of IS(W, A),
the gradients in both sets of variables must vanish. Thus,

OP(W, ) _ . | i .
Th_:aw}f‘ K d(zz,xi>+vegzls<zl,xp> +72i =0, 1<l<k, l<i<n, (20)
p:
and

~ k

0P(W, J) .

——==>w;—1=0, I1<i<n. 21
o 2 wyj <i<n (21

From (20) and (21), we obtain
1

li)li = 1/(1_1) (22)

. 1 .
Zk d(zlsxi)—i_’ye; Z;:] S(Zlvxp)
h=1

. 1 .
d(Zh, Xi) + ye; ZZ:] S(Zh, Xp)

forl<i<nand 1<I<k.
ThisA shows that (22) is the necessary condition for the optimization objective function (18) to reach its minimum
when Z and v, are fixed and d(z;,, x;) + 7,(1/n) Z';,zl s(Zp,xp)#£0for I<h<k. O

Theorem 2. Let W and Ve be fixed and consider the problem:

mZin FH(W, Z,v,) subject to (2).
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The minimizer Z is given by

P ()]

j = aj € Dajv

where

> W =7~ Zw,,|{x,,|x,,,_a ,X, € U}|

_ () l—l

)

N

1 « (
P - q
w?i_yezzw;(i|{xp|xpj:aj Xp € UM, 1=g=<nj,

i=1,xij=a;-q)
for 1< j<mand 1<I<k.

Proof. Given that W fixed, all the inner sums of the quantity

k n n
DO iy | da, xi) + ye% > s, xp)

=1 i=1 =1
k
= Zzzwll 5(21,,)61,)4‘% Z¢(lezxp1) s
=1 i=1 j=1

are nonnegative and independent. Minimizing the quantity is equivalent to minimizing each inner sum. We write the /,
jthinner sum (1</<kand 1< j<m) as

Z wlz 5(Zl]a Xij) + Ve Z ¢(le’ Xpj)

i=1 p

When f(z, a;) = a(f’) we have

n

WZ,j = Z wll + /e Zwlz {Xplxp] = a() Xp € U}

i=1.x;#a" s
n n n
_ Ao o 1 Ao () U
=2 W= wy; +Ve; wiil{(Xplxpj = a;’, xp € U}
i=1 i=l,xij=a5.q) i=1
n n

:Zﬁ)fi_ Z Zw,ll{xplxp]_a . Xp € U}

1 (@) l—l
l_l,xl]_aj

When W is given, > iy W, is fixed. It is clear that iy, ; is minimized iff

n

Yoo - Zw,l|{xp|xp, =a.x, e U}

i=1,x,'j=a§-q) l_l

is maximal for 1< g<n . The result follows. []

Combining Theorems 1 and 2 forms an iterative optimization method to minimize the objective function (18) in which
the partition matrix W is computed according to Theorem 1 and the set Z of cluster prototypes is updated according to
Theorem 2 in each iteration.
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The new objective function value

Iteration

Fig. 3. The objective function values against the iterations with different initial guesses.

Theorem 3. For any given y,(>0), the optimization method converges to a local minimal solution of F,, in a finite
number of iterations.

Proof. We first note that there are only a finite number (N = ]_[;":1 n;) of possible cluster prototypes (modes). We

then show that each possible prototype appears at most once in the iterative process. Assume that Z(1) = Z(®)_ where
1 #t. We can compute the minimizers W) and W) for Z") and 7, respectively. Therefore, we have

Fn(W(”), Z(ll)’ V) = Fn(W(Il)’ Z(ZZ), 7,) = Fn(W(m, Z(fz)’ 70)-

However, the sequence Fy(-, -, 7,) generated by the iterative method is strictly decreasing. Hence, the result
follows. [

In Fig. 3, we show the 100 curves, where each curve refers to the objective function F,, values against the iterations
of the above method with different initial cluster prototypes on the soybean data set from UCI. It is clear from the
figure that the objective function values are decreasing in each curve, which is consistent with our results in Theorems 1
and 2. We also see in Fig. 3 that the iterative process stops after a finite number of iterations, i.e., the objective function
values do not decrease any more. This is exactly the result we showed in Theorem 3. Therefore, the iterative process
guarantees to converge to a local minimal solution.

The proposed clustering algorithm is scalable to the number of objects, attributes or clusters. This is because the
proposed algorithm only adds a new computational cost to the fuzzy k-modes clustering process to calculate the
between-cluster separation. The runtime complexity can be analyzed as follows. We only consider the three major
computational steps:

o Computing the between-cluster information. We have

1 n
S(z) =~ Pz:jlsm, X,)

% Z Z D21, Xpj)

j=1p=1

1 m n
;ZZHXPMM = 21;,%, € U}|.

j=1p=1
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Therefore, before implementing the proposed algorithm, we calculate and save the frequency of each categorical
value of each attribute in U, which will be used to update W and Z. The step takes O(n Z';’zl n ;) operations.

e Updating the membership matrix. Given the cluster prototypes Z, compute the memberships in Theorem 1 for each
object in all k clusters. Thus, the computational complexity for this step is O (mnk) operations.

e Updating the cluster prototypes. Given the membership matrix W, updating cluster prototypes is finding the modes of
the objects in the same cluster. Thus, for k clusters, the computational complexity for this step is O (mnk) operations.

If one needs 7, iterations to obtain a local minimal solution of F;, foreach y,(e = 1, 2, ..., 0), the total computational
complexity of the proposed algorithm is O (n ZTZI nj+mnk Y o_, t.). This shows that the computational complexity
increases linearly with the number of objects, attributes or clusters.

5. Experimental analysis

The main aim of this section is to demonstrate the performance of the new fuzzy k-modes algorithm (NFKM) by
a thorough experimental study on the real categorical data sets. In Section 5.1, the test environment and the data sets
used are described. In Section 5.2, we introduce several validity indices which are used to evaluate the effectiveness
of the clustering results. In Section 5.3, we present the comparisons of the proposed algorithms with the hard k-modes
algorithm (HKM) [21], the weighting k-modes algorithm (WKM) [24] and the fuzzy k-modes algorithm (FKM) [23]
on the given data sets.

5.1. Test environment and data sets

To ensure that the comparisons are in a uniform environmental condition, we give the parameters setting for these
clustering algorithms as follows:

(1) We set the number of clusters is equal to the number of classes for each of the given data sets.

(2) Due to the fact that the performance of these algorithms depends on initial cluster prototypes, we randomly select
100 initial sets of cluster prototypes and carry out 100 runs of each algorithm on each data set, respectively. In each
run, the same initial cluster prototypes are used in different algorithms.

(3) For the fuzzy clustering algorithms, it is necessary to set the fuzzy index o appropriately. Theoretical and empirical
results on the study of setting the fuzzy index have been obtained for numerical data [7,9,20,34,35]. Among them,
Pal and Bezdek [7] gave heuristic guidelines regarding the best choice for o, suggesting that it is probably in
the interval (1.5, 2.5). However, the fuzzy clustering algorithms for categorical data have bad performance in
the interval. This indicates that the interval is not appropriate for clustering categorical data. Unfortunately, the
corresponding theoretical study for categorical data has not been reported. In [23], Huang and Ng suggested to
specify o = 1.1 since they tried several values of o and found that o = 1.1 provides the least value of the objective
function (1). In the following experimental analysis, we will test the performance of the proposed algorithm with
o e (1,3).

Table 1

The nine UCI data sets.

Data set The number of objects The number of categorical attributes The number of clusters
Lung cancer 32 56 3
Small soybean 47 35 4
Teaching 151 5 3
Heart disease 303 8 2
Dermatology 366 33 6
Credit approval 690 8 2
Breast cancer 699 9 2
Letters (E,F) 1543 16 2
Mushroom 8124 22 2
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Table 2
Means of AC, PR, RE for 100 runs of four algorithms on the nine data sets.

Data set Index HKM WKM FKM NFKM
Lung cancer AC 0.5313 0.5497 0.5306 0.6012
PR 0.5880 0.5965 0.5885 0.6688
RE 0.5374 0.5626 0.5306 0.5954
Small soybean AC 0.8553 0.8613 0.8336 0.9264
PR 0.9020 0.8948 0.8840 0.9426
RE 0.8407 0.8471 0.8176 0.9216
Teaching AC 0.4137 0.4124 0.4166 0.4528
PR 0.5005 0.5028 0.4818 0.5122
RE 0.4153 0.4126 0.4344 0.4624
Heart disease AC 0.7462 0.7472 0.7487 0.7882
PR 0.7573 0.7566 0.7556 0.7890
RE 0.7446 0.7455 0.7464 0.7872
Dermatology AC 0.6869 0.6854 0.6698 0.7423
PR 0.7633 0.7692 0.7286 0.8443
RE 0.5750 0.5765 0.5566 0.6100
Credit approval AC 0.7517 0.7513 0.7491 0.7701
PR 0.7629 0.7513 0.7638 0.7701
RE 0.7638 0.7715 0.7629 0.7729
Breast cancer AC 0.8482 0.8530 0.8343 0.9446
PR 0.8731 0.8733 0.8613 0.9456
RE 0.7893 0.7968 0.7665 0.9312
Letters AC 0.6910 0.6930 0.6790 0.7458
PR 0.7016 0.7050 0.6843 0.7512
RE 0.6911 0.6932 0.6790 0.7461
Mushroom AC 0.7176 0.7106 0.7001 0.8298
PR 0.7453 0.7414 0.7166 0.8469
RE 0.7132 0.7056 0.6947 0.8257
(4) Before implementing the proposed algorithm, we need to provide a sequence I' = {y, 75, ..., },}. We set y; = 1,

Yo=0andy, =7, —0.1,1<e < o.

On the basis of the above parameters setting, we use the nine standard data sets (shown in Table 1) obtained from
the UCI Machine Learning Repository [14] to test the performance of the proposed algorithm. These data sets are
introduced as follows:

Lung cancer data. The data set was used by Hong and Young to illustrate the power of the optimal discriminant
plane even in ill-posed settings. This data set has 32 instances described by 56 categorical attributes. It contains three
class.

Small soybean data. The data set has 47 records, each of which is described by 35 attributes. Each record is labeled as
one of the four diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora Rot. Except
for Phytophthora Rot which has 17 records, all other diseases have ten records each.

Teaching data. The data set consists of evaluations of teaching performance over three regular semesters and two sum-
mer semesters of 151 teaching assistant (TA) assignments at the Statistics Department of the University of Wisconsin-
Madison. The scores were divided into three roughly equal-sized categories (“low”, “medium”, and “high”) to form
the class variable.
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Table 3
Standard deviations of AC, PR, RE for 100 runs of four algorithms on the nine data sets.

Data set Index HKM WKM FKM NFKM
Lung cancer AC 0.0485 0.0526 0.0487 0.0375
PR 0.0744 0.0767 0.0762 0.0477
RE 0.0582 0.0652 0.0558 0.0421
Small soybean AC 0.1101 0.1072 0.1135 0.0889
PR 0.0793 0.0815 0.0836 0.0656
RE 0.1263 0.1265 0.1289 0.1036
Teaching AC 0.0274 0.0277 0.0322 0.0274
PR 0.0398 0.0471 0.0394 0.0394
RE 0.0295 0.0300 0.0320 0.0348
Heart disease AC 0.0819 0.0825 0.0830 0.0266
PR 0.0788 0.0806 0.0792 0.0276
RE 0.0869 0.0871 0.0896 0.0125
Dermatology AC 0.0735 0.0683 0.0746 0.0481
PR 0.0777 0.0731 0.0899 0.0437
RE 0.0800 0.0770 0.0774 0.0735
Credit approval AC 0.0936 0.0952 0.0919 0.0487
PR 0.0850 0.0952 0.0948 0.0524
RE 0.1005 0.1100 0.1067 0.0465
Breast cancer AC 0.0735 0.0843 0.1028 0.0157
PR 0.0606 0.0808 0.0814 0.0084
RE 0.1058 0.1194 0.1522 0.0254
Letters AC 0.0665 0.0678 0.0779 0.0505
PR 0.0698 0.0717 0.0794 0.0532
RE 0.0667 0.0680 0.0780 0.0507
Mushroom AC 0.1237 0.1204 0.1260 0.1113
PR 0.1336 0.1321 0.1361 0.1184
RE 0.1239 0.1208 0.1267 0.1113

Heart disease data. The data set generated at the Cleveland Clinic has 303 instances with eight categorical and five
numerical features. It contains two classes: normal (164 data objects) and heart patient (139 data objects). In the test,
all numerical attributes are removed from the data set.

Dermatology data. The data set describes clinical features and histopathological features of erythemato-squamous
diseases in dermatology. It contains 366 elements and 33 categorical attributes. It has six classes: psoriasis (112 data
objects), seboreic dermatitis (61 data objects), lichen planus (72 data objects), pityriasis rosea (49 data objects), cronic
dermatitis (52 data objects) and pityriasis rubra pilaris (20 data objects).

Credit approval data. The data set contains data from credit card organization, where customers are divided into two
classes. It is a mixed data set with eight categorical and six numeric features. It contains 690 data objects belonging to
two classes: negative (383 data objects) and positive (307 data objects). In the test, we only consider the categorical
attributes on the data set.

Breast cancer data. The data set was obtained from the University Medical Center, Institute of Oncology, Ljubljana,
Yugoslavia. It consists of 699 data objects and nine categorical attributes. It has two classes: Benign (458 data objects)
and Malignant (241 data objects).
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Table 4
Means of PC for 100 runs with respect to different o values on the nine data sets.

o Algorithm Lung cancer Small soybean Teaching Heart Disease Dermatology Credit approval Breast cancer Letters (E, F) Mushroom
1.1 FKM 0.8106 0.9148 0.6737 09145 0.7035 0.8904 0.8743 0.7543 0.8744
NFKM  0.8296 0.9439 0.7409 0.9293 0.8181 0.8847 0.9237 0.8017 0.9206
1.3 FKM 0.4632 0.6828 0.4626 0.7576 0.3075 0.7026 0.7366 0.5512 0.6789
NFKM  0.5002 0.6995 0.5349  0.7905 0.3749 0.7405 0.8222 0.6012 0.7254
1.5 FKM 0.3781 0.5061 0.3828  0.6604 0.2000 0.6166 0.6360 0.5157 0.5726
NFKM  0.3863 0.5151 0.4441 0.7063 0.2172 0.6468 0.7453 0.5379 0.6346
1.7 FKM 0.3526 0.3941 0.3602 0.6047 0.1725 0.5702 0.5744 0.5060 0.5366
NFKM  0.3538 0.4136 0.3801 0.6473 0.1800 0.5945 0.6447 0.5165 0.5730
1.9 FKM 0.3425 0.3473 0.3527 0.5750 0.1681 0.5464 0.5423 0.5034 0.5212
NFKM  0.3446 0.3667 0.3669 0.6026 0.1681 0.5677 0.5429 0.5061 0.5490
2.1 FKM 0.3391 0.3129 0.3496  0.5563 0.1675 0.5347 0.5362 0.5022 0.5134
NFKM  0.3393 0.3406 0.3587 0.5798 0.1676 0.5515 0.5372 0.5035 0.5234
2.3 FKM 0.3368 0.2974 0.3491 0.5442 0.1672 0.5267 0.5325 0.5015 0.5080
NFKM  0.3371 0.3313 0.3541 0.5648 0.1673 0.5421 0.5336 0.5023 0.5164
2.5 FKM 0.3359 0.2740 0.3488 0.5363 0.1671 0.5230 0.5301 0.5011 0.5055
NFKM  0.3368 0.3285 0.3517 0.5544 0.1672 0.5349 0.5313 0.5016 0.5124
2.7 FKM 0.3349 0.2708 0.3488 0.5319 0.1670 0.5207 0.5284 0.5008 0.5039
NFKM  0.3505 0.3274 0.3528 0.5470 0.1678 0.5300 0.5302 0.5013 0.5098
29 FKM 0.3349 0.2648 0.3463 0.5284 0.1670 0.5189 0.5272 0.5007 0.5027
NFKM  0.3817 0.3250 0.3508 0.5415 0.1728 0.5264 0.5289 0.5010 0.5079

Letters data. The data set contains character image features of 26 capital letters in the English alphabet. We take
data objects with similar looking alphabets, E and F alphabets from this data set. There are 1543 data objects (768 E
and 775 F) described by 16 attributes which are integer valued and seen as categorical attributes in the experiments.

Mushroom data. The data set includes descriptions of hypothetical samples corresponding to 22 species of gilled
mushrooms in the Agaricus and Lepiota Family. It consists of 8124 data objects and 22 categorical attributes. Each
object belongs to one of two classes, edible (4208 objects) and poisonous (3916 objects).

5.2. Validity indices

To evaluate the performance of clustering algorithms in the experiments, we consider the five validity indices
[26,30,33]: accuracy (AC), precision (PR), recall (RE), partition coefficient (PC) and partition entropy (PE).

The first three indices are external criteria which take advantage of the true class labels to evaluate the clustering
result on each of these given data sets. If the cluster result is close to the true class distribution, then the values of these
evaluation measures are high. The three validity indices are defined as follows [33]:

k a k a
_ Y a PR — 2= <a1+b1> RE — 2= <dl+01>

AC , ,
n k k
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Table 5
Standard deviations of PC for 100 runs with respect to different o values on the nine data sets.

o Algorithm  Lung Small Teaching  Heart Dermatology  Credit Breast Letters Mushroom
cancer soybean Disease approval  cancer (E, F)
1.1 FKM 0.0407 0.0525 0.0841 0.0370 0.0651 0.0539 0.0883 0.0338 0.0449
NFKM 0.0218 0.0431 0.0856 0.0083 0.0217 0.0287 0.0001 0.0212 0.0094
1.3 FKM 0.0246 0.0650 0.0471 0.0424 0.0466 0.0534 0.0991 0.0164 0.0474
NFKM 0.0214 0.0577 0.0137 0.0032 0.0182 0.0152 0.0006 0.0143 0.0164
1.5 FKM 0.0128 0.0473 0.0253 0.0381 0.0186 0.0408 0.0680 0.0054 0.0461
NFKM 0.0107 0.0446 0.0139 0.0079 0.0221 0.0119 0.0012 0.0050 0.0108
1.7 FKM 0.0067 0.0302 0.0120 0.0310 0.0066 0.0301 0.0344 0.0017 0.0267
NFKM 0.0015 0.0274 0.0102 0.0070 0.0048 0.0160 0.0249 0.0024 0.0038
1.9 FKM 0.0028 0.0193 0.0103 0.0246 0.0011 0.0230 0.0025 0.0009 0.0172
NFKM 0.0015 0.0189 0.0086 0.0063 0.0001 0.0124 0.0014 0.0016 0.0050
2.1 FKM 0.0015 0.0188 0.0092 0.0201 0.0001 0.0183 0.0031 0.0007 0.0114
NFKM 0.0006 0.0181 0.0086 0.0060 0.0001 0.0100 0.0016 0.0008 0.0020
2.3 FKM 0.0011 0.0134 0.0094 0.0155 0.0001 0.0146 0.0037 0.0005 0.0070
NFKM 0.0002 0.0133 0.0083 0.0058 0.0001 0.0060 0.0017 0.0003 0.0022
2.5 FKM 0.0043 0.0103 0.0088 0.0132 0.0001 0.0121 0.0039 0.0004 0.0052
NFKM 0.0002 0.0093 0.0084 0.0056 0.0001 0.0050 0.0018 0.0002 0.0007
2.7 FKM 0.0159 0.0084 0.0092 0.0121 0.0020 0.0101 0.0043 0.0003 0.0038
NFKM 0.0002 0.0049 0.0088 0.0055 0.0000 0.0043 0.0019 0.0002 0.0012
2.9 FKM 0.0131 0.0075 0.0088 0.0112 0.0039 0.0091 0.0044 0.0002 0.0030
NFKM 0.0001 0.0036 0.0076 0.0054 0.0000 0.0038 0.0019 0.0001 0.0010

where ¢; is the number of objects that are correctly assigned to the /th class (1<[<k), b; is the number of objects that
are incorrectly assigned to the /th class, ¢; is the number of objects that should be in, but are not correctly assigned to
the Ith class.

The last two indices are internal criteria which measure the fuzziness of the clustering results obtained by fuzzy
clustering algorithms. The lower the fuzziness of a clustering result is, the less uncertainty the clustering result has
[27]. The two fuzzy cluster indices are defined as follows [26,30]:

1 k n ) 1 k n
PC:;ZZw”, PE:—;Zszilogzwli-

=1 i=1 =1 i=1

The lower the fuzziness of a partition is, the larger the PC value (or the smaller the PE value) is.
5.3. Performance analysis

On each of the above data sets, the performance analysis consists of the following two parts:

Part 1. We use the three external indices, i.e., AC, PR and RE, to compare the clustering results of the proposed
algorithm with those of the hard k-modes algorithm , the weighting k-modes algorithm and the fuzzy k-modes algorithm.
Unlike the hard clustering algorithms, the fuzzy clustering algorithms produce a fuzzy partition matrix W. To calculate
the values of these evaluation measures, we need to obtain the hard partition matrix from W as follows. The object
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Table 6
Means of PE for 100 runs with respect to different o values on the nine data sets.

o Algorithm  Lung Small Teaching  Heart Dermatology  Credit Breast Letters Mushroom
cancer soybean Disease approval  cancer (E, F)
1.1 FKM 0.4813 0.2246 0.7656 0.1999 0.7940 0.2582 0.2756 0.5490 0.2921
NFKM 0.4340 0.1438 0.5963 0.1687 0.4840 0.2572 0.1770 0.4527 0.1946
1.3 FKM 1.3071 0.8793 1.2987 0.5449 2.0530 0.6527 0.5677 0.9217 0.6955
NFKM 1.2247 0.8331 1.1184 0.4803 1.8043 0.5796 0.4012 0.8386 0.6078
1.5 FKM 1.4904 1.3471 1.4794 0.7319 2.4504 0.8099 0.7668 0.9769 0.8851
NFKM 1.4718 1.3205 1.3410 0.6485 2.3825 0.7576 0.5690 0.9429 0.7816
1.7 FKM 1.5439 1.6211 1.5276 0.8300 2.5603 0.8876 0.8745 0.9912 0.9444
NFKM 1.5411 1.5813 1.4856 0.7579 2.5261 0.8483 0.7595 0.9757 0.8871
1.9 FKM 1.5653 1.7466 1.5427 0.8791 2.5787 0.9254 0.9258 0.9951 0.9684
NFKM 1.5607 1.6982 1.5124 0.8334 2.5790 0.8921 0.9241 0.9912 0.9257
2.1 FKM 1.5726 1.8331 1.5488 0.9091 2.5814 0.9435 0.9350 0.9968 0.9803
NFKM 1.5721 1.7623 1.5292 0.8703 2.5810 0.9177 0.9325 0.9949 0.9654
2.3 FKM 1.5774 1.8730 1.5492 0.9279 2.5825 0.9556 0.9405 0.9979 0.9882
NFKM 1.5768 1.7847 1.5387 0.8941 2.5821 0.9318 0.9379 0.9967 0.9760
2.5 FKM 1.5794 1.9346 1.5494 0.9400 2.5831 0.9612 0.9440 0.9984 0.9920
NFKM 1.5773 1.7906 1.5435 0.9102 2.5828 0.9427 0.9413 0.9976 0.9818
2.7 FKM 1.5807 1.9433 1.5497 0.9462 2.5833 0.9644 0.9465 0.9988 0.9943
NFKM 1.5449 1.7932 1.5444 0.9215 2.5804 0.9500 0.9427 0.9981 0.9856
2.9 FKM 1.5815 1.9598 1.5596 0.9513 2.5837 0.9671 0.9482 0.9990 0.9961
NFKM 1.4713 1.7994 1.5552 0.9297 2.5625 0.9554 0.9447 0.9985 0.9885

X; is assigned to the Ith cluster if w;; = max|<p<x wp;. If the maximum is not unique, then x; is assigned to the cluster
of first achieving the maximum. In this part, we set « = 1.1 which was suggested in [23]. Tables 2 and 3 show the
means and standard deviations of AC, PR, RE for the 100 runs of each algorithm on these given data sets.

Part 2. We employ the two fuzzy cluster indices PC and PE to measure the fuzziness of the clustering results obtained
by fuzzy clustering algorithms. We apply the fuzzy k-modes algorithm and the proposed algorithm to cluster these data
sets with different o values, respectively. For each o, we will compute the means and standard deviations of the fuzzy
cluster indices for the 100 runs of each algorithm on each data set. Tables 4—7 show the comparison results of the two
algorithms for PC and PE with different o values (the value of « is from 1.1 to 2.9 with a step length of 0.2).

Performance results. First, we see from Table 2 that the proposed algorithm has higher accuracy in clustering these
given data sets than other clustering algorithms. Furthermore, Table 3 illustrates that the performances of the proposed
algorithm are relatively consistent in the 100 clustering results of each given data set, compared to those of other
clustering algorithms. According to Tables 4 and 6, we see that the cluster results produced by the proposed algorithms
have less uncertainty than those produced by the fuzzy k-modes algorithm. Tables 5 and 7 illustrate that the proposed
algorithms have relatively robust results in clustering these given data sets, compared to the fuzzy k-modes algorithm.
In addition, we see from the analysis of the fuzzy index « that as the fuzzy index o value increases, the PC value
decreases (or the PE value increases), which was explained in [26]. When the value of « is larger than 1.5, the fuzzy
k-modes algorithm and the proposed algorithm have bad performance. Therefore, we suggest that the value of o should
be on the interval (1, 1.5] when clustering categorical data sets.
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Table 7
Standard deviations of PE for 100 runs with respect to different o values on the nine data sets.

o Algorithm  Lung Small Teaching  Heart Dermatology  Credit Breast Letters Mushroom
cancer soybean disease approval  cancer (E, F)
1.1 FKM 0.0944 0.1353 0.1947 0.0717 0.1913 0.0944 0.1763 0.0682 0.0915
NFKM 0.0459 0.1125 0.1529 0.0142 0.0536 0.0488 0.0002 0.0428 0.0223
1.3 FKM 0.0517 0.1582 0.1103 0.0826 0.1693 0.0954 0.1921 0.0264 0.0827
NFKM 0.0448 0.1337 0.0300 0.0067 0.0578 0.0304 0.0014 0.0242 0.0331
1.5 FKM 0.0265 0.1070 0.0558 0.0680 0.0730 0.0692 0.1188 0.0082 0.0743
NFKM 0.0217 0.1034 0.0319 0.0152 0.0866 0.0218 0.0023 0.0077 0.0187
1.7 FKM 0.0138 0.0733 0.0263 0.0527 0.0280 0.0489 0.0548 0.0024 0.0413
NFKM 0.0031 0.0605 0.0223 0.0125 0.0215 0.0271 0.0438 0.0036 0.0065
1.9 FKM 0.0059 0.0481 0.0235 0.0408 0.0052 0.0371 0.0060 0.0013 0.0259
NFKM 0.0032 0.0472 0.0194 0.0121 0.0006 0.0208 0.0032 0.0023 0.0079
2.1 FKM 0.0032 0.0487 0.0213 0.0329 0.0004 0.0297 0.0071 0.0010 0.0170
NFKM 0.0013 0.0469 0.0198 0.0115 0.0004 0.0168 0.0035 0.0012 0.0030
2.3 FKM 0.0024 0.0346 0.0219 0.0255 0.0004 0.0240 0.0079 0.0007 0.0103
NFKM 0.0004 0.0353 0.0192 0.0112 0.0003 0.0097 0.0037 0.0005 0.0033
2.5 FKM 0.0101 0.0245 0.0206 0.0221 0.0003 0.0202 0.0083 0.0006 0.0076
NFKM 0.0005 0.0274 0.0196 0.0110 0.0002 0.0082 0.0038 0.0003 0.0010
2.7 FKM 0.0375 0.0225 0.0216 0.0205 0.0076 0.0172 0.0089 0.0004 0.0055
NFKM 0.0003 0.0131 0.0206 0.0108 0.0002 0.0072 0.0038 0.0003 0.0018
2.9 FKM 0.0315 0.0200 0.0207 0.0193 0.0139 0.0156 0.0090 0.0004 0.0044
NFKM 0.0002 0.0096 0.0179 0.0107 0.0002 0.0066 0.0039 0.0002 0.0015

6. Conclusions

In this paper, we have presented a novel fuzzy clustering algorithm for categorical data which is an extension of
the fuzzy k-modes algorithm. In this algorithm, we have integrated the within-cluster and between-cluster information.
Furthermore, we have rigorously derived the updating formulas of the membership matrix and the set of cluster
prototypes in the clustering process and proved the convergence of the proposed algorithm under the optimization
framework. The time complexity of the algorithm has been analyzed which is linear with respect to the number of data
objects, attributes or clusters. We have tested the algorithm using several real data sets from UCI. Experimental results
have shown that the proposed algorithm is effective in clustering categorical data sets.
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