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a b s t r a c t

The k-ary n-cube Q k
n is one of the most commonly used interconnection topologies for

parallel and distributed computing systems. Let f (n,m) be the minimum number of faulty
nodes that make every (n−m)-dimensional subcube Q k

n−m faulty in Q k
n under node-failure

models. In this paper, we prove that f (n, 0) = 1, f (n, 1) = k for odd k ≥ 3, f (n, n − 1) =

kn−1 for odd k ≥ 3, and km ≤ f (n,m) ≤


n−1
m−1


km −


n−2
m−1


km−1 for odd k ≥ 3.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In many parallel computer systems, processors are connected based on an interconnection network. Popular instances
of interconnection networks include hypercubes [2,5,7], star graphs [8,10,16], bubble-sort graphs [17], and k-ary n-cubes
[1,11,15,18]. It is well known that an interconnection network is usually represented by an undirected simple graph G. We
denote the node set and the link set of G by V (G) and E(G), respectively.

In a large-scale multiprocessor system, failures of components are inevitable. Thus, fault tolerance of interconnection
networks has become an important issue and has been extensively studied (see, for example, [1,2,5–8,10–12,15–18]).
Fault tolerance of interconnection networks is usually measured by how much of the network structure is preserved in
the presence of a given number of component failures. Obviously, in the presence of component failures, the complete
interconnection network is not available. Under this consideration, Becker and Simon [2] investigated a problem of what is
the maximum number of dimensions that would be lost if the network contained a given number of faulty processors or
links. They studied fH(n, k), the minimum number of faults, necessary for an adversary to destroy each (n− k)-dimensional
subcube in an n-dimensional hypercube. Latifi [10] proposed a similar natural question of how large a part of a subnetwork, a
smaller network but with the same topological properties as the original one, is still available in the network in the presence
of component failures. He presented a bound on FS(n, k), the number of faulty nodes to make every (n − k)-dimensional
substar faulty in an n-dimensional star graph and also determined the exact value of FS(n, k) when n is prime and k = 2
or when n − 2 ≤ k ≤ n. Wang and Yang [17] studied FB(n, k), the minimum number of faulty nodes to make every
(n− k)-dimensional sub-bubble-sort graph faulty in an n-dimensional bubble-sort graph. They determined the exact value
of FB(n, k) for some special cases and gave the lower and upper bounds on FB(n, k).

The interconnection network considered in this paper is the k-ary n-cube, denoted by Q k
n , which has been proved

to possess many attractive properties such as regularity, node transitivity and edge transitivity. Moreover, many
interconnection networks can be viewed as the subclasses of Q k

n , including the cycle, the torus and the hypercube. A number
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2 .

of distributed memory multiprocessors have been built with a k-ary n-cube forming the underlying topology, such as the
iWarp [14], the J-machine [13] and the Cray T3D [9]. In this paper, we are interested in the minimum number f (n,m) of
faulty nodes to make every (n − m)-dimensional subcube Q k

n−m faulty in Q k
n . We prove that f (n, 0) = 1, f (n, 1) = k for odd

k ≥ 3, f (n, n − 1) = kn−1 for odd k ≥ 3, and km ≤ f (n,m) ≤
n−1
m−1


km −

n−2
m−1


km−1 for odd k ≥ 3.

2. Preliminaries

In the remainder of this paper, we follow [3] for the graph-theoretical terminology and notation not defined here.
The k-ary n-cube Q k

n (k ≥ 2 and n ≥ 1) is a graph consisting of kn nodes, each of which has the form u = un−1un−2 . . . u0,
where 0 ≤ ui ≤ k − 1 for 0 ≤ i ≤ n − 1. Two nodes u = un−1un−2 . . . u0 and v = vn−1vn−2 . . . v0 are adjacent if and only
if there exists an integer j, 0 ≤ j ≤ n − 1, such that uj = vj ± 1 (mod k) and ui = vi, for every i ∈ {0, 1, . . . , n − 1} \ {j}.
Such a link (u, v) is called a j-dimensional link. For clarity of presentation, we omit writing ‘‘(mod k)" in similar expressions
for the remainder of the paper. Note that each node has degree 2n when k ≥ 3, and n when k = 2. Obviously, Q k

1 is a cycle
of length k, and Q 2

n is an n-dimensional hypercube. We say that Q k
n is divided into Q k

n [0], Q k
n [1], . . ., Q k

n [k − 1] (abbreviated
as Q [0], Q [1], . . ., Q [k − 1], if there are no ambiguities) along dimension d for some 0 ≤ d ≤ n − 1, where Q [p], for every
0 ≤ p ≤ k − 1, is a subgraph of Q k

n induced by {u = un−1un−2 . . . ud . . . u0 ∈ V (Q k
n ) : ud = p}. It is clear that each Q [p] is

isomorphic to Q k
n−1 for 0 ≤ p ≤ k − 1. Q 6

1 and Q 4
2 are shown in Fig. 1.

Let G and H be two graphs. G and H are distinct if their node sets are different, and disjoint if they have no common node.
The Cartesian product of G and H , denoted by G × H , is defined as follows: V (G × H) = V (G) × V (H), two nodes u1u0 and
v1v0 are adjacent in G × H if and only if (u1, v1) ∈ E(G) and u0 = v0 or (u0, v0) ∈ E(H) and u1 = v1. Let Ck be a cycle of
length k. Then the Cartesian product of n Ck’s Ck × Ck × · · · × Ck and Q k

n are obviously isomorphic. For two sets of nodes X
and Y of G, denote by [X, Y ] the set of links with one end in X and the other end in Y . Let Nk−1 be the set {0, 1, 2, . . . , k− 1}
for an arbitrary integer k ≥ 2.

Given two integers n ≥ 1 and k ≥ 2, for any integer m (0 ≤ m ≤ n − 1), let i1, i2, . . . , im be m integers with 0 ≤ im <
im−1 < · · · < i1 ≤ n−1 and let ai1 , ai2 , . . . , aim ∈ Nk−1. DenoteM = {bn−1bn−2 . . . bi1+1ai1bi1−1bi1−2 . . . bi2+1ai2 . . . aimbim−1
bim−2 . . . b0 : bn−1, bn−2, . . . , bi1+1, bi1−1, bi1−2, . . . , bi2+1, . . . , bim−1, bim−2, . . . , b0 ∈ Nk−1}. In particular, bn−1bn−2 . . . bi1+1

and bim−1bim−2 . . . b0 are empty strings if i1 = n − 1 and im = 0, respectively. Obviously, the subgraph of Q k
n induced

by M is isomorphic to Q k
n−m. Let X be a don’t care symbol and let X t

= XX . . . X  
t

. For convenience of representation, we

denote by an n-length string of symbols Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im the subgraph induced by M in Q k
n . For example,

X202 in Q 3
4 denote the Q 3

2 induced by {0002, 0102, 0202, 1002, 1102, 1202, 2002, 2102, 2202}. In particular, whenm = 0,
Xn−1−i1ai1X

i1−i2−1ai2 . . . aimX
im is just Xn, i.e., Q k

n .
In addition, we can obtain the following lemma.

Lemma 1. A Q k
n−m in Q k

n can be uniquely denoted by Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im for odd k ≥ 3.

Proof. We first prove the following two claims.

Claim 1. Let C be a cycle of length k in Q k
n . Then there exists i ∈ {0, 1, . . . , n − 1} such that C contains only i-dimensional links

for odd k ≥ 3.

By contradiction. Suppose that C contains i1, i2, . . . , is-dimensional links, where 2 ≤ s ≤ n and i1, i2, . . . , is ∈

{0, 1, . . . , n − 1}. For any it ∈ {i1, i2, . . . , is}, we divide Q k
n into Q [0],Q [1], . . . ,Q [k − 1] along dimension it . If

[V (Q [i]), V (Q [i + 1])] ∩ E(C) ≠ ∅ for every i = 0, 1, . . . , k − 1, then there exist at least k distinct it-dimensional
links in C . For il ∈ {i1, i2, . . . , is} and il ≠ it , since C contains il-dimensional links, we have |E(C)| > k, a contradiction.
Hence, there exists at least one element i∗ ∈ Nk−1 such that [V (Q [i∗]), V (Q [i∗ + 1])] ∩ E(C) = ∅, say i∗ = k − 1. Note
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that |[V (Q [i]), V (Q [i + 1])] ∩ E(C)| must be even for every i = 0, 1, . . . , k − 2. So, the number of it-dimensional links in
C is even. Furthermore, by the arbitrariness of it , |E(C)| is even, contrary to the fact that k is odd. The proof of Claim 1 is
complete.

Claim 2. For any Q k
s (2 ≤ s ≤ n−1) in Q k

n , there exists pairwise distinct j1, j2, . . . , js ∈ {0, 1, . . . , n−1} such that Q k
s contains

only j1, j2, . . . , js-dimensional links for odd k ≥ 3.

Let C = (0, 1, . . . , k − 1, 0) be a cycle of length k. Denote the Cartesian product of s C ’s C × · · · × C by H∗. For any two
distinct nodes u = us−1us−2 . . . u0 and v = vs−1vs−2 . . . v0 in V (H∗), u and v are joined with a j-dimensional link if and only
if there exists an integer j ∈ {0, 1, . . . , s − 1} such that (uj, vj) ∈ E(C) and ul = vl for every l ∈ {0, 1, . . . , s − 1} \ {j}.
For i = 0, 1, . . . , s − 1, let Ci be a cycle of length k in H∗, which contains only i-dimensional links, such that the node
00 . . . 0 ∈ V (Ci). Now, for any i ∈ {0, 1, . . . , s − 1}, if H∗ contains i-dimensional links, then there exists Ci such that Ci
contains i-dimensional links. Note that H∗ and Q k

s are isomorphic. So there exist s pairwise distinct cycles H1,H2, . . . ,Hs of
length k in Q k

s such that if Q k
s contains i-dimensional links, then there exists an integer j ∈ {1, 2, . . . , s} such thatHj contains

i-dimensional links. By Claim 1, there exists ji ∈ {0, 1, . . . , n − 1} such that Hi contains only ji-dimensional links for every
i = 1, 2, . . . , s. Hence,Q k

s contains only j1, j2, . . . , js-dimensional links. By the definition of Q k
s , there exists pairwise distinct

i1, i2, . . . , is ∈ {0, 1, . . . , n − 1} such that Q k
s contains i1, i2, . . . , is-dimensional links. So {j1, j2, . . . , js} = {i1, i2, . . . , is}.

The proof of Claim 2 is complete.
Next, we prove Lemma 1 by induction on m. When m = 0, Q k

n can be uniquely denoted by Xn. Assume that Lemma 1
is true for m, where m ≥ 0. We shall show that Lemma 1 holds for m + 1. Note that a Q k

n−(m+1) in Q k
n must be in

some Q k
n−m. By the induction hypothesis, the Q k

n−m can be uniquely denoted by Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im . By Claim 2,
there exists pairwise distinct j1, j2, . . . , jn−m−1, jn−m ∈ {0, 1, . . . , n − 1} \ {i1, i2, . . . , im} such that Q k

n−(m+1) contains
only j1, j2, . . . , jn−m−1-dimensional links and Q k

n−m contains only j1, j2, . . . , jn−m-dimensional links. The Q k
n−(m+1) can be

obtained by dividing Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im along dimension jn−m. So there exists a ∈ Nk−1 such that, for any node
un−1un−2 . . . u0 ∈ V (Q k

n−(m+1)), ujn−m = a. Let {t1, t2, . . . , tm+1} = {i1, . . . , im, jn−m} with t1 > t2 > · · · > tm+1. Thus the
Q k
n−(m+1) can be uniquely denoted by Xn−1−t1at1X

t1−t2−1at2 . . . atm+1X
tm+1 . The proof of Lemma 1 is complete. �

Lemma 2. There are km disjoint Q k
n−m’s and km

n
m


distinct Q k

n−m’s in Q k
n for odd k ≥ 3.

Proof. This lemma is trivial whenm = 0. In the following, we consider the casem ≥ 1.
For odd k ≥ 3, by Lemma 1, a Q k

n−m in Q k
n can be uniquely denoted by Xn−1−i1ai1X

i1−i2−1ai2 . . . aimX
im , where i1, i2, . . . , im

are m integers with 0 ≤ im < im−1 < · · · < i1 ≤ n − 1 and ai1 , ai2 , . . . , aim ∈ Nk−1. According to the values of
i1, i2, . . . , im, we divide all the distinct Q k

n−m’s in Q k
n into

n
m


sets A1, A2, . . . , A(n

m)
, where, for every i ∈ {1, 2, . . . ,

n
m


}, Ai =

{Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im : ai1 , ai2 , . . . , aim ∈ Nk−1}. Note that any two distinctQ k
n−m’s X

n−1−i1ai1X
i1−i2−1ai2 . . . aimX

im

and Xn−1−i1bi1X
i1−i2−1bi2 . . . bimX

im in Ai have no common node because there is some l ∈ {i1, i2, . . . , im} such that al ≠ bl.
So,Xn−1−i1ai1X

i1−i2−1ai2 . . . aimX
im andXn−1−i1bi1X

i1−i2−1bi2 . . . bimX
im are disjoint. It follows that there are |Ai| = km disjoint

Q k
n−m’s in Q k

n . For two distinct integers i, j ∈ {1, 2, . . . ,
n
m


}, any two Qn−m’s Xn−1−i1ai1X

i1−i2−1ai2 . . . aimX
im in Ai and

Xn−1−j1aj1X
j1−j2−1aj2 . . . ajmX

jm in Aj are distinct, since otherwise the node set of Xn−1−i1ai1X
i1−i2−1ai2 . . . aimX

im and the
node set of Xn−1−j1aj1X

j1−j2−1aj2 . . . ajmX
jm are the same, which yields that i1 = j1, i2 = j2, . . ., im = jm, a contradiction.

Therefore, there are
(n

m)
i=1 |Ai| = km

n
m


distinct Q k

n−m’s in Q k
n . The proof is complete. �

3. Enumeration of faulty nodes

3.1. The lower and upper bounds

Given two integers n ≥ 1 and k ≥ 2, we are interested in finding f (n,m), the minimum number of faulty nodes to make
every (n − m)-dimensional subcube Q k

n−m faulty in Q k
n , where 0 ≤ m ≤ n − 1.

Lemma 3. km ≤ f (n,m) ≤ km
n
m


for odd k ≥ 3.

Proof. By Lemma 2, Q k
n can be divided into km disjoint Q k

n−m’s. To damage all the disjoint Q k
n−m’s in Q k

n , we need at least one
faulty node for each Q k

n−m, which yields that f (n,m) ≥ km.
The upper bound on f (n,m) can be obtained by making a node faulty in each of the km

n
m


distinct Q k

n−m’s in Q k
n . This will

render: f (n,m) ≤ km
n
m


. Combining this with the fact that f (n,m) ≥ km, the lemma follows. �

The following theorem gives the exact value of f (n,m) for some special cases.

Theorem 1. Let Q k
n be a k-ary n-cube. Then the following hold.

(1) f (n, 0) = 1.
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Fig. 2. The partition of V (Q k
n ) and the selection of faulty nodes which are underlined (for convenience, denote δ = k − 1).

(2) f (n, 1) = k for odd k ≥ 3.
(3) f (n, n − 1) = kn−1 for odd k ≥ 3.

Proof. (1) Since the failure of a single nodewill damage theQ k
n , we have f (n, 0) ≤ 1. Lemma 3 implies that f (n, 0) ≥ k0 = 1.

So f (n, 0) = 1.
(2) By Lemma 2, there are nk distinct Q k

n−1’s in Q k
n . Note that, for every i ∈ Nk−1, the node ii . . . iwill damage the n Q k

n−1’s
iXn−1, XiXn−2, XXiXn−3, . . ., Xn−2iX and Xn−1i. Therefore, the nodes 00 . . . 0, 11 . . . 1, . . ., (k−1)(k−1) . . . (k−1)will damage
every Q k

n−1 in Q k
n , which yields that f (n, 1) ≤ k. Lemma 3 implies that f (n, 0) ≥ k. So f (n, 1) = k.

(3) In the following, we consider the Q k
n for odd k ≥ 3. If n = 1, then, by (1), f (n, n − 1) = f (1, 0) = 1 = k1−1. Next,

assume that n ≥ 2. We divide Q k
n into Q [0], Q [1], . . ., Q [k − 1] along dimension 0, where Q [p], for every 0 ≤ p ≤ k − 1,

is isomorphic to Q k
n−1. Let u

p
= un−1un−2 . . . u1p be a node in Q [p], then the counterpart node of up in Q [q] is denoted by

uq, where uq
= un−1un−2 . . . u1q . Let Sp ⊆ V (Q [p]), then the counterpart node set of Sp in Q [q] is denoted by Sq, where

Sq = {xq : xp ∈ Sp}. Next, we prove a claim.

Claim. There exists a partition A0
1, A

0
2, . . . , A

0
k of V (Q [0]) such that A0

1 ∪ A1
2 ∪ · · · ∪ Ak−1

k is the set of faulty nodes that damage all
the Q k

1 ’s in Q k
n , where |A0

i | = kn−2 for every 1 ≤ i ≤ k, A0
i ∩ A0

j = ∅ for 1 ≤ i, j ≤ k and i ≠ j,
k

i=1 A
0
i = V (Q [0]), and Ap

i is the
counterpart node set of A0

i in Q [p] for 1 ≤ p ≤ k − 1 and 1 ≤ i ≤ k.
We prove the claim by induction on n. When n = 2, let A0

1 = {00}, A0
2 = {10}, . . ., A0

k = {(k − 1)0}. Then A1
2 = {11},

A2
3 = {22}, . . ., Ak−1

k = {(k− 1)(k− 1)}. Clearly, A0
1 ∪ A1

2 ∪ · · · ∪ Ak−1
k is the set of faulty nodes that damage all the Q k

1 ’s in Q k
2

for odd k ≥ 3. Assume that the claim is true for n − 1, where n ≥ 3. We shall show that the claim holds for n. Since Q [0] is
isomorphic toQ k

n−1, we divideQ [0] intoQ ′
[0],Q ′

[1], . . .,Q ′
[k−1] along dimension 1,whereQ ′

[p], for every 0 ≤ p ≤ k−1, is
induced by {u = un−1 . . . u1u0 ∈ V (Q k

n ) : u1 = p, u0 = 0}. It is clear that each Q ′
[p] is isomorphic to Q k

n−2 for 0 ≤ p ≤ k−1.
By the induction hypothesis, there exists a partition B00

1 , B00
2 , . . . , B00

k of V (Q ′
[0]) such that B00

1 ∪ B10
2 ∪ · · · ∪ B(k−1)0

k is the
set of faulty nodes that damage all the Q k

1 ’s in Q [0], where |B00
i | = kn−3 for every 1 ≤ i ≤ k, B00

i ∩ B00
j = ∅ for 1 ≤ i, j ≤ k

and i ≠ j,
k

i=1 B
00
i = V (Q ′

[0]), and Bp0
i is the counterpart node set of B00

i in Q ′
[p] for 1 ≤ p ≤ k − 1 and 1 ≤ i ≤ k. Denote

the counterpart node set of Bq0
i in Q [p] by Bqp

i for 1 ≤ i ≤ k, 0 ≤ q ≤ k − 1 and 1 ≤ p ≤ k − 1. See Fig. 2 for more details
about the partition.

Let A0
1 = B00

1 ∪ B10
2 ∪ · · · ∪ B(k−1)0

k , A0
2 = B00

2 ∪ B10
3 ∪ · · · ∪ B(k−2)0

k ∪ B(k−1)0
1 , . . ., A0

k = B00
k ∪ B10

1 ∪ · · · ∪ B(k−1)0
k−1 . Then

A1
2 = B01

2 ∪ B11
3 ∪ · · · ∪ B(k−2)1

k ∪ B(k−1)1
1 , . . ., Ak−1

k = B0(k−1)
k ∪ B1(k−1)

1 ∪ · · · ∪ B(k−1)(k−1)
k−1 . By Claim 1 in Lemma 1, Q k

1 in
Q k
n contains only i-dimensional links for some i ∈ {0, 1, . . . , n − 1}. Clearly, all the Q k

1 ’s formed by 0-dimensional links are
damaged by the faulty nodes in A0

1 ∪ A1
2 ∪ · · · ∪ Ak−1

k (see Fig. 2). Next, we show that all the Q k
1 ’s in Q [1] are damaged by the

faulty nodes in A1
2. Define a mapping Ψ as follows:

Ψ : V (Q [0]) → V (Q [1])
un−1 . . . u2u1u0 → un−1 . . . u2(u1 − 1)(mod k)(u0 + 1).

Ψ is an isomorphism between Q [0] and Q [1]. For S ⊆ V (Q [0]), denote Ψ (S) =


u∈S{Ψ (u)}. Then Ψ (B00
1 ) = B(k−1)1

1 ,
Ψ (B10

2 ) = B01
2 , . . . , Ψ (B(k−1)0

k ) = B(k−2)1
k . Since all the Q k

1 ’s in Q [0] are damaged by the faulty nodes in A0
1 = B00

1 ∪ B10
2 ∪ · · · ∪

B(k−1)0
k , we have that all the Q k

1 ’s in Q [1] are damaged by the faulty nodes inΨ (A0
1) = A1

2 = B01
2 ∪B11

3 ∪· · ·∪B(k−2)1
k ∪B(k−1)1

1 .
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Table 1
The faulty nodes and damaged Q k

n−2 ’s in An−1 (for
convenience, denote δ = k − 1).

Faulty nodes Damaged Q k
n−2 ’s

00 . . . 0 00Xn−2, 0X0Xn−3, . . . , 0Xn−20
01 . . . 1 01Xn−2, 0X1Xn−3, . . . , 0Xn−21

.

.

.
.
.
.

.

.

. . . .
.
.
.

0δ . . . δ 0δXn−2, 0XδXn−3, . . . , 0Xn−2δ

10 . . . 0 10Xn−2, 1X0Xn−3, . . . , 1Xn−20
11 . . . 1 11Xn−2, 1X1Xn−3, . . . , 1Xn−21

.

.

.
.
.
.

.

.

. . . .
.
.
.

1δ . . . δ 1δXn−2, 1XδXn−3, . . . , 1Xn−2δ

.

.

.
.
.
.

.

.

. . . .
.
.
.

δ0 . . . 0 δ0Xn−2, δX0Xn−3, . . . , δXn−20
δ1 . . . 1 δ1Xn−2, δX1Xn−3, . . . , δXn−21

.

.

.
.
.
.

.

.

. . . .
.
.
.

δδ . . . δ δδXn−2, δXδXn−3, . . . , δXn−2δ

For every 2 ≤ p ≤ k − 1, define the mapping Ψp as follows:

Ψp: V (Q [0]) → V (Q [p])
un−1 . . . u2u1u0 → un−1 . . . u2(u1 − p) (mod k) (u0 + p).

Similarly, we have that all the Q k
1 ’s in Q [p] are damaged by the faulty nodes in Ap

p+1 for every 2 ≤ p ≤ k − 1. Therefore
A0
1 ∪ A1

2 ∪ · · · ∪ Ak−1
k is the set of faulty nodes that damage all the Q k

1 ’s in Q k
n . The proof of the claim is complete.

By the claim, f (n, n−1) ≤ |A0
1|+|A1

2|+· · ·+|Ak−1
k | = kkn−2

= kn−1. Lemma 3 implies that f (n, n−1) ≥ kn−1. Therefore
we have f (n, n − 1) = kn−1. �

Note that for some special cases the exact value of f (n,m) coincides with the lower bound. But there is a large gap
between the lower bound km and the upper bound km

n
m


in Lemma 3. In the following, we shall improve the upper bound

on f (n,m).

3.2. A better upper bound on f (n,m)

We first present a better upper bound on f (n, 2) by giving a set of faulty nodes that damage all Q k
n−2’s in Q k

n .

Lemma 4. Denote by f (n, 2) the minimum number of faulty nodes that make every (n− 2)-dimensional subcube Q k
n−2 faulty in

Q k
n . Then f (n, 2) ≤

n−1
1


k2 −

n−2
1


k for odd k ≥ 3.

Proof. By Lemma 2, there are
n
2


k2 distinctQ k

n−2’s inQ k
n . Divide all the distinctQ

k
n−2’s inQ k

n into n−1 sets An−1, An−2. . . . , A1,
where, for i ∈ {1, 2, . . . , n − 1}, Ai = {Xn−1−iaiX i−j−1ajX j

: 0 ≤ j ≤ i − 1 and ai, aj ∈ Nk−1}. Clearly, |Ai| =
 i
1


k2 for

i ∈ {1, 2, . . . , n − 1}. We first find k2 faulty nodes to damage all the Q k
n−2’s in An−1. See Table 1 for more details.

Secondly, we find k2 faulty nodes to damage all the Q k
n−2’s in An−2. See Table 2 for more details.

We proceed in a similar way until we find k2 faulty nodes to damage all the Q k
n−2’s in A1. See Table 3 for more details

of A1.
Note that the nodes 00 . . . 0, 11 . . . 1, . . . , (k−1)(k−1) . . . (k−1) repeat n−2 times in the faulty nodeswhichwe found.

Except 00 . . . 0, 11 . . . 1, . . . , (k−1)(k−1) . . . (k−1), the faulty nodes are pairwise distinct. Thuswe found (n−1)k2−(n−2)k
faulty nodes. Since |An−1|+ |An−2|+ · · ·+ |A1| = (n−1)k2 + (n−2)k2 +· · ·+ k2 =

n
2


k2, the faulty nodes which we found

can damage all the Q k
n−2’s in Q k

n , which yields f (n, 2) ≤ (n− 1)k2 − (n− 2)k =
n−1

1


k2 −

n−2
1


k. The proof is complete. �

More generally, we give a better upper bound on f (n,m). The following lemma is useful.

Lemma 5 ([4]). Let s, t be two nonnegative integers with s ≥ t. Then
s−1
t−1


+

s−2
t−1


+ · · · +

t−1
t−1


=

s
t


Theorem 2. Denote by f (n,m) the minimum number of faulty nodes that make every (n−m)-dimensional subcube Q k

n−m faulty
in Q k

n . Then f (n,m) ≤
n−1
m−1


km −

n−2
m−1


km−1 for odd k ≥ 3.
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Table 2
The faulty nodes and damaged Q k

n−2 ’s in An−2 (for
convenience, denote δ = k − 1).

Faulty nodes Damaged Q k
n−2 ’s

000 . . . 0 X00Xn−3, X0X0Xn−4, . . . , X0Xn−30
001 . . . 1 X01Xn−3, X0X1Xn−4, . . . , X0Xn−31

.

.

.
.
.
.

.

.

. . . .
.
.
.

00δ . . . δ X0δXn−3, X0XδXn−4, . . . , X0Xn−3δ

110 . . . 0 X10Xn−3, X1X0Xn−4, . . . , X1Xn−30
111 . . . 1 X11Xn−3, X1X1Xn−4, . . . , X1Xn−31

.

.

.
.
.
.

.

.

. . . .
.
.
.

11δ . . . δ X1δXn−3, X1XδXn−4, . . . , X1Xn−3δ

.

.

.
.
.
.

.

.

. . . .
.
.
.

δδ0 . . . 0 Xδ0Xn−3, XδX0Xn−4, . . . , XδXn−30
δδ1 . . . 1 Xδ1Xn−3, XδX1Xn−4, . . . , XδXn−31

.

.

.
.
.
.

.

.

. . . .
.
.
.

δδδ . . . δ XδδXn−3, XδXδXn−4, . . . , XδXn−3δ

Table 3
The faulty nodes and damaged
Q k
n−2 ’s in A1 (for convenience,

denote δ = k − 1).

Faulty nodes Damaged Q k
n−2 ’s

0 . . . 00 Xn−200
0 . . . 01 Xn−201

.

.

.
.
.
.

0 . . . 0δ Xn−20δ

1 . . . 10 Xn−210
1 . . . 11 Xn−211

.

.

.
.
.
.

1 . . . 1δ Xn−21δ

. . . . . .

δ . . . δ0 Xn−2δ0
δ . . . δ1 Xn−2δ1

.

.

.
.
.
.

δ . . . δδ Xn−2δδ

Proof. We prove the theorem by induction onm. By Lemma 4, the theorem holds form = 2. Assume the theorem holds for
m − 1 (m ≥ 3), i.e., f (n,m − 1) ≤

n−1
m−2


km−1

−
n−2
m−2


km−2 for odd k ≥ 3. We shall show that the theorem holds for m. By

Lemma 2, there are
n
m


km distinct Q k

n−m’s in Q k
n . Divide all the distinct Q

k
n−m’s in Q k

n into n−m+1 sets An−1, An−2. . . . , Am−1,
where, for every i ∈ {m − 1, . . . , n − 2, n − 1}, Ai = {Xn−1−iaiX i−i2−1ai2X

i2−i3−1ai3 . . . aimX
im : 0 ≤ im < · · · <

i3 < i2 ≤ i − 1 and ai, ai2 , ai3 , . . . , aim ∈ Nk−1} and |Ai| =
 i
m−1


km. By Lemma 5, |An−1| + |An−2| + · · · + |Am−1| =

(
n−1
m−1


+

n−2
m−1


+ · · · +

m−1
m−1


)km =

n
m


km. For every i ∈ {m − 1,m, . . . , n − 1}, denote by Bi the set of faulty nodes with

the minimum cardinality to damage all Q k
n−m’s in Ai. For some r ∈ Nk−1 and every i ∈ {m − 1,m, . . . , n − 1}, we denote

by Ai(r) the set {Xn−1−irX i−i2−1ai2X
i2−i3−1ai3 . . . aimX

im : 0 ≤ im < · · · < i3 < i2 ≤ i − 1 and ai2 , ai3 , . . . , aim ∈ Nk−1},
and denote by Bi(r) the set of faulty nodes with the minimum cardinality to damage all Q k

n−m’s in Ai(r). Clearly, for every
i ∈ {m − 1,m, . . . , n − 1},

k−1
r=0 Bi(r) = Bi and Bi(r) ∩ Bi(r ′) = ∅, where r, r ′

∈ Nk−1 and r ≠ r ′.
First, we shall find Bn−1(r) for every r ∈ Nk−1. Denote A′

n−1 = {Xn−i2−2ai2X
i2−i3−1ai3 . . . aimX

im : 0 ≤ im < · · ·

< i3 < i2 ≤ n − 2 and ai2 , ai3 , . . . , aim ∈ Nk−1}. Note that A′

n−1 is the set of all the Q k
(n−1)−(m−1)’s in

Q k
n−1. By the induction hypothesis, there exists a set B′

n−1 of faulty nodes to damage all the Q k
(n−1)−(m−1)’s in Q k

n−1
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with |B′

n−1| = f (n − 1,m − 1) ≤
n−2
m−2


km−1

−
n−3
m−2


km−2. Thus the faulty nodes in B′

n−1 damage all the Q k
(n−1)−(m−1)’s

in A′

n−1. Let B
∗

n−1(r) = {run−2un−3 . . . u0 ∈ V (Q k
n ) : un−2un−3 . . . u0 ∈ B′

n−1} be a set of faulty nodes. Then |B∗

n−1(r)| = |B′

n−1|.
Recall that An−1(r) = {rXn−i2−2ai2X

i2−i3−1ai3 . . . aimX
im : 0 ≤ im < · · · < i3 < i2 ≤ n − 2 and ai2 , ai3 , . . . , aim ∈ Nk−1}. The

faulty nodes in B∗

n−1(r) damage all the Q k
n−m’s in An−1(r). Therefore |Bn−1(r)| ≤ |B∗

n−1(r)| = |B′

n−1| = f (n − 1,m − 1) ≤n−2
m−2


km−1

−
n−3
m−2


km−2. Note that for any r ′

∈ Nk−1 \ {r}, |Bn−1(r ′)| = |Bn−1(r)|. It follows that |Bn−1| =
k−1

r=0 |Bn−1(r)| ≤

k(
n−2
m−2


km−1

−
n−3
m−2


km−2) =

n−2
m−2


km −

n−3
m−2


km−1.

Next, we shall find Bn−2(r) for every r ∈ Nk−1. Denote A′

n−2 = {Xn−i2−3ai2X
i2−i3−1ai3 . . . aimX

im : 0 ≤ im < · · · <

i3 < i2 ≤ n − 3 and ai2 , ai3 , . . . , aim ∈ Nk−1}. Note that A′

n−2 is the set of all the Q k
(n−2)−(m−1)’s in Q k

n−2. By the induction
hypothesis, there exists a set B′

n−2 of faulty nodes to damage all the Q k
(n−2)−(m−1)’s in Q k

n−2 with |B′

n−2| = f (n − 2,m − 1) ≤n−3
m−2


km−1

−
n−4
m−2


km−2. Thus the faulty nodes in B′

n−2 damage all the Q k
(n−2)−(m−1)’s in A′

n−2. Given an integer a ∈ Nk−1, let
B∗

n−2(r) = {arun−3un−4 . . . u0 ∈ V (Q k
n ) : un−3un−4 . . . u0 ∈ B′

n−2} be a set of faulty nodes. Then |B∗

n−2(r)| = |B′

n−2|. Recall
that An−2(r) = {XrXn−i2−3ai2X

i2−i3−1ai3 . . . aimX
im : 0 ≤ im < · · · < i3 < i2 ≤ n − 3 and ai2 , ai3 , . . . , aim ∈ Nk−1}. The

faulty nodes in B∗

n−2(r) damage all the Q k
n−m’s in An−2(r). Therefore |Bn−2(r)| ≤ |B∗

n−2(r)| = |B′

n−2| = f (n − 2,m − 1) ≤n−3
m−2


km−1

−
n−4
m−2


km−2. Note that for any r ′

∈ Nk−1 \ {r}, |Bn−2(r ′)| = |Bn−2(r)|. It follows that |Bn−2| =
k−1

r=0 |Bn−2(r)| ≤

k(
n−3
m−2


km−1

−
n−4
m−2


km−2) =

n−3
m−2


km −

n−4
m−2


km−1.

We proceed in a similar way until we get |Bm| ≤
m−1
m−2


km −

m−2
m−2


km−1.

Now, we consider the remaining Am−1 = {Xn−mam−1am−2 . . . a0 : a0, . . . , am−2, am−1 ∈ Nk−1}. There are km disjoint
Q k
n−m’s inAm−1. Bymaking a node faulty in each of the km disjointQ k

n−m’s inAm−1, we have |Bm−1| = km =
m−2
m−2


km. Therefore,

f (n,m) = |Bn−1| + |Bn−2| + · · · + |Bm| + |Bm−1|

≤


n − 2
m − 2


km −


n − 3
m − 2


km−1

+


n − 3
m − 2


km −


n − 4
m − 2


km−1

+ . . . +


m − 1
m − 2


km −


m − 2
m − 2


km−1

+


m − 2
m − 2


km

=


n − 2
m − 2


+


n − 3
m − 2


+ · · · +


m − 2
m − 2


km

−


n − 3
m − 2


+


n − 4
m − 2


+ · · · +


m − 2
m − 2


km−1.

By Lemma 5, f (n,m) ≤
n−1
m−1


km −

n−2
m−1


km−1. The proof is complete. �

4. Conclusions

In this paper, we investigate f (n,m), the minimum number of faulty nodes which make every (n − m)-dimensional
subcube Q k

n−m faulty in a k-ary n-cube Q k
n under node-failure models. We present the lower and upper bounds on f (n,m),

and determine the exact value of f (n,m) for some special cases. The results can be used in the reliability analysis of the
subnetworks in k-ary n-cubes. The determination of the exact value of f (n,m) remains an open problem for the general
case.

References

[1] Yaagoub A. Ashir, Iain A. Stewart, Fault-tolerant embeddings of Hamiltonian circuits in k-ary n-cubes, SIAM Journal on Discrete Mathematics 15 (3)
(2002) 317–328.

[2] Bernd Becker, Hans-Ulrich Simon, How robust is the n-cube? in: Proceedings of 27th Annual Symposium on Foundations of Computer Science, 1986,
pp. 283–291.

[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[4] Richard A. Brualdi, Introductory Combinatorics, 3rd edition, Prentice Hall, New Jersey, 1999.
[5] Mee Yee Chan, Shiang-Jen Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (4) (1991)

511–527.
[6] Jung-Sheng Fu, Fault-free Hamiltonian cycles in twisted cubes with conditional link faults, Theoretical Computer Science 407 (1–3) (2008) 318–329.
[7] Tung-Yang Ho, Ting-Yi Sung, Lih-Hsing Hsu, A note on edge fault tolerance with respect to hypercubes, Applied Mathematics Letters 18 (10) (2005)

1125–1128.
[8] Sun-Yuan Hsieh, Embedding longest fault-free paths onto star graphs with more vertex faults, Theoretical Computer Science 337 (1–3) (2005)

370–378.
[9] R.E. Kessler, J.L. Schwarzmeier, Cray T3D: a new dimension for Cray Research, in: Proceedings of the 38th IEEE Computer Society International

Conference, Compcon Spring’93, San Francisco, CA, 1993, pp. 176–182.
[10] Shahram Latifi, A study of fault tolerance in star graph, Information Processing Letters 102 (5) (2007) 196–200.
[11] Shangwei Lin, ShiyingWang, Chunfang Li, Panconnectivity and edge-pancyclicity of k-ary n-cubeswith faulty elements, Discrete AppliedMathematics

159 (4) (2011) 212–223.



S. Wang et al. / Theoretical Computer Science 460 (2012) 34–41 41

[12] Meijie Ma, Guizhen Liu, Jun-Ming Xu, Fault-tolerant embedding of paths in crossed cubes, Theoretical Computer Science 407 (1–3) (2008) 110–116.
[13] Michael Noakes, William J. Dally, System design of the J-machine, in: Proceedings of the Sixth MIT Conference on Advanced Research in VLSI, MIT

Press, Cambridge, MA, 1990, pp. 179–194.
[14] Craig Peterson, James Sutton, Paul Wiley, iWarp: a 100-MOPS, LIW microprocessor for multicomputers, IEEE Micro 11 (3) (1991) 26–29. 81–87.
[15] Iain A. Stewart, Yonghong Xiang, Embedding long paths in k-ary n-cubes with faulty nodes and links, IEEE Transactions on Parallel and Distributed

Systems 19 (8) (2008) 1071–1085.
[16] Ping-Ying Tsai, Jung-Sheng Fu, Gen-Huey Chen, Fault-free longest paths in star networks with conditional link faults, Theoretical Computer Science

410 (8–10) (2009) 766–775.
[17] Shiying Wang, Yuxing Yang, Fault tolerance in bubble-sort graph networks, Theoretical Computer Science 421 (2012) 62–69.
[18] Ming-Chien Yang, Jimmy J.M. Tan, Lih-Hsing Hsu, Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes, Journal of Parallel and

Distributed Computing 67 (4) (2007) 362–368.


	Fault tolerance in  k -ary  n -cube networks
	Introduction
	Preliminaries
	Enumeration of faulty nodes
	The lower and upper bounds
	A better upper bound on f(n,m)

	Conclusions
	References


