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In this paper, the notions of decision table and decision rule in Rough Set Theory are introduced naturally
into Formal Concept Analysis as decision context and decision implication. Since extracting decision
implications directly from decision context takes time, we present an inference rule called a-decision
inference rule to eliminate the superfluous decision implications. Moreover, based on the inference rule
we introduce the notion of a-maximal decision implication and prove that the set of all a-maximal
decision implications is complete (a-complete) and non-redundant (a-non-redundant). Finally, we
present a method to generate the set.

Keywords: Formal concept analysis; Concept lattice; Rough set theory; Decision context; Decision
implication

1. Introduction

Formal concept analysis (FCA) is an order-theoretic method for the mathematical analysis of

scientific data, pioneered by Wille (1982) in mid 80s. Over the past twenty years, FCA has

been widely studied (Ganter and Wille 1999, Qu et al. 2004) and become a powerful tool for

machine learning (Zupa and Bohance 1999), software engineering (Tonella 2003, Dekel

2003) and information retrieval (Carpineto and Romano 2004).

In essence, FCA is based on a formalization of the philosophical understanding of a

concept as a unit of thought constituted by its extent and intent. The extent of a concept is

understood as the collection of all objects belonging to the concept and the intent as the

multitude of all attributes common to all those objects. The transformation from two-

dimensional incidence tables to concept lattices structure is a crucial keystone from which
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FCA derives much of its power and versatility as a modelling tool. The concept lattices

obtained the way turn out to be exactly the complete lattices, and the particular way in which

they structure and represent knowledge is very appealing and natural from the perspective of

many scientific disciplines.

On the other hand, Rough Set Theory (Pawlak 1991) has attracted attention of many

researchers and practitioners, who contributed essentially to its development and

applications. In Rough Set, each row of a decision table determines a decision rule, which

specifies decisions that should be taken when conditions pointed out by condition attributes

are satisfied (Pawlak 1991).

However, there has been only little work relating decision rule in FCA. The aim of this

paper is to introduce decision context and decision implication (rather than decision rule in

Rough Set Theory) to FCA. The organization of the paper is as follows. In Section 2, we

recall the fundamental notions and results. Section 3 is devoted to introducing the notions of

decision context and decision implication. Section 4 serves to present the system of a-

maximal decision implications. The method to generate decision implications is proposed in

Section 5. Section 6 contains an illustrative example. Conclusion and discussion of further

work will close the paper in Section 7.

2. Basic notions of FCA

This section provides a brief overview over FCA, in order to allow for a better understanding

for the overall picture. We introduce the most basic notions of FCA, namely formal contexts,

formal concepts, concept lattices and implications. For more extensive introduction refer to

Ganter and Wille (1999).

In FCA, an elementary form of the representation of data is defined mathematically as

formal context.

Definition 1. A formal context is a triple K ¼ ðG;M; IÞ; where G and M are sets, and

I # G £M is a binary relation. In the case, the members ofG are called objects, the members of

M are called attributes, and I is viewed as an incidence relation between objects and attributes.

Accordingly, we write gIm or ðg;mÞ [ I expressing “the object g has the attribute m”.

Formal contexts are mostly represented by rectangular tables and an example is

illustrated by Table 1, the rows of which are headed by the object names and the columns

headed by the attribute names. In the table, a cross means that the row object has the column

attribute.

Definition 2. For a set A # G of objects we define:

AI ¼ {m [ MjgIm; ;g [ A}

(the set of attributes common to the objects in A). Correspondingly, for a set B # M we

define:

BI ¼ {g [ GjgIm; ;m [ B}

(the set of objects which have all attributes in B).

K. Qu et al.148
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Definition 3. Let K ¼ ðG;M; IÞ be a formal context, A # G; B # M: A pair C ¼ ðA;BÞ is

called a formal concept of K, if AI ¼ B; BI ¼ A: In the case, A is the intent of C and B is the

extent of C. BðKÞ denotes the set of all concepts of the context K.

The description of a concept by extent and intent is redundant, because each of the two parts

determines the other. But for many reasons this redundant description is very convenient.

Formal concepts can be (partially) ordered in a natural way. Again, the definition is

inspired by the way we usually order concepts in a subconcept-superconcept hierarchy: “pig”

is a subconcept of “mammal”, because every pig is a mammal. Transferring this to formal

concepts, the natural definition is as follows.

Definition 4. LetK ¼ ðG;M; IÞ be a formal context,C1 ¼ ðA1;B1Þ; C2 ¼ ðA2;B2Þ [ BðKÞ.

We define:
C1 W C2 , A1 # A2ð, B1 $ B2Þ:

In the case,C2 is a superconcept ofC1 andC1 is a subconcept ofC2: The relation “ W ” is called

the hierarchical order of the concepts. The set of all concepts ordered in the way is called the

concept lattice of the context K.

One of the aspects of FCA thus is attribute logic, the study of possible attribute

combinations. Dependencies between the attributes can be described by implications. An

implication between attributes in M is a pair of subsets of M, denoted by B1 ! B2: The set B1

is the premise of the implication B1 ! B2; and B2 is its conclusion. Formally,

Definition 5. Let K ¼ ðG;M; IÞ be a formal context, B1;B2 # M: B1 ! B2 is true if each

object which has all attributes from B1 has also all attributes from B2: In the case, B1 ! B2

also is called an implication in the context K.

We have the following simple facts (Ganter and Wille 1999).

Theorem 1. If K ¼ ðG;M; IÞ is a formal context, A;A1;A2 are sets of objects and B;B1;B2

are set of attributes, then:

1Þ A1 # A2 ) AI
2 # AI

1 10Þ B1 # B2 ) BI
2 # BI

1

2Þ A # AII 20Þ B # BII

3Þ AI ¼ AIII 30Þ BI ¼ BIII

4Þ A # BI , B # AI

:

Table 1. A context K.

a1 a2 a3 a4 a5 a6 d1 d2

x1 £ £ £ £
x2 £ £
x3 £ £ £ £
x4 £
x5 £ £ £ £ £ £ £
x6 £ £
x7 £ £ £ £ £
x8 £ £ £ £ £ £

Study of decision implications 149
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3. Decision context and decision implication

In the section, we distinguish in a formal context two classes of attributes, called condition

and decision attributes as called in Rough Set Theory.

Definition 6. Let K ¼ ðG;M; IÞ be a formal context. The context is called a decision context

if M ¼ C < D; C > D ¼ Y and I ¼ IC < ID; where C is the set of condition attributes, D is

the set of decision attributes, IC # G £ C is the set of condition incidence relations, and

ID # G £ D is the set of decision incidence relations.

In fact, a decision context consists of two sub-contexts, namely the condition sub-context

KC ¼ ðG;C; ICÞ and the decision sub-context KD ¼ ðG;D; IDÞ. For A # G, BC1 # C and

BD1 # D, by Definition 2, the symbols AIC ;AID ;BIC
C1;B

ID
D1 can be abbreviated to

AC;AD;BC
C1;B

D
D1.

Definition 7. Let K ¼ ðG;C < D; IC < IDÞ be a decision context. The decision context is

consistent if for all g; h [ G, gCC ¼ hCC implies gDD ¼ hDD.

The definition 7 expresses that, in a consistent decision context, if two objects posses the

same set of condition attributes(i.e. gCC ¼ hCC), then their decision attributes are same, that

is to say, when we will make some decisions, in the face of same conditions, we will not make

different decisions. Throughout our paper, we assume that all contexts we deal with are

consistent decision contexts.

Definition 8. Let K ¼ ðG;C < D; IC < IDÞ be a decision context, and B1;B2 are sets of

attributes. An implication B1 ! B2 of the formal context K is called a decision implication of

the decision context K, if B1 # C and B2 # D.

Theorem 2. Let K ¼ ðG;C < D; IC < IDÞ be a decision context, BC1 # C and BD1 # D.

Then BC1 ! BD1 is a decision implication if and only if BC
C1 # BD

D1.

Proof. One can easily see that BC
C1 ¼ BI

C1 (and the same for D). Therefore, BC
C1 # BD

D1 iff

BI
C1 # BI

D1 which is a well-known condition for BC1 ! BD1 being true in K. A

Note that, when we refer to a context K or simply K, we mean a formal context K or a

decision context K, depending on whether the form B1 ! B2 is an implication or a decision

implication.

4. The system of a-maximal decision implications

Given a decision context K ¼ ðG;C < D; IC < IDÞ, we can find all decision implications as

follows: for any subset BC1 # C and any BD1 # D, verify the correctness of the formula

BC
C1 # BD

D1 by Theorem 2; the correctness of BC
C1 # BD

D1 implies that, the decision

implication BC1 ! BD1 holds in the decision context K.

K. Qu et al.150
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In general, however, the number of decision implications in a decision context is quite

large and in a given set of implications, there are lots of redundant implications, which can be

deduced from other implications by means of so-called inference rules.

Theorem 3 (a-decision inference rule). Let K ¼ ðG;C < D; IC < IDÞ be a decision

context, BC1;BC2 # C, BD1;BD2 # D and BC1 ! BD1 is a decision implication of K. If

BC2 $ BC1 and BD1 $ BD2, then BC2 ! BD2 is a decision implication of K.

Proof. See (Ganter and Wille 1999). A

The above theorem, from the logistic angle (Hamilton 1978), can be called the Soundness

Theorem of a-Decision Inference Rule. The inference rule can be characterized by the

following form:
BC1 ! BD1;BC2 $ BC1;BD1 $ BD2

BC2 ! BD2

which means that, if BC1 ! BD1 and BC2 $ BC1;BD1 $ BD2, then BC2 ! BD2. In other words,

the decision implication BC2 ! BD2 can be inferred from the implication BC1 ! BD1 by

a-decision inference rule. Certainly, there are lots of such inference rule by which we can

eliminate the superfluous decision implications. Compared to other inference rules, however,

the a-decision inference rule is, perhaps, most intuitive and effective, as showed by our

illustrative example in Section 6.

Definition 9. Let K ¼ ðG;C < D; IC < IDÞ be a decision context, S be a set of decision

implications and BC1 ! BD1 is a decision implication of K. If the decision implication

BC1 ! BD1 can be inferred from the set S by some inference rule t, we say the implication

BC1 ! BD1 can be t-inferred from S. In this case, we call the implication BC1 ! BD1

t-redundant for S. Furthermore, if all decision implications of K can be t-inferred from S, we

say, the decision implication set S is t-complete.

Definition 10. Let K ¼ ðG;C < D; IC < IDÞ be a decision context. An decision implication

BC1 ! BD1 is a-maximal if

(1) for any BC2 , BC1, BC2 ! BD1 does not hold in the decision context K; and

(2) for any BD1 , BD2, BC1 ! BD2 does not hold in the decision context K.

In this case, we also say that BC1 ! BD1 is a a-maximal decision implication of K.

Theorem 4. The set S of all a-maximal decision implications is a-non-redundant, i.e. for

any a-maximal decision implication BC1 ! BD1 [ S, it can not be a-inferred from the set

SnðBC1 ! BD1Þ.

Proof. The statement follows immediately from Definition 10. A

Theorem 4 shows that the a-maximal decision implications are independent with each

other. And the following theorem, also from the logistic angle, can be called the Adequacy

Study of decision implications 151
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Theorem for the System of a-Maximal Decision Implications, showing that the system of a-

maximal decision implications is relatively enough for the system of all the decision

implications.

Theorem 5. Let K ¼ ðG;C < D; IC < IDÞ be a decision context and S denotes the set of all

a-maximal decision implication. Then, S is a-complete.

Proof. Let BC2 ! BD2 be a decision implication of K. Then there exists a minimal set

BC1 # BC2 such that BC1 ! BD2 is true. In the same way, there must exist a maximal set

BD1 $ BD2 such that BC1 ! BD1 is true. It is to see that BC1 ! BD1 is a-maximal and that

BC2 ! BD2 can be a-inferred by BC1 ! BD1. That means that S is a-complete. A

5. Generating the set of all a-maximal decision implications

In the section, we will generate the set of all a-maximal decision implications by means of

minimal generators(i.e. key sets) (Stumme et al. 2000). First, we present a theorem used

later.

Theorem 6. Let K ¼ ðG;C < D; IC < IDÞ be a decision context, BC1 # C. Then the

implication BC1 ! BCD
C1 is a decision implication of K.

Proof. Since BC
C1 # G, by Theorem 1, we have BC

C1 # BCDD
C1 , which, by Theorem 2,

completes the proof. A

Definition 11. Let K ¼ ðG;M; IÞ be a formal context, C ¼ ðA;BÞ [ BðKÞ, and X # A. X is

called a minimal generator of the concept C, if X II ¼ A and Y II , X II , for all Y , X.

A minimal generator of a concept is the minimal information that permits to retrieve a

concept. The following theorem expresses that, the premise of a a-maximal decision

implication must be a minimal generator of one concept in the condition sub-context.

Theorem 7. Let K ¼ ðG;C < D; IC < IDÞ be a decision context and BC1 ! BD1 is a a-

maximal decision implication of K. Then,

(1) BC1 is a minimal generator of the concept ðBC
C1;B

CC
C1 Þ; and

(2) BCD
C1 ¼ BD1.

Proof.

(1) IfBC1 is not a minimal general of ðBC
C1;B

CC
C1 Þ, then there must be a set BC2 , BC1 such that

BCC
C2 ¼ BCC

C1 . By Theorem 1, we have BC
C2 ¼ BC

C1. Since BC1 ! BD1 is a decision

implication of K, by Theorem 2, we can confirm BC
C1 # BD

D1 and hence BC
C2 # BD

D1. From

that, it follows that BC2 ! BD1 is a decision implication, which contradict the a-maximal

implication BC1 ! BD1, since BC2 , BC1. So BC1 is a minimal generator of ðBC
C1;B

CC
C1 Þ.

K. Qu et al.152
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(2) To start with, let us prove BD1 ¼ BDD
D1 . Assume BD1 – BDD

D1 , then BD1 , BDD
D1 . Since

BC1 ! BD1 is a decision implication, then BC
C1 # BD

D1 ¼ BDDD
D1 . Hence, BC1 ! BDD

D1 holds

inK contradictory with the condition thatBC1 ! BD1 is a a-maximal decision implication,

since BD1 , BDD
D1 . Thus BD1 ¼ BDD

D1 .

Next, we prove BCD
C1 ¼ BDD

D1 . Since BC1 ! BD1 is a decision implication of K, then BC
C1 #

BD
D1 and, by Theorem 1, BCD

C1 $ BDD
D1 . If BCD

C1 – BDD
D1 , then BCD

C1 . BDD
D1 ¼ BD1, i.e. BCD

C1 . BD1.

By Theorem 6, BC1 ! BCD
C1 is a decision implication contradictory with the fact that

BC1 ! BD1 is a a-maximal decision implication, since BCD
C1 . BD1. So BCD

C1 ¼ BDD
D1 .

Thus BCD
C1 ¼ BDD

D1 ¼ BD1, which completes the proof. A

Theorem 8. Let K ¼ ðG;C < D; IC < IDÞ be a decision context and BC1 is a minimal

generator of the condition sub-context KC ¼ ðG;C; ICÞ. Then, BC1 ! BCD
C1 is a a-maximal

decision implication of K if and only if, BCD
C1 – BCD

C2 for any BC2 , BC1.

Proof. “ ! ”: Since BC2 , BC1, then BCD
C1 # BCD

C2 . Assume BCD
C1 ¼ BCD

C2 . Then, by

Theorem 6, BC2 ! BCD
C2 and hence BC2 ! BCD

C1 hold. The later is contradictory with that

BC1 ! BCD
C1 is a a-maximal decision implication, since BC2 , BC1. So BCD

C1 – BCD
C2 .

“ ˆ ”: Assume that BC1 ! BCD
C1 is not a a-maximal decision implication. Then, there are

two cases to be considered.

(1) There exists BC2 , BC1 such that BC2 ! BCD
C1 . By Theorem 2, we have BC

C2 # BCDD
C1 and

hence BCDD
C2 # BCDDDD

C1 ¼ BCDD
C1 , i.e. BCDD

C2 # BCDD
C1 . On the other hand, since

BC2 , BC1, we have BC
C1 # BC

C2 and hence BCD
C2 # BCD

C1 . So BCDD
C1 # BCDD

C2 . And we

can conclude BCDD
C1 ¼ BCDD

C2 , i.e. BCD
C1 ¼ BCD

C2 contradictory with the condition

BCD
C1 – BCD

C2 . So this case does not hold.

(2) There exists BCD
C1 , BD2 such that BC1 ! BD2. In the case, by Theorem 2, we have

BC
C1 # BD

D2. Hence BDD
D2 # BCD

C1 . Since BDD
D2 is an intent of the decision sub-context

KD ¼ ðG;D; IDÞ, we have BD2 # BDD
D2 and hence BD2 # BCD

C1 contradictory with

BCD
C1 , BD2. So this case does not hold too.

The cases (1) and (2) imply that BC1 ! BCD
C1 is a-maximal. A

With Theorems 7 and 8, we conclude:

Theorem 9. Let K ¼ ðG;C < D; IC < IDÞ be a decision context. Then BC1 ! BD1 is a a-

maximal decision implication of K if and only if

(1) BC1 is a minimal generator of the condition sub-context KC;

(2) the implication BC1 ! BD1 has the form BC1 ! BCD
C1 (i.e. BD1 ¼ BCD

C1 ); and

(3) if BC2 , BC1, then BCD
C1 – BCD

C2 .

Proof. “ ! ”: By Theorem 7, we have (1) and (2). In the case, the implication BC1 ! BD1 has

the form BC1 ! BCD
C1 , and by Theorem 8, the result (3) can be concluded.

“ ˆ ”: By the conditions (1) and (2), we know that the implication BC1 ! BD1 has the form

BC1 ! BCD
C1 . Then, by Theorem 8 and the condition (3), the implication BC1 ! BD1 is a-

maximal. A

Study of decision implications 153
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Stumme et al. (2000) presented a new algorithm called Titanic for computing concept

lattices whose generation procedure was first used in the Apriori algorithm for the specific

case of frequent itemsets. The core of Titanic algorithm is to generate the minimal

generators. Accordingly, the Titanic algorithm can be used for generating a-maximal

decision implications, since the premises of a-maximal decision implications are minimal

generators. According to Theorem 9, the following algorithm (Algorithm 1) can generate the

system of all a-maximal decision implications, which is a-non-redundant and a-complete.

Algorithm 1.

(1) generate all minimal generators of KC ¼ ðG;C; ICÞ by Titanic algorithm;

(2) for each minimal generator BC1, check the correctness of BCD
C1 – BCD

C2 where BC2 , BC1.

If BCD
C1 – BCD

C2 , generate the a-maximal decision implication BC1 ! BCD
C1 ; and

(3) return all the a-maximal decision implications generated by step 2.

Note. as is known to all, the time complexity for generating minimal generators will be:

O jMj· db þ

jMjj
jMj
2

k
0
@

1
A·jGj·jMj

0
@

1
A

0
@

1
A

where db is the access time of the formal context. And in our algorithm, we need to go over

all subsets BC2 of BC1, which at worse-case will take:

O

jMjj
jMj
2

k
0
@

1
A

2
0
B@

1
CA:

So the algorithm has exponential time complexity relatively to jMj:

O jMj· db þ

jMjj
jMj
2

k
0
@

1
A·jGj·jMj

0
@

1
Aþ

jMjj
jMj
2

k
0
@

1
A

2
0
B@

1
CA:

That is not a good thing especially for larger experiments. So the algorithm only serve as a

basis for many opportunities for further development.

6. An illustration

Let us illustrate Algorithm 1 by an example. A decision context K ¼ ðG;C < D; IC < IDÞ is

depicted by Table 1, where the objects x1; x2; . . . ; x8 denote eight customers composing the

set G, a1; a2; . . . ; a6 denote six wares composing the set C and d1; d2 denote two wares

composing the set D. In Table 1, if a customer xi buys a ware aj or dk, we write “ £ ” to

express xiICaj or xiIDdk.

All decision implications with the minimal generators as their premises are listed in Table 2.

The set of alla-maximal decision implications generated by Algorithm 1 are listed in Table 3.

Obviously, the number of decision implications in Table 3 is quite smaller than that in

Table 2. In fact, with the increasing of condition attributes, a-decision inference rule can

K. Qu et al.154
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reduce more thea-redundant decision implications. In addition, by Theorem 3, all the decision

implications in Table 1 can be inferred from Table 3 with a-decision inference rule. For

example, the implication {a1; a2} ! {d1} in Table 2. Since {a1} # {a1; a2} and {d1} # {d1},

then, it can be inferred from the implication {a1} ! {d1} in Table 3. On the other hand, the

implication {a1} ! {d1} means that, those customers, who buy the ware a1, also buy the ware

{d1}, while the implication {a1; a2} ! {d1} expresses that those buying a1 and a2 will buy the

ware d1. It is easy to see that the later is redundant to the former, since those buying a1 and a2

must buy the ware a1. Another decision implication {a1; a2; a3} ! {d1}, although it is not in

Table 2, can be inferred from the a-maximal decision implication {a1; a2; a3} ! {d1; d2}.

7. Conclusion and further work

In the paper, we introduce the notions of decision context and decision implication to FCA.

Since the number of decision implications in a decision context is an exponential increase to

the scale of the decision context, an inference rule is proposed. The so-called a-decision

inference rule is sound, intuitive, effective and easy to use. For users who want to obtain the

decision implications, what to do is to generate the a-maximal decision implications rather

than all the decision implications. On the other hand, our paper does not deal with

inconsistent decision contexts and the relation between the structures of sub-contexts and the

original context, which will be our further work.
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