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A Framework for Clustering Categorical
Time-Evolving Data

Fuyuan Cao, Jiye Liang, Liang Bai, Xingwang Zhao, and Chuangyin Dang, Senior Member, IEEE

Abstract—A fundamental assumption often made in unsuper-
vised learning is that the problem is static, i.e., the description of the
classes does not change with time. However, many practical clus-
tering tasks involve changing environments. It is hence recognized
that the methods and techniques to analyze the evolving trends for
changing environments are of increasing interest and importance.
Although the problem of clustering numerical time-evolving data is
well-explored, the problem of clustering categorical time-evolving
data remains as a challenging issue. In this paper, we propose
a generalized clustering framework for categorical time-evolving
data, which is composed of three algorithms: a drifting-concept
detecting algorithm that detects the difference between the cur-
rent sliding window and the last sliding window, a data-labeling
algorithm that decides the most-appropriate cluster label for each
object of the current sliding window based on the clustering results
of the last sliding window, and a cluster-relationship-analysis algo-
rithm that analyzes the relationship between clustering results at
different time stamps. The time-complexity analysis indicates that
these proposed algorithms are effective for large datasets. Experi-
ments on a real dataset show that the proposed framework not only
accurately detects the drifting concepts but also attains clustering
results of better quality. Furthermore, compared with the other
framework, the proposed one needs fewer parameters, which is
favorable for specific applications.

Index Terms—Categorical time-evolving data, clusters relation-
ship analysis, data labeling, drifting-concept detecting.

I. INTRODUCTION

ANY real applications, such as network-traffic monitor-
M ing, the stock market, credit card fraud detection, and
web click streams, generate continuously arriving data, which
are known as data streams [1]. A data stream is a real-time,
continuous, ordered (implicitly by arrival time or explicitly by
time-stamps) sequence of items. For data-stream applications, it

Manuscript received July 17, 2009; revised January 31, 2010; accepted April
9, 2010. Date of publication May 20, 2010; date of current version September
29,2010. This work was supported by the National Key Basic Research and De-
velopment Program of China (973) under Grant 2007CB311002, the National
Natural Science Foundation of China under Grant 60773133, Grant 70971080,
and Grant 60875040, the High Technology Research and Development Program
of China under Grant 2007AA01Z165, the Doctor Authorization Foundation of
the Ministry of Education under Grant 200801080006, and the Natural Science
Foundation of Shanxi under Grant 2008011038 and Grant 2010021016-2.

F. Cao, J. Liang, L. Bai, and X. Zhao are with the School of Com-
puter and Information Technology, Shanxi University, Taiyuan 030006, China
(e-mail: cfy@sxu.edu.cn; ljy@sxu.edu.cn; sxbailiang@ 126.com; zhaoxw84 @
163.com).

C. Dang is with the Department of Manufacturing Engineering and Engineer-
ing Management, City University of Hong Kong, Kowloon, Hong Kong (e-mail:
mecdang @cityu.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2010.2050891

is impossible to control the order in which items arrive, and the
volume of data is usually too large to be stored on permanent
devices or to be scanned thoroughly more than once. Moreover,
the concept of interest may depend on some hidden context, not
given explicitly in the form of predictive features. In other words,
the concepts, which we try to learn from those data, drift with
time. For example, the buying preferences of customers may
change with time, depending on the current day of the week,
availability of alternatives, discounting rate, etc. As the concepts
behind the data evolve with time, the underlying clusters may
also change considerably with time. Performing clustering on
the entire time-evolving data not only decreases the quality of
clusters but also disregards the expectations of users that usually
require recent clustering results. It is hence recognized that the
methods and techniques to analyze the evolving trends in fast
data streams have become very important in recent years [2].

The problem of clustering time-evolving data in the numerical
domain has been explored in the literature [3]-[13]. However,
there exist many categorical data with drifting concepts in real
world. For example, buying records of customers, web logs that
record the browsing history of users, or web documents often
evolve with time. The existing work on clustering categorical
data focuses on doing clustering on the entire dataset and do not
take into consideration the drifting concepts. Thus, it is desired
to devise an efficient method that is able to cluster the categorial
time-evolving data.

In the categorical domain, Nasraoui et al. [14] presented a
complete framework and findings in mining web-usage patterns
from Web log files of a real website that has all the challeng-
ing aspects of real-life web-usage mining, including evolving
user profiles and external data describing an ontology of the
web content. Chen et al. [15] proposed a framework to perform
clustering on the categorical time-evolving data. The frame-
work detects the drifting concepts at different sliding windows,
generates the clustering results based on the current concept,
and shows the relationship between clustering results by the
visualization. However, this framework needs to set many sys-
tem parameters, which may increase the difficulty for different
applications.

Rough-set theory, which was introduced by Pawlak [16], is a
kind of machine-learning technology for categorical data table
with information uncertainty [17], [18]. In recent years, rough-
set theory has attracted much attention in the clustering and
outlier-detection literature. Parmar et al. [19] proposed a new al-
gorithm min-min-roughness (MMR) to cluster categorical data
based on rough-set theory, which has the ability to handle the
uncertainty in the clustering process. By the notion of rough
membership function in rough-set theory, Jiang et al. [20], [21]
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defined the rough outlier factor for outlier detection. Chen and
Wang [22] presented an improved clustering algorithm, which is
based on rough-set and Shannon’s entropy theory. Based on the
neighborhood rough-set model, an initialization method for the
k-means algorithm was presented [23]. Especially, the rough
membership function in rough-set theory represents a vague
concept and can induce a fuzzy set [24]. As rough sets and
fuzzy sets have been proved to be powerful mathematical tools
to deal with uncertainty, combining rough sets with fuzzy sets
has become an important research topic [25]-[28].

In this paper, a framework to perform clustering on the cate-
gorical time-evolving data is proposed. In particular, this frame-
work is independent of clustering algorithms (in other words,
any categorical clustering algorithm can be utilized). The pro-
posed framework can be summarized as follows: Based on
the rough membership function and the sliding-window tech-
nique [3], [5], [6], [8], the distance between two concepts (i.e.,
two sliding windows) is defined, and then, a drifting-concept de-
tecting algorithm (DCDA) is proposed. If the distance is larger
than some threshold, the current sliding window will perform
reclustering to capture the recent concept. In contrast, if the
concept is steady, each object of the current window will be
allocated into the corresponding proper cluster according to the
similarity between it and the clustering results of last sliding
window, which is named as a data-labeling algorithm (DLA).
Moreover, a cluster-relationship-analysis algorithm (CRAA) is
proposed, which can explain the drifting concepts by analyzing
the relationship between clustering results at different time-
stamps, and capture the time-evolving trend in the dataset. The
time-complexity analysis indicates that the proposed algorithms
are effective for large datasets. Experiments on a real dataset
show that the proposed algorithms not only accurately detect
the drifting concepts but also attain clustering results of better
quality. Furthermore, compared with Chen’s framework [15],
the proposed one needs fewer parameters, which is favorable
for practical applications.

The outline of the rest of this paper is as follows. In
Section II, some basic concepts of rough-set theory are reviewed,
and the problem of the categorical time-evolving is formulated.
In Section III, the distance between two concepts is defined
based on the rough membership function, the DCDA and the
DLA are proposed, and the corresponding time complexity is
also analyzed. In Section IV, based on the idea of the distance
between two concepts, the distance between clustering results
of different sliding windows is given, the CRAA is described,
and the corresponding time complexity is analyzed as well. Ex-
perimental studies on a real dataset are conducted in Section V.
This paper concludes with some remarks in Section VI.

II. PRELIMINARIES

In Section II-A, several basic concepts are reviewed, includ-
ing indiscernibility relations, lower and upper approximations,
and rough membership functions [16]. After that, the formal
description of clustering the categorical time-evolving data fol-
lows in Section II-B.

A. Some Basic Concepts of Rough-Set Theory

As we know, the structural data are stored in a table, where
each row (tuple) represents facts about an object. Data in the real
world are prevalently described by categorical attributes. More
formally, a categorical data table can be defined as a quadruple
1S = (U,A,V, f), where

U—a nonempty set of objects, which is called the universe;

A—a nonempty set of attributes;

V—the union of all attribute domains, i.e., V = Uae A Va,
where V, is the domain of attribute ¢ and is finite and unordered;

f:U x A — V—amapping, which is called an information
function, such that for any z € U and a € A, f(x,a) € V.

For any attribute subset P C A, a binary relation IND(P),
which is called indiscernibility relation, is defined as

IND(P) = {(z,y) € U x U|Va € P, f(z,a) = f(y,a)}.

ey

It is obvious that IND(P) is an equivalence relation on U and
IND(P) = (,p IND({a}).

Given P C A, the relation IND(P) induces a partition of U,
which is denoted by U/IND(P) = {[x]p |z € U}, where [x]p
denotes the equivalence class determined by x with respect to
P,ie., [z]p = {y € U|(x,y) € IND(P)}.

As follows, we give the definitions of a lower approximation
and an upper approximation in rough-set theory.

For any given categorical data table 1.5 = (U, A,V f), with
P C Aand X C U, one can define a lower approximation of
X in U and an upper approximation of X in U by

PX = {z|[z]p C X} (2)
and
PX = {z|[x]p ﬂX%@} 3

where PX is a set of objects that belong to X with certainty,
while PX is a set of objects that possibly belong to X .

The set BNp(X) = PX — PX is called the P-boundary re-
gion of X and consists of those objects that we cannot decisively
classify into X on the basis of knowledge in P. The set U — PX
is called the P-outside region of X and consists of those ob-
jects that can be with certainty classified as not belonging
to X.

In classical set theory, an element either belongs to a set,
or it does not. The corresponding membership function is the
characteristic function of the set, i.e., the function takes values
1 and 0, respectively. In the case of rough sets, the notion of
membership is different.

Definition 1 [16]: Let 1S = (U, A, V, f) be a categorical data
table, with P C Aand X C U. The rough membership function
phk : U —[0,1] is defined as

P |[z]p N X]

The rough membership function quantifies the degree of rel-
ative overlap between the set X and the equivalence class [z]p
to which x belongs. Obviously, the rough membership function
takes values between 0 and 1. Therefore, the rough membership
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function represents a vague concept and can induce a fuzzy set
F¥ of U, which is given by F¥ = {(z, i (x))|z € U}.

B. Problem Description of the Categorical Time-Evolving Data

Similarly, a categorical time-evolving data can also be stored
in a table. More formally, a categorical time-evolving data table
can be formulated as a quintuple T1.S = (U, A,V f,t), where

U—a nonempty set of objects, which is called the universe;

A—a nonempty set of attributes;

V—the union of all attribute domains, i.e., V = Ua ca Vas
where V, is a set of attribute values for a, which is the domain
of attribute a and is finite and unordered;

f:U x A xt— V—amapping, whichis called an informa-
tion function, such that for any x € U and a € A, f(z,a,t) €
V., where ¢ is the arriving time of object x.

Suppose that the sliding-window size N is given; then, the
T1IS is separated into several continuous subset ST (1<i<
| %), where the number of objects in each S”' is N. The
superscript number 7; is the identification number of the sliding
window and is also called the time stamp in this paper. For
example, the first N objects in 715 are located in the first
subset STt

III. DRIFTING-CONCEPT DETECTING

In this section, based on the rough membership function and
the sliding-window technique, the distance between two con-
cepts, i.e., the difference between the current subset S”7 and the
last subset S, is defined. If the difference is large enough, the
T}th sliding window will be considered as a concept-drifting
window, and ST/ will perform reclustering. In contrast, each
object of the current window S77 will be allocated into the
corresponding proper cluster according to the clustering results
of ST by the data-labeling technique. Based on the foregoing
discussion, a DCDA and a DLA are presented, and the corre-
sponding time complexity is analyzed as well.

A. Distance Between Two Concepts

Definition 2: Let TIS = (U, A, V, f, ) be a categorical time-
evolving data table and S+, ST C U, where ST' N STi = ()
and S!77il = 7| JSTi. The difference measure between
STi and ST/ with respect to A is defined as

1

da(ST, 8T = i > dgy (ST, 8™
acA
Sen Doestri 15 (@) = plid (@)

[STTA
&)

1f STl /IND({a}) = {X|X = {u},u € ST"Ti]}, where
a € A, then dy,, (ST, S7/) achieves its maximum value 1.

If SITT/IND({a}) = {X|X = ST 11}, where a € A,
then dy,) (577, 577) achieves its minimum value 0.

For d (ST, ST7), itis easy to prove the following properties.
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Property 1: Let TIS = (U,A,V, f,t) be a categorical
time-evolving data table. For any S7i, ST STx C U, where
ST ST STr = (), we have the following:

1) Symmetry: da (ST, 8T) = da (ST, ST);

2) Nonnegativity: d, (ST, S7i) > 0;

3) Triangle inequality: da (ST, ST) 4+ d,(ST5,STr) >

da (ST" , ST ).

Property 1 shows that the difference measure d 4 is a distance
metric.

Property 2: Let TIS = (U, A,V, f,t) be a categorical
time-evolving data table, a € A and S”',ST) C U, where
STiN ST = (and STl = ST | JSTs

1) Iz € {a}$™ U{a}s™, then [y} () — '3 ()| =1.

2) If @ e ST — ({a}S™ \J{a}ST), then |plf) (2) -

p @l =0.
3) If {a}ST N {a}ST =0
i (@) = e (@) = 1.
4) If &€ BN,y ST UBN,, 8™, then 0 < [ul) () —
pgh, (@) < 1

Property 3: Letting TIS = (U, A, V, f,t) be a categorical
time-evolving data table and S7¢ | 75 C U, where S7i ST/ =
¢ and ST+ 151 = g7 U S77, then

Daed Ly IYOST =Y N ST
|SIT:.Til|| A

and x € STTil then

dA (STI7STJ) =

(6)

where cit} = SI70.7)] /IND ({a}).
Proof: We have that

da (ST, 817

 Seea Tpestrns s (@) — plsd ()]
- ST A]

)y (VST )y () ST
2aed Laest Tl | T oyl T Talw)]
|S[TUT.I]| A|
_ Yaea Lpesmirs) |8y NS = 2l N ST ]

STl || Allf2) 0y |
Daed Ly et 2aey @y NS
STl || All[2] 0y |

— [zl NS ]

_ Zaea Ly et 8zl N ST =l gy N 5™
STl || All[2) o) |

C Teea Zyem IYNST =Y OS]

a |SIT:.Til|| A]

|

Example 1: A categorical time-evolving example dataset is
given in Table L.

In Table I, U = {x1,22,...,290} is the universe, and A =

{A1, Ay, A3} is the attribute set. Suppose that the size of slid-

ing window is N = 5; we have S™' = {x1,29,..., 25}, 572 =
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TABLE I
CATEGORICAL TIME-EVOLVING EXAMPLE DATASET

Object

x1

>
N
V]
S
W

T2

x3

T4

T5

Ze

z7

xg

ARl Nl - ARwE - NoRRwA RN i-His-E o}

—
v

B
S e A e e e e R R e -
2|z 2|7 ||| R |@m| 2|2 R E(E|m|m|E

T | v H|T|=|T|T

x20

{1‘6,1‘7, . ,xlo}, STs — {1‘11,.2312, . ,$15}, and ST =
{x16,x17,...,T20}. In the following, the computational pro-
cess of the distance between S™' and S2 is described.

By calculating, one can have

SITLT] IND({ Ay })

= {{z1, x5, x6, 23, 210 }, {®2, T4, 20 }, {3, 27 } }
STV /IND({A}) = ({124, w10}, {2, 23}
ST /IND({As })

= {{‘Tlv‘rﬁvmlo}v {$2,$3,$4,.’E7,£L’9}, {.’E5,.’E8}}.

According to Property 3, we have

d{Al}(STl ; STZ) =

d{Ag}(STl 3 STZ) =

(S T ORI

d{Az}(STl ’ STZ ) =
Therefore, we have

4
da(s™,57) = —.
A ( ) ) 15
In a similar way, we have

8
da(57,8") = —
A ( 5 ) 15 )
Then, it is easy to see that

dA(STl,STQ) < dy (ST27ST3) < dy (STS,ST'i).

9
Ts Ty = —

TABLE II
DCDA

1 Input: TIS = (U, A,V, f,t), N and 0, where N is
2 the size of sliding window and 6 is the
3 specified threshold value;
4 Begin

5 Drifting-Window=();
6

7

8

Fori=1to [Y] 1
If Distance-Between-Concepts(S77, STi+1, A) > 6
Drifting-Window=Drifting-WindowJ{i + 1};
9 End;
10  End;
11End;
12 Output: Drifting-Window.

TABLE III
COMPUTATIONAL PROCESS OF THE DISTANCE BETWEEN TWO CONCEPTS

1 Function Distance-Between-Concepts(S”:, ST, A).
2 Begin

3 STl = §Ti | ) STi;

4 distance = 0;

S For p =1 to |A]

6 ST/ IND({ap}) = {c1,c2, -y cm, b ap € A;
7 For j =1 to m,

8 distance = distance + ||c; ST | — |¢; N ST |[;
9 End;

10  End;

11 Return ﬁ% ;

12 End;

Suppose that the concept-drifting threshold is set to 0.5; then,
T3 and T are considered as two concept-drifting windows.
Therefore, S™ and S™* are going to perform reclustering.

B. Drifting-Concept Detecting Algorithm

Based on the distance between two sliding windows or two
concepts, the DC DA is presented in Table II. In addition, the
computational process of the distance between two concepts is
described in Table III.

The runtime complexity of the DCDA is analyzed
as follows. The runtime complexity to compute the dis-
tance between sliding windows is O((|SIT-Ti+11| 4 m,,)|A|) =
O(|ST-Ti+11|| A]). Therefore, the whole computational cost
of the DCD A is O(| W] |SIT-Tl)| A]) = O(| & 2N |A]) =
O(|U||Al]), where U is the universe, |A| is the number of at-
tributes, NV is the size of sliding window, and m,, is the number
of distinct categorical values with respect to attribute a, € A.
Based on the above analysis, the time complexity of the DC' D A
is linear with respect to the number of the objects in U.

C. Data-Labeling Algorithm

The goal of clustering is to allocate every data object into an
appropriate cluster. For the current sliding window, if the stable
concept remains, the clustering results of the current sliding
window can be obtained by data-labeling technique. In other
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TABLE IV
SIMILARITY BETWEEN EACH OBJECT OF S72 AND EACH CLUSTER OF S71

Tg Z7 ZTg ) Z10
clT1 0.8333 0.3333 0.8333 0.3333 0.8333
cle 0.1111 0.5556 0.1111 0.6667 0.1111

words, based on the similarity between an unlabeled data object
and a cluster, each data object in the current sliding window can
be allocated to the cluster in the last sliding window with the
maximal similarity. Note that after executing the data labeling,
the labeled data point just obtains a cluster label instead of being
really added to the cluster.

Definition 3: Let TIS = (U, A, V, f,t) be a categorical time-
evolving data table and STi , STi C U, where ST N ST = ()
and SI7-Til = ST | JSTi . Suppose that a prior clustering re-
sult CT = {c{",cj',....c;) } is given on ST', where !,
1 <m < kg, is the mth clﬁster. For any unlabeled object
x € ST, the similarity between = and the cluster cﬁ" with re-
spect to A is defined as

a Nenl
o) = Ty Z ™

SlmA(
i

where [m]f;} denotes the equivalence class determined by =

with respect to a in the universe ST, i.e., [:r]faT} ={ue
ST |f(u7a) = f(x,a)}

Obviously, we have 0 < Simy (z, ¢, ) < 1.

Example 2 (Continued from Example 1): Since
da (ST, S8T) < 0.5, we need to decide the most-appropriate
cluster label for each object of STz, Suppose that the clustering
results of STt are O™t = {¢l* ¢l'}, where ¢]' = {1, x5}, and
c = {x2,x3,24}. According to Definition 3, the similarity
between each object of ST and each cluster of S”* is shown
in Table I'V.

From Table IV, we obtain that c{z = {x¢, 25,210} and 02T2 =
{27, x9}. The pseudocode of the algorithm to label unlabeled
categorical data is described in Table V.

The runtime complexity of the DLA is analyzed as fol-
lows. The runtime complexity to compute the similarity be-
tween an arbitrary object and a cluster is O(]S”/ || A]). There-
fore, the total computational cost of the proposed algorithm
is O(| ST || A|| ST/ |kr, ). Based on the above analysis, the time
complexity on the data-labeling phase is linear with respect to
the number of the objects in the unlabeled dataset .S Ti ie., the
size of the sliding window.

IV. CLUSTER-RELATIONSHIP ANALYSIS

After performing clustering on the entire dataset where the
drifting concept is considered, several clustering results with
time stamps are obtained. Each clustering result is generated
from one concept that persists over a period of time. In order to
analyze the relationship between clusters, the distance between
clusters and the representative of a cluster are defined. Further-
more, a visualizing algorithm that tries to present the evolving
trend of clustering results is proposed.
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TABLE V
DLA

1 Function Data-Labeling(S™, ST, A).
2 Begin
3 Generate a partition CTi = {cI* cl% ... ,({T} of
4 STi with respect to A by calling the correspénding
5  categorical clustering algorithm;
6 Forj =1 to |ST]
7 For i’ =1 to kr,
8 Calculate the similarity Sim 4 (mf’ ,ch)
9 according to Definition 3, where x;’
10 is the j’th object in ST5.
11 End;
12 Give label L to IZ:J , where
13 L = argmaXp=1,... kr, {SimA(x?j,cZ;)};
14 End;
15 Return CT7 = {c17, chi - ~,chTi};
16 End;

A. Distance Between Two Clusters

In order to present the relationship between clusters at differ-
ent time-stamps, the distance between two clusters is defined.
The computation of the distance between two clusters is similar
to that of two concepts.

Definition4: LetTIS = (U, A, V, f, t) be a categorical time-
evolving data table and S7i,STi C U, where STi ST =
) and SIT+Til = ST | J ST, Suppose that clustering results

) : v T, T T

Clo={cl",c)',....cit tandCTr ={c’ )’ ,.... ;) }are
i J

T

given on S”¢ and S/, respectively. The distance between c;/’
and cjr;’ with respect to A is defined as
Saea Spectrinst 1! (2) = w5 (@)

T, Tiy _ i’ j
da(cy el ) = CT T A t)

where O17 T3] = (i UCJT/ 1<i'" <kr,1<j <kg,.
Example 3 (Continued from Example 2): From Example 2, we
have obtained that ¢! = {1, 25}, cQT1 ={x9, 23,24}, clT2 =
{6, x5, 710}, and ¢;> = {x7,29}. In Example 1, T3 and T are
considered as concept-drifting windows, and we suppose that

the reclustering results of ST and STi are OTs = {cl*, cl%}
and CTt _{C1 ,ca'}, where ¢ —{mu,xls,my} 02T =
{219,714}, 1" = {®16, %17, T19, 720}, and 3" = {z15}. The

distances of the clustering results between S7' and STi+!
(1 <4 < 3) are shown in Table VI, respectively.

B. Visualizing the Evolving Clusters

To facilitate the observation of the evolving clusters, the rep-
resentative of a cluster is necessary. First, we review the mode
of a set [29]. Let X = {x1,x9,...,x,} be a set of n objects
in which each object x; is represented as [x;1,Tia, ..., Tim],
where m is the number of categorical attributes. A mode of
X is a vector @ = [q1,q2, - - - , ¢ ] that minimizes D(X, Q) =
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TABLE VI
DISTANCES OF CLUSTERS BETWEEN THE CLUSTERING RESULTS AT DIFFERENT TIME-STAMPS
it = {z1, 25} 3t = {wy, w3, 74}
el = {x¢, 28,710} 0.2000 0.8889
e = {x7, 29} 0.6667 0.3333
12 = {x¢, T3, T10} ca? = {7, 9}
el = {x11, 713,715} 0.8889 1
ca® = {x12, 14} 0.7333 0
el = {x11, 13, T15} ca® = {12,714}
C’:lll = {I16,1'17,1'19,.r20} 1 0.3333
cg“ ={x15} 1 1
TABLE VII TABLE VIII
REPRESENTATIVE OF EACH CLUSTER AT DIFFERENT TIME-STAMPS VISUALIZING ALGORITHM
Cluster Representative 1 Procedure Visualizing(S™+, ST4, A, ), where  is
ci = {z1,75} R(ci) = {A, M,C} 2 the specified threshold value;
ey = {xo, 3,14} R(c}) ={Y,E, P} 3 Begin v .
c? = {6, 28,710} R(c?) = {A, M,C} 4 Obtain clustering results C*# = {¢;*, ¢y, -+, ¢} } and
1 3 - , . ;
5 ={z7, 20} R(c3) ={X, M, P} 5 Ol ={c],ch’,-- ,CZ] } with respect to A;
et ={z11,713, 715} R(c}) ={B,E,D} Ti
1 11,413,415 1 y Ly 6 For Z'/ =1tok
c3 = {z12, 714} R(c3) = {X, M, P} ? . .
2 ’ 2 o 7 Generate R(c;) according to Definition 5;
¢ = {Z16, 217, T19, T20} R(Ci) ={Y,M, P} 8 End:
ch= {re} R ={ZNT) R,
J
10 Generate R(c};") according to Definition 5;
Sy 2ty d(wij, q;), where 11 End;
12 Fori' =1to kg,
0, z; =g 13 For ' =1 to kr.
d(zij,q;) = { . T Ty
1, otherwise. 14 If dale;’ c;/) <
T Ti o i
In other words, ¢;(1 < i < m) is the most-frequent value in 15 Co'nnect ¢ty ¢;i with line;
X with respect to the ith attribute such that the vector @ is }S EE;d’
a mode. Here, () is not necessarily an object of X. However, 18 E d'n >
“mode” mainly focuses on the intracluster similarity and does 19En d'n ’

not take the intercluster similarity into account. In the following,
the representative of a cluster is defined, which considers both
the intracluster similarity and the intercluster similarity.

Definition 5: Let TIS = (U, A, V, f, ) be a categorical time-
evolving data table and ST C U. Suppose that clustering results
CT ={cf,cf,..., ¢, yaregivenon ST . The representative of
acluster ¢/ € C7 is defined as

R(cI) = {qj\qj =arg max m, Xw, ,j= 1,2,...7\A|}
4;1€Va, J j
)

where

I |{:c|f(x,a]) =qj, T € C?H

s E

and

o _ Nz edf@a) =g}

Yo T Ha € ST|f(x,a;) = g5 }]

Example 4 (Continued from Example 3): According to
Definition 5, the representative of each cluster is shown in
Table VII.

Based on the above ideas, a visualizing algorithm of cluster-
relationship analysis is described in Table VIII.

The runtime complexity of the visualizing algorithm is ana-
lyzed as follows. The total computational cost of the CRAA
is  O(ST || Alkr, + |S||Alkr, + KT KT |ST: ST | Al) =
O(kT kT3 18T | ST5 || A)).

Suppose that threshold value v = 0.2. Fig. 1 shows the evolv-
ing process between clusters at different time stamps.

In Fig. 1, the horizontal direction is the time axis. The blue
and red circles in a column indicate the different clustering
results at the same time stamp. Note that the size of each circle
represents the number of objects in the clustering results. The
content in each circle is the “representative” of each cluster. In
addition, we use lines to link the similar clusters. If we mark all
cluster relations in the visualization, the lines are too numerous
to show the clusters evolving clearly. Therefore, a user-specified
threshold is used to prune the unimportant relationship when the
distance between clusters is too large.
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Fig. 1. Visualization of the evolving clusters.

V. EXPERIMENTAL ANALYSIS

In this section, we demonstrate the performance of the
proposed framework on clustering categorical time-evolving
data by a thorough experimental study on the real dataset. In
Section V-A, the test environment and the dataset used are de-
scribed. The comparison of different frameworks is presented
in Section V-B. In Section V-C, the evolving processes of clus-
tering results at different time stamps are visualized on the real
dataset.

A. Test Environment and Dataset

All of our experiments are conducted on a PC with an Intel
Pentium D (2.8 G) processor with 1 GB memory and the Win-
dows XP SP3 professional operating system. In all experiments,
the k-modes [29] clustering algorithm is chosen to do the initial
clustering and reclustering on the datasets. As the k-modes al-
gorithm is dependent on the selection of initial cluster centers,
we utilize an initialization method, which was proposed in [33],
to obtain initial cluster centers before executing the k-modes.

The KDD-CUP’99 network-intrusion-detection —stream
dataset [30], which has been used earlier to evaluate several
stream-clustering algorithms and DCDAs, is used in our study.
The network-intrusion-detection dataset consists of a series of
transmission control protocol (TCP) connection records from
two weeks of LAN traffic managed by the Lincoln Laboratories
at the Massachusetts Institute of Technology. Each record can
either correspond to a normal connection or an intrusion (or
attack). The attacks fall into 22 types, such as buffer-overflow,
guess-passwd, neptune, portsweep, rootkit, smurf, spy, etc. As
aresult, the data contain a total of 23 classes including the class
for “normal connection.” In the following experiments, all dif-
ferent 22 attack-types are seen as “attack.” We utilize the class
label which indicates that the record is a normal connection or
an attack to identify the drifting concept. Most of the connec-
tions in this dataset are normal, but occasionally, there could
be a burst of attacks at certain times. One of the objectives in
the intrusion-detection system is to detect the changes of con-
nections from normal to a burst of attacks or from the attacks
back to normal, and those changes naturally correspond to a
drifting concept. Therefore, this dataset is time-evolving data
and is suitable for evaluating our algorithms.
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Fig. 2. Number of drifting concepts, precision, and recall varying with the
size of sliding window. (a) The variations of the number of drifting-concepts on
KDD-CUP’99 data set varying the size of sliding window. (b) The variations of
the Precision and Recall on the KDD-CUP’99 data set varying the size of the
sliding window.

We utilize the 10% subset version, which is provided from
the KDD-CUP’99 website for our experiments. In this dataset,
there are 494 021 records, and each record contains 42 attributes
(class label is included), such as the duration of the connection,
the number of data bytes transmitted from source to destination
(and vice versa), the percentile of connections that have “SYN”
errors, the number of “root” accesses, etc. Also, 34 attributes are
continuous. We adopt uniform quantization on those numerical
attributes where each attribute is quantized into five categorical
values.

B. Evaluation on Accuracy

1) Drifting-Concept Detecting: In order to evaluate the ef-
fectiveness of DC DA, the following two evaluation indexes,
i.e., precision and recall, are employed in this experiment. Sup-
pose that a dataset and the size of sliding window are given. In
order to define the two kinds of evaluation indexes, the following
quantities are needed:

a—the number of drifting concepts with respect to class label;

b—the number of drifting concepts with respect to attribute
sets (not including class label);

c—the number of drifting concepts that are correctly detected
by attribute sets (not including class label).

The precision and recall are defined as

Precision = g (10)

and

Recall = ¢
a

an

respectively.

A drifting concept is recognized if the characteristic of the
current window is very different from that of the last window.
Setting the size of sliding window and a proper threshold value
is very important for detecting the concept drifting. If the dataset
varies dramatically, one can set smaller sliding-window size to
capture the frequent drifting concepts. In contrast, if the dataset
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TABLE IX
PRECISION AND RECALL ON THE KDD-CUP’99 DATASET
Sliding Window Size Precision Recall
N=1000 0.3571 0.1720
N=2000 0.4000 0.2791
N=3000 0.3750 0.2727
N=4000 0.5000 0.3667

is stable, the size of sliding window is able to be set larger in
order to save the execution time. In Fig. 2(a), the variations of
the number of drifting concepts with respect to class label and
attribute sets are shown, respectively. Precision and recall, with
respect to attribute sets, are presented in Fig. 2(b). In this exper-
iment, the threshold value between two concepts with respect
to attribute sets is set to 0.05, the threshold value between two
concepts with respect to class label is set to 0.1, and the size of
sliding window is from 1000 to 30 000 with step length of 1000.

From Fig. 2(a), it is clear that the number of drifting con-
cepts decreases with the increasing of sliding window size. In
Fig. 2(b), one can find that the precision and recall are insensitive
to the size of sliding window.

Furthermore, the number of drifting concepts varying with
the size of threshold value is also analyzed. Fig. 3 shows the
number of drifting concepts varying with the size of threshold
value with respect to class label and attribute sets, respectively.
In this experiment, suppose that the size of sliding window is
set to 3000 and that the size of threshold is from 0.01 to 1 with
step length of 0.01.

From Fig. 3, one can find that the variance ratio of the number
of drifting concepts with respect to attribute sets is greater than
that of the class label. To make the number of drifting concepts
with respect to class label as close to that of attribute sets as
possible, the threshold value with respect to class label should
be greater than that of attribute sets. In the practical application,
a user may choose a proper threshold by the prior knowledge
and specific requirement.

In addition, we ran Chen’s clustering framework, and exper-
imental results are shown in Table IX. In the experiment, the
outlier threshold is set to 0.1, and the cluster-variation threshold
is set to 0.1, and the cluster-difference threshold is set to 0.5.
The threshold value between two concepts with respect to class
label is set to 0.1.
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Fig.4. Comparison of the two different frameworks on KDD-CUP dataset. (a)

Comparison of AC with two different framework. (b) Comparison of run-time
with two different framework.

From Table IX and Fig. 2(b), one can find that the DC' DA is
obviously superior to Chen’s method.

2) Clustering Results: In order to evaluate the effectiveness
of the proposed framework in clustering, clustering accuracy is
defined as

Accuracy = (12)
where k is the number of classes of the dataset, a; is the number
of objects that are correctly assigned to the ith (1 < ¢ < k) class,
and U is the universe.

Fig. 4 shows the comparison of accuracy and run-time be-
tween the proposed framework and Chen’s framework on each
sliding window. In this experiment, the threshold value 6 be-
tween two concepts with respect to attribute sets is set to 0.1.
The outlier threshold is set to 0.1, the cluster-variation thresh-
old is set to 0.1, and the cluster-difference threshold is set
to 0.5.

From Fig. 4(a), one can obtain that the accuracy of the pro-
posed framework is greater than that of Chen’s framework on
144 sliding windows among the 164. From Fig. 4(b), it is clear
that the run-time of the proposed framework is obviously less
than that of Chen’s. Furthermore, compared with Chen’s frame-
work, the proposed one needs fewer parameters.

C. Trend Analysis

1) Method to Determine the Number of Clusters: One of
the major problems in cluster analysis is the determination of
the number of clusters, which is a basic input for most cluster-
ing algorithms. Chen and Liu [34] proposed an entropy-based
categorical clustering algorithm, i.e., agglomerative categorical
clustering with entropy criterion (ACE), to determine the num-
ber of clusters. The experimental results show that the ACE can
effectively identify the significant clustering structures. How-
ever, the time complexity of the ACE is O(n?), which prevents
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it from working directly on large datasets, where n is the number
of objects. In general, the number of clusters on a dataset is be-
tween 2 and \/n [31], [32]. Based on the foregoing discussion,
the ACE can be improved further. Thus, the input dataset can be
partitioned into y/n small subclusters by the k-modes clustering
algorithm in the first phase, and then, the subclusters are contin-
uously merged based on incremental entropy [34], as proposed
by Chen and Liu, in a hierarchical manner, in the second phase.
However, the k-modes algorithm is likely to obtain different
clustering results with different initial cluster centers, which
makes it important to start with a reasonable initial partition
in order to achieve high-quality clustering solutions. Therefore,
we utilize an initialization method, which was proposed in [33],
to obtain initial cluster centers before executing the k-modes
in the first phase. The improved ACE clustering algorithm can
effectively detect the number of clusters in categorical data, and

the corresponding time complexity is dropped to O(ni‘/ %) as
well. In order to detect the number of clusters at different time-
stamps, the improved ACE clustering algorithm is employed on
the KDD-CUP’99 set. In this experiment, let us suppose that the
size of sliding window is 3000 and that the number of clusters
at different sliding windows is shown in Fig. 5.

InFig. 5, the number of clusters drops to 1 in the range 52-114
and 134-149 because the records are the same in those sliding
windows.

2) Visualizing Clustering Results for Trend Analysis: Trend
analysis is very important to predict the future development.
Fig. 6 shows the relationship between clusters at different time-
stamps. In this experiment, we choose the first 30 000 objects of
KDD-CUP’99 set as the test set. Suppose that the size of sliding
window is set to 3000 and that the threshold value ~ of the dis-
tance between two clusters is 0.1. If the distance between two
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Fig. 6. Visualization of the evolving clusters on the first 30 000 objects of
KDD-CUP’99 dataset.

clusters is less than 0.1, two points are lined together. Further-
more, the representative of each cluster is given in Table X (only
including the first six sliding windows). Note that several circles
in a column indicate the clustering results of the current sliding
window. The number near each circle represents the number of
objects of each cluster.

From Fig. 6 and Table X, the evolving processes of clusters at
different time-stamps can easily be seen. For example, sliding
windows 4 and 5 are considered as two drifting concepts, which
can be explained by the fact that the first 7793 objects are normal,
and then, 3695 attacks come after the normal connections. In
addition, 34 attributes are continuous on the KDD-CUP dataset.
Each value of numerical attributes in Table X corresponds to one
of the values, which are obtained by the uniform quantization
method on each continuous attribute. The values of the rest of
the attributes in Table X correspond to one of the domain values,
which are replaced with numeric values.

VI. CONCLUSION

In this paper, we have proposed a framework to perform clus-
tering on the categorical time-evolving data. Based on sliding-
window techniques and the distance between two concepts,

drifting concepts can be obtained at different sliding windows. A
data-labeling method has been proposed based on the similarity
between an object and a cluster. In order to observe the evolving
process of clustering results at different sliding windows, a visu-
alizing method has been presented. The time-complexity analy-
sis of the proposed algorithms indicates that the proposed frame-
work is efficient and scalable at handling a large dataset. The
proposed framework has been demonstrated on a real dataset.
As evidenced by the empirical results, the proposed framework
not only is able to detect the drifting concepts accurately but can
also provide high-quality clustering results. In addition, users
can easily track some evolving trends from the clusters by the
visualizing method, which could be interesting to users. Com-
pared with Chen’s framework, the proposed one needs fewer
parameters, which is favorable for specific applications.

ACKNOWLEDGMENT

The authors are very grateful to the editors and reviewers for
their valuable comments and suggestions.

REFERENCES

[1] B. Babcock, S. Babu, M. Dater, and R. Motwanti, “Models and Issues in
data stream systems,” in Proc. PODS, 2002, pp. 1-16.

[2] T.W.Liao, “Clustering of time series data—A survey,” Pattern Recognit.,
vol. 38, no. 11, pp. 1857-1874, 2005.

[3] C.C.Aggarwal,J. Han,J. Wang, and P. S. Yu, “A framework for clustering
evolving data streams,” in Proc. Very Large Data Bases Conf., Sep. 2003,
pp. 81-92.

[4] F.Cao, M. Ester, Q. Qian, and A. Zhou, “Density-based clustering over an
evolving data streams with noise,” in Proc. SIAM Conf., 2006, pp. 328—
339.

[5] D. Chakrabarti, R. Kumar, and A. Tomkins, “Evolutionary clustering,”
in Proc. ACM SIGKDD. Knowl. Discov. Data Mining, 2006, pp. 554—
560.

[6] Y. Chi, X-D. Song, D-Y. Zhou, K. Hino, and B.L. Tseng, “Evolutionary
spectral clustering by incorporating temporal smoothness,” in Proc. ACM
SIGKDD, 2007, pp. 153-162.

[7]1 B.-R.Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen, “Adaptive clustering
for multiple evolving steams,” [EEE Trans. Knowl. Data Eng., vol. 18,
no. 9, pp. 1166-1180, Sep. 2006.

[8] M. M. Gaber and P. S. Yu, “Detection and classification of changes in
evolving data streams,” Int. J. Inf. Technol. Decis. Making, vol. 5, no. 4,
pp. 659-670, 2006.

[9] O. Nasraoui and C. Rojas, “Robust clustering for tracking noisy evolv-

ing data streams,” in Proc. SIAM Conf., Data Mining, 2006, pp. 618—

622.

M. Y. Yeh, B. R. Dai, and M. S. Chen, “Clustering over multiple evolving

streams by events and correlations,” [EEE Trans. Knowl. Data Eng.,

vol. 19, no. 10, pp. 1349-1362, Oct. 2007.

C.C. Aggarwal, J. Han. J. Wang, and P. S. Yu, “A framework for projected

clustering of high dimensional data streams,” in Proc. Very Large Data

Bases Conf., 2004, pp. 852-863.

S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data

streams,” in Proc. Symp. Found. Comput. Sci., Nov. 2000, pp. 359-366.

L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,

“Streaming-data algorithms for high quality clustering,” in Proc. Int. Conf.

Data Eng., 2002, p. 685.

O. Nasraoui, M. Soliman, E. Saka, A. Badia, and R. Germain, “A web

usage mining framework for mining evolving user profiles in dynamic

web sites,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 2, pp. 202-215,

Feb. 2008.

H.-L. Chen, M.-S. Chen, and S.-C. Lin, “Catching the trend: A framework

for clustering concept-drifting categorical data,” IEEE Trans. Knowl.

Data Eng., vol. 21, no. 5, pp. 652-665, Mar. 2009.

Z.Pawlak, “Rough sets,” Int. J. Comput. Inf. Sci., vol. 38, no. 11, pp. 341—

356, 1982.

[10]

(11]

[12]

[13]

[14]

[15]

[16]



882

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

J. Y. Liang, J. H. Wang, and Y. H. Qian, “A new measure of uncertainty
based on knowledge granulation for rough sets,” Inf. Sci., vol. 179, no. 4,
pp. 458—470, 2009.

Y. H. Qian, J. Y. Liang, W. Pedrycz, and C. Y. Dang, “Positive approxi-
mation: An accelerator for attribute reduction in rough set theory,” Artif.
Intell., vol. 174, no. 9-10, pp. 597-618, 2010.

D. Parmar, T. Wu, and J. Blackhurst, “MMR: An algorithm for clustering
data using rough set theory,” Data Knowl. Eng., vol. 63, no. 3, pp. 897—
893, 2007.

F. Jiang, Y. F. Sui, and C. G. Cao, “A rough set approach to outlier
detection,” Int. J. General Syst., vol. 37, no. 5, pp. 519-536, 2008.

F. Jiang, Y. F. Sui, and C. G. Cao, “Some issues about outlier detection
in rough set theory,” Expert Syst. Appl., vol. 36, no. 3, pp. 4680-4687,
2009.

C. B. Chen and L. Y. Wang, “Rough set-based clustering with refinement
using Shannon’s entropy theory,” Comput. Math. Appl., vol. 52, pp. 1563—
1576, 2006.

F. Y. Cao, J. Y. Liang, and G. Jiang, “An initialization method for the
k-Means algorithm using neighborhood model,” Comput. Math. Appl.,
vol. 58, no. 3, pp. 474483, 2009.

J. Y. Liang, K. S. Chin, C. Y. Dang, and C. M. Y. Richard, “A new method
for measuring uncertainty and fuzziness in rough set theory,” Int. J.
General Syst., vol. 31, no. 4, pp. 331-342, 2002.

R. Jensen and Q. Shen, “New approaches to fuzzy-rough feature selec-
tion,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 824-838, Aug. 2009.
Y. J. Yang and C. Hinde, “A new extension of fuzzy sets using rough sets:
R-fuzzy sets,” Inf. Sci., vol. 180, no. 3, pp. 354-365, 2010.

E. C. C. Tsang, D. G. Chen, D. S. Yeung, X. Z. Wang, and J. W. T. Lee,
“Attributes reduction using fuzzy rough sets,” IEEE Trans. Fuzzy Syst.,
vol. 16, no. 5, pp. 1130-1141, Oct. 2008.

X. D Liu, W. Pedrycz, T. Y. Chai, and M. L. Song, “The development
of fuzzy rough sets with the use of structures and algebras of axiomatic
fuzzy sets,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 3, pp. 443-462,
Mar. 2009.

Z. X. Huang, “Extensions to the k-means algorithm for clustering large
data sets with categorical values,” Data Mining Knowl. Discov., vol. 2,
no. 3, pp. 283-304, 1998.

UCI Machine Learning Repository. (2010).
http://www.ics.uci.edu/mlearn/MLRepository.html
J. C. Bezdek and N. R. Pal, “Some new indexes of cluster validity,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 28, no. 3, pp. 301-315, Jun.
1998.

N. R. Pal and J. C. Bezdek, “On cluster validity for the fuzzy c-means
model,” IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370-379, Aug. 1995.
F. Y. Cao, J. Y. Liang, and L. Bai, “A new initialization method for
categorical data clustering,” Expert Syst. Appl., vol. 36, no. 7, pp. 10223—
10228, 2009.

K. Chen and L. Liu, “The “best K for entropy-based categorical cluster-
ing,” in Proc. Int. Conf. Sci. Statist. Database Manage, 2005, pp. 253-262.

[Online]. Available:

Fuyuan Cao received the B.E. and M.S. degrees in
computer science in 1998 and 2004, respectively,
from Shanxi University, Taiyuan, China, where he
is currently working toward the Ph.D degree with the
School of Computer and Information Technology.

His research interests include data mining and ma-
chine learning.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 18, NO. 5, OCTOBER 2010

Jiye Liang received the M.S. and Ph.D degrees from
Xi’an Jiaotong University, Xi’an, China, in 1990 and
2001, respectively.

He is currently a Professor with the School
of Computer and Information Technology and the
Key Laboratory of Computational Intelligence and
Chinese Information Processing of the Ministry of
Education, Shanxi University, Taiyuan, China. He has
authored or coauthored more than 70 journal papers
in his research fields. His current research interests
include computational intelligence, granular comput-

ing, data mining, and knowledge discovery.

Liang Bai is currently working toward the Ph.D. de-
gree with the School of Computer and Information
Technology, Shanxi University, Taiyuan, China.

His research interests are in the areas of machine
learning.

Xingwang Zhao is currently working toward the
M.S. degree with the School of Computer and In-
formation Technology, Shanxi University, Taiyuan,
China.

His research interests are in the areas of machine
learning.

Chuangyin Dang (SM’03) received the Ph.D degree
in operations research/economics from the Univer-
sity of Tilburg, Tilburg, the Netherlands, in 1991 and
the M.S. degree in applied mathematics from Xidian
University, Xi’an, China, in 1986.

He is currently an Associate Professor with the
Department of Manufacturing Engineering and Engi-
neering Management, City University of Hong Kong,
Kowloon, Hong Kong. His research interests include
computational intelligence and optimization theory
and technology.



