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Set-valued information systems are generalized models of single-valued information
systems. Its semantic interpretation can be classified into two categories: disjunctive
and conjunctive. We focus on the former in this paper. By introducing four types of
dominance relations to the disjunctive set-valued information systems, we establish a
dominance-based rough sets approach, which is mainly based on the substitution of
the indiscernibility relation by the dominance relations. Furthermore, we develop a new

approach to sorting for objects in disjunctive set-valued ordered information systems,
which is based on the dominance class of an object induced by a dominance relation.
Finally, we propose criterion reductions of disjunctive set-valued ordered information
systems that eliminate only those information that are not essential from the order-
ing of objects. The approaches show how to simplify a disjunctive set-valued ordered
information system. Throughout this paper, we establish in detail the interrelationships
among the four types of dominance relations, which include corresponding dominance
classes, rough sets approaches, sorting for objects and criterion reductions. These results
give a kind of feasible approaches to intelligent decision making in disjunctive set-valued
ordered information systems.

Keywords: Information systems; dominance relation; rough sets; decision-making; crite-
rion reduction.

1. Introduction

Data mining and knowledge management are very important research issues in
management science field.1,2 In these issues, one often encounters various types of
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data. Rough set theory, introduced by Pawlak,3,4 has been conceived as a tool to
conceptualize and analyze various types of data. It can be used in the attribute-value
representation model to describe the dependencies among attributes and evaluate
the significance of attributes and derive decision rules. It has important applications
to intelligence decision and cognitive sciences, as a tool to deal with vagueness and
uncertainty of facts, and in classification.5–13

Rough-set-based data analysis starts from a data table, called information sys-
tems. The information systems contains data about objects of interest, characterized
by a finite set of attributes.14–20 It is often interesting to discover some dependency
relationships (patterns) among attributes.

The original rough sets theory does not consider attributes with preference-
ordered domains, that is, criteria. However, in many real situations, we are
often faced with the problems in which the ordering of properties of the con-
sidered attributes plays a crucial role. One such type of problem is the order-
ing of objects. For this reason, Greco, Matarazzo, and Slowinski21–24 proposed an
extension of rough set theory, called the dominance-based rough sets approach
(DRSA) to take into account the ordering properties of criteria. This innovation
is mainly based on substitution of the indiscernibility relation by a dominance
relation. In DRSA, where condition attributes are criteria and classes are prefer-
ence ordered, the knowledge approximated is a collection of upward and down-
ward unions of classes and the granules of knowledge are sets of objects defined by
using a dominance relation. In recent years, many studies have been made about
DRSA.25–28

Set-valued information systems are an important type of data tables, and gener-
alized models of single-valued information systems. Let U be a finite set of objects,
called the universe of discourse and AT be a finite set of attributes. With every
attribute a ∈ AT , a set of its values Va is associated. Then, f : U × AT → V is
a total function such that f(x, a) ⊆ Va for every a ∈ AT, x ∈ U . If each attribute
has a unique attribute value, then (U, AT, V, f) with V =

⋃
a∈AT Va is called a

single-valued information system; if a system is not a single-valued information sys-
tem, it is called a set-valued (multi-valued) information system. If the attributes
only have two types property, i.e. condition and decision attributes, then such an
information system is called a set-valued decision information system. A set-valued
decision information system is always denoted by S = (U, C ∪ {d}, V, f), where C

is a finite set of condition attributes, d is a decision attribute with C ∩ d = Ø.
There are many ways to give a semantic interpretation of the set-valued infor-

mation systems,29–32 here we summarize them as two types33:

Type I: For x ∈ U and c ∈ C, c(x) is interpreted disjunctively. For example:
If c is the attribute “speaking a language”, the c(x) = {German, Polish, France}
can be interpreted as: x speaks German, Polish, or France, and x can speak only
one of them. Incomplete information systems with some unknown attribute values
or partial known attribute values16,34,35 are such types of set-valued information
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systems. Under the consideration, we call it a disjunctive set-valued information
system.

Type II: For x ∈ U and c ∈ C, c(x) is interpreted conjunctively. For example:
If c is the attribute “speaking a language”, then c(x) = {German, Polish, France}
can be interpreted as: x speaks German, Polish, and France. When considering the
attribute “feeding habits” of animals, if we denote the attribute value of herbivore
as “0” and carnivore as “1”, then animals possessing attribute value {0, 1} are
considered as possessing both herbivorous and carnivorous nature. Let us take blood
origin for another example, if we denote the three types of pure blood as “0”, “1”
and “2”, then we can denote the mixed-blood as {0, 1} or {1, 2}, etc. Under the
interpretation, we say it to be a conjunctive set-valued information system.

In this paper, we focus on disjunctive set-valued information systems. The main
objective of this article is to introduce four dominance relations to a disjunctive
set-valued information system according to the relation between set-values, and
establish the relationships among these dominance relations, their rough sets and
decision makings induced by them.

The rest of this paper is organized as follows. Some preliminary concepts about
ordered information systems is briefly recalled in Sec. 2. In Sec. 3, we introduce
four dominance relations, such as up dominance relation, down dominance relation,
up-down dominance relation and down-up dominance relation, to a disjunctive set-
valued information system, and establish the relationship among them as well. In
Sec. 4, for the four dominance relations, we establish the dominance-based rough
sets approaches, and also analyze the differences between them. In Sec. 5, we investi-
gate sorting problem for all objects on the universe in decision-making by using the
four dominance relations proposed in disjunctive set-valued information systems.
In Sec. 6, we present the approaches to the criterion reductions of a disjunctive
set-valued ordered information system by using the discernibility matrices, and
establish the interrelationship among the four types of criterion reductions as well.
In Sec. 7, through a venture-investment issue, it is illustrated that how to make a
decision by using the approaches proposed in this paper. Finally, we conclude the
paper with a summary in Sec. 8.

2. Ordered Information Systems

In this section, we briefly review some basic concepts of ordered information systems
and set-valued information systems.

An information system (IS) is an quadruple S = (U, AT, V, f), where U is a
finite nonempty set of objects and AT is a finite nonempty set of attributes, V =⋃

a∈AT Va and Va is a domain of attribute a, f : U × AT → V is a total function
such that f(x, a) ∈ Va for every a ∈ AT , x ∈ U , called an information function.36

A decision table is a special case of an information system in which, among the
attributes, we distinguish one called a decision attribute. The other attributes are
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called condition attributes. Therefore, S = (U, C ∪ d, V, f) and C ∩ d = Ø,36 where
set C contains so-called condition attributes and d, the decision attribute.

If the domain (scale) of a condition attribute is ordered according to a decreasing
or increasing preference, then the attribute is a criterion.37–40

Definition 2.1. An information system is called an ordered information system
(OIS) if all condition attributes are criterions.41

It is assumed that the domain of a criterion a ∈ AT is completely pre-ordered by
an outranking relation �a; x �a y means that x is at least as good as (outranks) y

with respect to criterion a. In the following, without any loss of generality, we con-
sider a condition criterion having a numerical domain, that is, Va ⊆ R (R denotes
the set of real numbers) and being of type gain, that is, x �a y ⇔ f(x, a) ≥ f(y, a)
(according to increasing preference) or x �a y ⇔ f(x, a) ≤ f(y, a) (according to
decreasing preference), where a ∈ AT , x, y ∈ U . For a subset of attributes B ⊆ C,
we define x �B y ⇔ ∀a ∈ B, f(x, a) ≥ f(y, a). In other words, x is at least as good
as y with respect to all attributes in B. In general, the domain of the condition
criterion may be also discrete, but the preference order between its values has to
be provided.

In the following, we review the dominance relation that identifies granules of
knowledge. In a given OIS, we say that x dominates y with respect to B ⊆ C if
x �B y, and denoted by xR≥

By. That is

R≥
B = {(y, x) ∈ U × U | y �B x}. (2.1)

Obviously, if (y, x) ∈ R≥
B, then y dominates x with respect to B.

Let B1 be attributes set according to increasing preference, B2 attributes set
according to decreasing preference, hence B = B1 ∪B2. The granules of knowledge
induced by the dominance relation R≥

B are the set of objects dominating x, i.e.

[x]≥B = {y ∈ U | f(y, a1) ≥ f(x, a1)(∀a1 ∈ B1), f(y, a2) ≤ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U | (y, x) ∈ R≥

B}
and the set of objects dominated by x,

[x]≤B = {y ∈ U | f(y, a1) ≤ f(x, a1)(∀a1 ∈ B1), f(y, a2) ≥ f(x, a2)(∀a2 ∈ B2)}
= {y ∈ U | (x, y) ∈ R≥

B},
which are called the B-dominating set and the B-dominated set with respect to
x ∈ U , respectively.

Let U/R≥
B denote classification on the universe, which is the family set {[x]≥B |

x ∈ U}. Any element from U/R≥
B will be called a dominance class with respect to

B. Dominance classes in U/R≥
B do not constitute a partition of U in general. They

constitute a covering of U .
For simplicity, without any loss of generality, in the following we only consider

condition attributes with increasing preference.
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The following property can be easily concluded.28

Theorem 2.1. Let R≥
B be a dominance relation, then

(1) R≥
B is reflexive, transitive and unsymmetric, so it is not an equivalence relation;

(2) if A ⊆ B ⊆ C, then R≥
C ⊆ R≥

B ⊆ R≥
A;

(3) if A ⊆ B ⊆ C, then [x]≥C ⊆ [x]≥B ⊆ [x]≥A ;
(4) if xj ∈ [xi]

≥
B , then [xj ]

≥
B ⊆ [xi]

≥
B and [xi]

≥
B =

⋃{[xj ]
≥
B : xj ∈ [xi]

≥
B};

(5) [xi]
≥
B = [xj ]

≥
B iff f(xi, a) = f(xj , a)(∀a ∈ B);

(6) � = {[x]≥B | x ∈ U} constitutes a covering of U .

Example 2.1. An OIS is presented in Table 1, where U = {x1, x2, x3, x4, x5, x6},
AT = {a1, a2, a3}.

The dominance classes determined by AT are

[x1]
≥
AT = {x1, x2, x5, x6}, [x2]

≥
AT = {x2, x5, x6}, [x3]

≥
AT = {x2, x3, x4, x5, x6},

[x4]
≥
AT = {x4, x6}, [x5]

≥
AT = {x5}, [x6]

≥
AT = {x6}.

3. Dominance Relations in Disjunctive Set-Valued Ordered
Information Systems

However, it may happen that some of the attribute values for an object are set-
valued in practical issues. Therefore, a so-called set-valued information system, is
usually used to indicate such a situation.

Let S = (U, AT, V, f) be a set-valued information system, where U is a non-
empty finite set of objects; AT is a finite set of attributes, V is the set of attributes
values and f is a mapping from U × AT to V such that f : U × AT → 2V is a
set-valued mapping. In this situation, the cardinality |f(x, a)| ≥ 1, ∀x ∈ U, a ∈ AT .
The following example presents a set-valued information system.

Example 3.1. A set-valued information system is presented in Table 2, where
U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}, AT = {a1, a2, a3, a4, a5}.

For a disjunctive set-valued information system S = (U, AT, V, f), the relation-
ships among any set f(x, a), x ∈ U, a ∈ AT are disjunctive. In decision-making,

Table 1. An ordered informa-
tion system.

U a1 a2 a3

x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3
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Table 2. A set-valued information system.33

U a1 a2 a3 a4 a5

x1 {1} {0, 1} {0} {1, 2} {2}
x2 {0, 1} {2} {1, 2} {0} {0}
x3 {0} {1, 2} {1} {0, 1} {0}
x4 {0} {1} {1} {1} {0, 2}
x5 {2} {1} {0, 1} {0} {1}
x6 {0, 2} {1} {0, 1} {0} {1}
x7 {1} {0, 2} {0, 1} {1} {2}
x8 {0} {2} {1} {0} {0, 1}
x9 {1} {0, 1} {0, 2} {1} {2}
x10 {1} {1} {2} {0, 1} {2}

we always consider a binary dominance relation between objects that are possibly
dominant in terms of values of attributes set A in disjunctive set-valued informa-
tion systems. Under this consideration, we call S a disjunctive set-valued ordered
information system.

Let S = (U, AT, V, f) be a disjunctive set-valued information system, A ⊆ AT .
In the following, let us consider four possible dominance relations between objects
as follows:

(I) Up dominance relation

RU≥
A = {(y, x) ∈ U × U | ∀a ∈ A, max f(y, a) ≥ max f(x, a)}, (3.1)

if (y, x) ∈ RU≥
A , we say y is at least up good as x with respect to A;

(II) Down dominance relation

RD≥
A = {(y, x) ∈ U × U | ∀a ∈ A, min f(y, a) ≥ min f(x, a)}, (3.2)

if (y, x) ∈ RD≥
A , we say y is at least down good as x with respect to A;

(III) Up-down dominance relation

RUD≥
A = {(y, x) ∈ U × U | ∀a ∈ A, max f(y, a) ≥ min f(x, a)}, (3.3)

if (y, x) ∈ RUD≥
A , we say y is at least possible good as x with respect to A;

(IV) Down-up dominance relation

RDU≥
A = {(y, x) ∈ U × U | ∀a ∈ A, min f(y, a) ≥ max f(x, a)}, (3.4)

if (y, x) ∈ RDU≥
A , we say y is at least definite good as x with respect to A.

By the definitions of these dominance relations, it can be observed that if a pair
of objects (y, x) from U × U lies in RU≥

A (or RD≥
A , RUD≥

A , RDU≥
A ), then they are

perceived as y dominates x; in other words, y may have a better property than x

with respect to A in reality.
From the definitions of RU≥

A , RD≥
A , RUD≥

A and RDU≥
A , the following properties

can be easily obtained.
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Theorem 3.1. Let S = (U, AT, V, f) be a disjunctive set-valued information sys-
tem and A ⊆ AT, then

(1) RU≥
A =

⋂
a∈A RU≥

a ,

(2) RD≥
A =

⋂
a∈A RD≥

a ,

(3) RUD≥
A =

⋂
a∈A RUD≥

a ,

(4) RDU≥
A =

⋂
a∈A RDU≥

a .

Proof. They are straightforward.

Theorem 3.2. Let RU≥
A , RD≥

A , RUD≥
A and RDU≥

A be dominance relations in a
disjunctive set-valued information system, then

(1) RU≥
A is reflexive, unsymmetric and transitive;

(2) RD≥
A is reflexive, unsymmetric and transitive;

(3) RUD≥
A is reflexive, unsymmetric and intransitive;

(4) RDU≥
A is inreflexive, unsymmetric and transitive.

Proof. They can be proved from the definitions of these dominance relations.

Furthermore, we denote by

[x]U≥
A = {y ∈ U | (y, x) ∈ RU≥

A }, [x]U≤
A = {y ∈ U | (x, y) ∈ RU≥

A },
where [x]U≥

A describes objects that up dominate x and [x]U≤
A describes objects that

are up dominated by x in terms of A in a disjunctive set-valued information system;
denote by

[x]D≥
A = {y ∈ U | (y, x) ∈ RD≥

A }, [x]D≤
A = {y ∈ U | (x, y) ∈ RD≥

A },
where [x]D≥

A describes objects that down dominate x and [x]D≤
A describes objects

that are down dominated by x in terms of A in a disjunctive set-valued information
system; denote by

[x]UD≥
A = {y ∈ U | (y, x) ∈ RUD≥

A }, [x]UD≤
A = {y ∈ U | (x, y) ∈ RUD≥

A },
where [x]UD≥

A describes objects that may dominate x and [x]UD≤
A describes objects

that may be dominated by x in terms of A in a disjunctive set-valued information
system, and denote by

[x]DU≥
A = {y ∈ U | (y, x) ∈ RDU≥

A }, [x]DU≤
A = {y ∈ U | (x, y) ∈ RDU≥

A },
where [x]DU≥

A describes objects that must dominate x and [x]DU≤
A describes objects

that must be dominated by x in terms of A in a disjunctive set-valued information
system. Obviously, if S = (U, AT, V, f) is a single-valued information system, then
the four dominance relations are all degenerated into the dominance relation R≥

A .
From the denotations above, we can conclude the following properties.
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Theorem 3.3. Let S = (U, AT, V, f) be a disjunctive set-valued ordered informa-
tion system and A, B ⊆ AT, then

(1) if B ⊆ A ⊆ AT, then RU≥
B ⊇ RU≥

A ⊇ RU≥
AT , RD≥

B ⊇ RD≥
A ⊇ RD≥

AT , RUD≥
B ⊇

RUD≥
A ⊇ RUD≥

AT and RDU≥
B ⊇ RDU≥

A ⊇ RDU≥
AT ;

(2) if B ⊆ A ⊆ AT, then [x]U≥
B ⊇ [x]U≥

A ⊇ [x]U≥
AT , [x]D≥

B ⊇ [x]D≥
A ⊇ [x]D≥

AT ,

[x]UD≥
B ⊇ [x]UD≥

A ⊇ [x]UD≥
AT and [x]DU≥

B ⊇ [x]DU≥
A ⊇ [x]DU≥

AT ;
(3) [xi]

U≥
A = [xj ]

U≥
A iff max f(xi, a) = max f(xj , a) (∀a ∈ A);

(4) [xi]
D≥
A = [xj ]

D≥
A iff min f(xi, a) = min f(xj , a) (∀a ∈ A);

(5) if min f(xi, a) = min f(xj , a) (∀a ∈ A), then [xi]
UD≥
A = [xj ]

UD≥
A ;

(6) if max f(xi, a) = max f(xj , a) (∀a ∈ A), then [xi]
DU≥
A = [xj ]

DU≥
A .

Proof. Let B ⊆ A ⊆ AT , (1) and (2) are straightforward.

(3) “⇒” If [xi]
U≥
A = [xj ]

U≥
A , it follows from the reflexivity of the dominance relation

RU≥
A that xi ∈ [xj ]

U≥
A and xj ∈ [xi]

U≥
A , that is max f(xi, a) ≥ max f(xj , a) and

max f(xj , a) ≥ max f(xi, a), (∀a ∈ A). Hence, we have max f(xi, a) = max f(xj , a)
(∀a ∈ A). “⇐” Let max f(xi, a) = max f(xj , a) (∀a ∈ A). If there exists x ∈ U such
that max f(x,a) ≥ max f(xi, a) (∀a ∈ A), then we get max f(x,a) ≥ max f(xj , a)
(∀a ∈ A). That is to say, if there exists x ∈ U such that x ∈ [xi]

U≥
A , then x must

belong to [xj ]
U≥
A . Thus, [xi]

U≥
A = [xj ]

U≥
A .

(4) “⇒” If [xi]
D≥
A = [xj ]

D≥
A , it follows from the reflexivity of the dominance relation

RD≥
A that xi ∈ [xj ]

D≥
A and xj ∈ [xi]

D≥
A , that is min f(xi, a) ≥ min f(xj , a) and

min f(xj , a) ≥ min f(xi, a), (∀a ∈ A). Hence, we have min f(xi, a) = min f(xj , a)
(∀a ∈ A). “⇐” Suppose that min f(xi, a) = min f(xj , a) (∀a ∈ A). If there exists
x ∈ U such that min f(x,a) ≥ min f(xi, a) (∀a ∈ A), then we get min f(x,a) ≥
min f(xj , a) (∀a ∈ A). That is to say, if there exists x ∈ U such that x ∈ [xi]

D≥
A ,

then x must belong to [xj ]
D≥
A . Thus, [xi]

D≥
A = [xj ]

D≥
A .

(5) For ∀x ∈ U , if x ∈ [xi]
UD≥
A , it follows from the definition of the dominance

relation RUD≥
A that max f(x, a) ≥ min f(xi, a) (∀a ∈ A). Since the assumption

min f(xi, a) = min f(xj , a) (∀a ∈ A), thus max f(x, a) ≥ min f(xj , a) (∀a ∈ A),
i.e., x ∈ [xj ]

UD≥
A . Hence, [xi]

UD≥
A ⊆ [xj ]

UD≥
A holds. Analogously, we can prove

[xj ]
UD≥
A ⊆ [xi]

UD≥
A . Therefore, we have [xi]

UD≥
A = [xj ]

UD≥
A .

(6) For ∀x ∈ U , if x ∈ [xi]
DU≥
A , it follows from the definition of the dominance

relation RDU≥
A that min f(x, a) ≥ max f(xi, a) (∀a ∈ A). Since the assumption

min f(xi, a) = min f(xj , a) (∀a ∈ A), thus min f(x, a) ≥ max f(xj , a) (∀a ∈ A),
i.e. x ∈ [xj ]

DU≥
A . Hence, [xi]

DU≥
A ⊆ [xj ]

DU≥
A holds. Analogously, we can prove

[xj ]
DU≥
A ⊆ [xi]

DU≥
A . Therefore, we have [xi]

DU≥
A = [xj ]

DU≥
A .

This completes the proof.

However, the reverse relationships of (5) and (6) in Theorem 3.3 cannot be estab-
lished in general. For example, let c(x1) = {1, 2}, c(x2) = {0, 1} and c(x3) = {0, 2},
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we have that [x1]
UD≥
A = [x2]

UD≥
A = [x3]

UD≥
A = {x1, x2, x3} and min c(x1) = 1 
=

0 = min c(x2) = min c(x3). And, for instance, let c(x1) = {2, 3}, c(x2) = {0, 1} and
c(x3) = {0, 2}, we obtain that [x2]

DU≥
A = [x3]

DU≥
A = {x1}, but max c(x2) = 1 
=

2 = max c(x3).
Let U/RU≥

A , U/RD≥
A , U/RUD≥

A and U/RDU≥
A denote classifications induced by

the dominance relations RU≥
A , RD≥

A , RUD≥
A and RDU≥

A , respectively, which are the
family sets �

U = {[x]U≥
A | x ∈ U}, �

D = {[x]U≥
A | x ∈ U}, �

UD = {[x]UD≥
A |

x ∈ U} and �
DU = {[x]DU≥

A | x ∈ U}. Any element from them will be called
a dominance class. All the dominance classes in U/RU≥

A (or U/RD≥
A , U/RUD≥

A ,
U/RDU≥

A ) do not constitute a partition of U in general. In fact, �
U , �D and �

UD all
induce a covering of U , i.e.

⋃
x∈U [x]U≥

A = U ,
⋃

x∈U [x]D≥
A = U and

⋃
x∈U [x]UD≥

A =
U . However, �

DU can not induce a covering of U because of its inreflexivity in
general.

As a depiction of the relationship among the four types of dominance relations
in a disjunctive set-valued ordered information system, the following properties can
be concluded.

Theorem 3.4. Let S = (U, AT, V, f) be a disjunctive set-valued ordered informa-
tion system, A ⊆ AT . Then the following implications between the four dominance
relations hold

(1) (I) implies (III) : [(x, y) ∈ RU≥
A ] ⇒ [(x, y) ∈ RUD≥

A ];

(2) (II) implies (III) : [(x, y) ∈ RD≥
A ] ⇒ [(x, y) ∈ RUD≥

A ];

(3) (IV) implies (I) : [(x, y) ∈ RDU≥
A ] ⇒ [(x, y) ∈ RU≥

A ];

(4) (IV) implies (II) : [(x, y) ∈ RDU≥
A ] ⇒ [(x, y) ∈ RD≥

A ];

(5) (IV) implies (III) : [(x, y) ∈ RDU≥
A ] ⇒ [(x, y) ∈ RUD≥

A ].

Proof. They can be proved according to the definitions of the four dominance
relations.

From Theorem 3.3, we can easily obtain the following corollary.

Corollary 3.1. Let S = (U, AT, V, f) be a disjunctive set-valued ordered infor-
mation system, A ⊆ AT . Then

(1) [x]DU≥
A ⊆ [x]U≥

A ⊆ [x]UD≥
A , ∀x ∈ U ;

(2) [x]DU≥
A ⊆ [x]D≥

A ⊆ [x]UD≥
A , ∀x ∈ U .

In the following, an illustrative example is employed to understand the four
dominance relations.

Example 3.2. Compute the classifications induced by the four dominance rela-
tions in Table 2.
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From Table 2, we have that

(1) U/RU≥
AT = {[x1]

U≥
AT , [x2]

U≥
AT , . . . , [x10]

U≥
AT },

where

[x1]
U≥
AT ={x1}, [x2]

U≥
AT ={x2}, [x3]

U≥
AT = {x3, x7}, [x4]

U≥
AT = {x4, x7, x9, x10},

[x5]
U≥
AT = [x6]

U≥
AT = {x5, x6}, [x7]

U≥
AT = {x7}, [x8]

U≥
AT = {x7, x8},

[x9]
U≥
AT = [x10]

U≥
AT = {x9, x10};

(2) U/RD≥
AT = {[x1]

D≥
AT , [x2]

D≥
AT , . . . , [x10]

D≥
AT },

where

[x1]
D≥
AT = {x1, x7, x9}, [x2]

D≥
AT = {x2, x8}, [x3]

D≥
AT = {x2, x3, x4, x8, x10},

[x4]
D≥
AT = {x4}, [x5]

D≥
AT = {x5}, [x6]

D≥
AT = {x5, x6, x10},

[x7]
D≥
AT = {x1, x7}, [x8]

D≥
AT ={x2, x8}, [x9]

D≥
AT ={x1, x9}, [x10]

D≥
AT ={x10};

(3) U/RUD≥
AT = {[x1]

UD≥
AT , [x2]

UD≥
AT , . . . , [x10]

UD≥
AT },

where

[x1]
UD≥
AT = [x7]

UD≥
AT = [x9]

UD≥
AT = {x1, x7, x9, x10},

[x2]
UD≥
AT = [x8]

UD≥
AT = {x2, x3, x7, x8}, [x10]

UD≥
AT = {x9, x10},

[x3]
UD≥
AT = {x2, x3, x4, x5, x6, x7, x8, x9, x10},

[x4]
UD≥
AT = {x3, x4, x7, x8, x9, x10},

[x5]
UD≥
AT = {x5, x6}, [x6]

UD≥
AT = {x1, x4, x5, x6, x7, x8, x9, x10};

(4) U/RDU≥
AT = {[x1]

DU≥
AT , [x2]

DU≥
AT , . . . , [x10]

DU≥
AT }, where [xi]

DU≥
AT = Ø, i ≤ 10.

Let A = {a5}, we can get that U/RDU≥
A = {[x1]

DU≥
A , [x2]

DU≥
A , . . . , [x10]

DU≥
A },

where

[x1]
DU≥
A = [x4]

DU≥
A = [x7]

DU≥
A = [x9]

DU≥
A = [x10]

DU≥
A = {x1, x7, x9, x10},

[x2]
UD≥
A = [x3]

DU≥
A = {xi, i ≤ 10},

[x5]
DU≥
A = [x6]

D≥
A = [x8]

UD≥
A = {x1, x5, x6, x7, x9, x10}.

From Example 2.3, one can easily notice that

[x]DU≥
AT ⊆ [x]U≥

AT ⊆ [x]UD≥
AT ,

[x]DU≥
AT ⊆ [x]D≥

AT ⊆ [x]UD≥
AT , ∀x ∈ U.

Based on the above analysis, the relationship among the four types of domi-
nance relations in a disjunctive set-valued ordered information system can be sum-
marized, and the corresponding superset-subset relationship graph is depicted in
Fig. 1.
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(III)
up-down dominance relation

(IV)
down-up dominance relation

(I)
up dominance relation

(II)
down dominance relation

Fig. 1. Superset-subset relationship among the four types of dominance relations.

In Fig. 1, an arrow stands for an implication between two dominance relations.
For example, “(I) up dominance relation → (III) up-down dominance relation”
means (I) ⇒ (III). Thus, in a disjunctive set-valued ordered information system, the
down-up dominance relation RDU≥

A is the strongest, while the up-down dominance
RUD≥

A is the weakest.

4. Rough Sets Approaches to Disjunctive Set-Valued Ordered
Information Systems

In the section, we investigate the problem of set approximation with respect to the
four dominance relations proposed in disjunctive set-valued ordered information
systems.

Definition 4.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS. For any
X ⊆ U and A ⊆ AT , the lower and upper approximations of X with respect to the
dominance relation R∆≥

A (∆ = U, D,UD , DU) are defined as follows

R∆≥
A (X) = {x ∈ U | (x ∪ [x]∆≥

A ) ⊆ X},

R∆≥
A (X) = {x ∈ U | (x ∪ [x]∆≥

A ) ∩ X 
= Ø}.
From Definition 4.1, one can easily notice that R∆≥

A (X) is a set of objects that

belong to X with certainty, whereas R∆≥
A (X) is a set of objects that possibly belong

to X . Bn∆
A(X) = R∆≥

A (X) − R∆≥
A (X) denotes the boundary of the rough set.

From Definition 4.1, one can easily obtain the following properties.

Theorem 4.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X ⊆ U,

A ⊆ AT, and R∆≥
A (∆ = U, D,UD , DU) a dominance relation, then

(1) R∆≥
A (Ø) = R∆≥

A (Ø) = Ø, R∆≥
A (U) = R∆≥

A (U) = U ;

(2) R∆≥
A (X) ⊆ X ⊆ R∆≥

A (X);

(3) R∆≥
A (R∆≥

A (X)) = R∆≥
A (X), R∆≥

A (R∆≥
A (X)) = R∆≥

A (X);
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(4) R∆≥
A (X) =∼ R∆≥

A (∼ X), R∆≥
A (X) =∼ R∆≥

A (∼ X);

(5) R∆≥
A (X) ⊆ R∆≥

AT (X), R∆≥
A (X) ⊇ R∆≥

AT (X), Bn∆
AT (X) ⊆ Bn∆

A(X).

Theorem 4.2. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X, Y ⊆ U,

A ⊆ AT, and R∆≥
A (∆ = U, D,UD , DU) a dominance relation, then

(1) if X ⊆ Y, then R∆≥
A (X) ⊆ R∆≥

A (Y ), R∆≥
A (X) ⊆ R∆≥

A (Y );

(2) R∆≥
A (X ∩ Y ) = R∆≥

A (X) ∩ R∆≥
A (Y );

(3) R∆≥
A (X ∪ Y ) = R∆≥

A (X) ∪ R∆≥
A (Y );

(4) R∆≥
A (X ∩ Y ) ⊆ R∆≥

A (X) ∩ R∆≥
A (Y );

(5) R∆≥
A (X ∪ Y ) ⊇ R∆≥

A (X) ∪ R∆≥
A (Y ).

The lower and upper approximations of X with respect to the dominance
relation R∆≥

A (∆ = U, D,UD, DU) can be used to extract decision rules by a
decision maker, where R∆≥

A (X) can extract decision rules with certainty, while

Bn∆
A(X) = R∆≥

A (X) − R∆≥
A (X) can extract possible decision rules.

The following theorem will establish the relationship among the four types of
rough sets.

Theorem 4.3. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X ⊆ U,

A ⊆ AT, and R∆≥
A (∆ = U, D,UD , DU) a dominance relation, then

(1) [y ∈ RUD≥
A (X)] ⇒ [y ∈ RU≥

A (X)], [y ∈ RU≥
A (X)] ⇒ [y ∈ RUD≥

A (X)];

(2) [y ∈ RUD≥
A (X)] ⇒ [y ∈ RD≥

A (X)], [y ∈ RD≥
A (X)] ⇒ [y ∈ RUD≥

A (X)];

(3) [y ∈ RU≥
A (X)] ⇒ [y ∈ RDU≥

A (X)], [y ∈ RDU≥
A (X)] ⇒ [y ∈ RU≥

A (X)];

(4) [y ∈ RD≥
A (X)] ⇒ [y ∈ RDU≥

A (X)], [y ∈ RDU≥
A (X)] ⇒ [y ∈ RD≥

A (X)];

(5) [y ∈ RUD≥
A (X)] ⇒ [y ∈ RDU≥

A (X)], [y ∈ RDU≥
A (X)] ⇒ [y ∈ RUD≥

A (X)].

Proof. (1) For ∀y ∈ U , if y ∈ RUD≥
A (X), then [y]UD≥

A ⊆ X . From Corollary 3.1,

we know [y]U≥
A ⊆ [y]UD≥

A , hence [y]U≥
A ⊆ X . That is, y ∈ RU≥

A (X). In addition,

if y ∈ RU≥
A (X), then we have [y]U≥

A ∩ X 
= Ø. Since [y]U≥
A ⊆ [y]UD≥

A , we have

[y]UD≥
A ∩ X 
= Ø. Thus, we have y ∈ RUD≥

A (X).
The proofs of (2), (3), (4) and (5) are all similar to that of (1) and are omitted

here.

From Theorem 4.3, we can easily obtain the following corollary, which gives a
depiction of the inclusion relationship among the four types of lower/upper approx-
imations in a disjunctive set-valued ordered information system.
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Corollary 4.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X ⊆ U,

A ⊆ AT, and R∆≥
A (∆ = U, D,UD , DU) a dominance relation, then

(1) RUD≥
A (X) ⊆ RU≥

A (X) ⊆ RDU≥
A (X);

(2) RUD≥
A (X) ⊇ RU≥

A (X) ⊇ RDU≥
A (X);

(3) RUD≥
A (X) ⊆ RD≥

A (X) ⊆ RDU≥
A (X);

(4) RUD≥
A (X) ⊇ RD≥

A (X) ⊇ RDU≥
A (X).

Uncertainty of a rough set is due to the existence of a borderline region. The
greater the borderline region of a rough set, the lower is the accuracy of the rough
set. In order to measure the imprecision of a rough set induced by a dominance
relation in a disjunctive set-valued ordered information system, we introduce the
notion of accuracy measure as follows.

Definition 4.2. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X ⊆ U

and A ⊆ AT . The accuracy measure of X with respect to the dominance relation
R∆≥

A (∆ = U, D,UD , DU) can be defined as

α(R∆≥
A , X) =

|R∆≥
A (X)|

|R∆≥
A (X)|

=
|R∆≥

A (X)|
|U | − |R∆≥

A (∼ X)| (4.1)

The accuracy measure expresses the degree of completeness of our knowledge
about X , given the granularity of U/R∆≥

A (∆ = U, D,UD, DU). This measure not
only depends on the lower approximation of X , but also depends on the lower
approximation of ∼ X as well.

Theorem 4.4. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, X ⊆ U,

A ⊆ AT, and R∆≥
A (∆ = U, D,UD , DU) a dominance relation, then

α(RUD≥
A , X) ≤ α(RU≥

A , X) ≤ α(RDU≥
A , X),

α(RUD≥
A , X) ≤ α(RD≥

A , X) ≤ α(RDU≥
A , X).

Proof. From Theorem 4.3, they can be easily proved.

Theorem 4.4 shows that for any set X ∈ U , the accuracy measure of X with
respect to the dominance relation RDU≥

A is the biggest, and that of X with respect
to the dominance relation RUD≥

A is the smallest.

Example 4.1. Continue from Example 3.1. Let X = {x1, x4, x7, x9}, A =
{a4, a5}, compute the lower/approximations of X with respect to A by using the
four types of dominance relations.
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By computing, we have that

RU≥
A (X) = {x1}, RU≥

A (X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

RD≥
A (X) = {x1, x4, x7, x9}, RD≥

A (X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

RUD≥
A (X) = Ø, RUD≥

A (X) = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

RDU≥
A (X) = {x1, x4, x7, x9}, RDU≥

A (X) = {x1, x3, x4, x5, x6, x7, x8, x9, x10}.
It is obvious that

RUD≥
A (X) ⊆ RU≥

A (X) ⊆ RDU≥
A (X), RUD≥

A (X) ⊇ RU≥
A (X) ⊇ RDU≥

A (X);

RUD≥
A (X) ⊆ RD≥

A (X) ⊆ RDU≥
A (X), RUD≥

A (X) ⊇ RD≥
A (X) ⊇ RDU≥

A (X).

By computing, their accuracy measure are as follows

α(RU≥
A , X) =

1
10

, α(RD≥
A , X) =

4
10

, α(RUD≥
A , X) = 0, α(RDU≥

A , X) =
4
9
.

Therefore, we have that

α(RUD≥
A , X) ≤ α(RU≥

A , X) ≤ α(RDU≥
A , X),

α(RUD≥
A , X) ≤ α(RD≥

A , X) ≤ α(RDU≥
A , X).

Based on the above analysis, the inclusion relationships among the four types
of lower/upper approximations induced by the dominance relations RU≥

A , RD≥
A ,

RUD≥
A and RDU≥

A in a disjunctive set-valued ordered information system can be
concluded. The corresponding superset-subset relationship graphs are depicted in
Figs. 2 and 3, respectively.

In Figs. 2 and 3, ∆ lower/upper approximation denotes the lower/upper approx-
imation of a set induced by the dominance relation R∆≥

A (∆ = U, D,UD , DU), and
an arrow stands for an inclusion between two lower/upper approximation of the
set. For example, “(III) UD lower approximation → (I) U lower approximation”
means (I) ⊆ (III). Thus, in a disjunctive set-valued ordered information system, for
a set X , UD lower approximation is the smallest and DU lower approximation is the

(III)
UD lower approximation

(IV)
DU lower approximation

(I)
U lower approximation 

(II)
D lower approximation

Fig. 2. Inclusion relationship among the four types of lower approximations.
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(III)
UD upper approximation

(IV)
DU upper approximation

DU upper approximation
(I)

U upper approximation 
(II)

Fig. 3. Inclusion relationship among the four types of upper approximations.

biggest in the four types of lower approximations, while UD upper approximation is
the biggest and DU upper approximation is the smallest in the four types of upper
approximations.

5. Sorting in Decision-Making

There are two classes of problems in intelligent decision-making: one is to find
satisfactory results through ranking with information aggregation, and the other is
to find decision rules through relations. In this section, we only focus on the former,
i.e. how to make a decision in a disjunctive set-valued ordered information system.

In the following, we introduce the dominance degree between two objects and
the whole dominance degree of a object in order to decide the place of each object
in final rank.

Definition 5.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT ,
the dominance degree between two objects with respect to the dominance relation
R∆≥

A (∆ = U, D,UD , DU) is defined as

D∆
A (xi, xj) =

| ∼ [xi]
∆≥
A ∪ [xj ]

∆≥
A |

|U | ,

where | · | denotes the cardinality of a set, xi, xj ∈ U .

From the definition, we can get Theorem 5.1 as follows.

Theorem 5.1. D∆
A (xi, xj) (∆ = U, D, UD, DU) have the following properties

(1) 1
|U| ≤ D∆

A (xi, xj) ≤ 1 (∆ = U, D, UD), 0 ≤ D∆
A (xi, xj) ≤ 1 (∆ =DU);

(2) if (xj , xk) ∈ R∆≥
A , then D∆

A (xi, xj) ≤ D∆
A (xi, xk) (∆ = U, D, DU);

(3) if (xj , xk) ∈ R∆≥
A , then D∆

A (xj , xi) ≥ D∆
A (xk, xi) (∆ = U, D, DU).

Proof. (1) is straightforward.
(2) When ∆ = U, D, DU, it follows from Theorem 3.2 that the dominance rela-
tion R∆≥

A is transitive. Hence, if (xj , xk) ∈ R∆≥
A , we have that [xj ]

∆≥
A ⊆ [xk]∆≥

A .
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Therefore

D∆
A (xi, xj) − D∆

A (xi, xk)

=
1
|U |(| ∼ [xi]

∆≥
A ∪ [xj ]

∆≥
A | − | ∼ [xi]

∆≥
A ∪ [xk]∆≥

A |)

≤ 1
|U |(| ∼ [xi]

∆≥
A ∪ [xk]∆≥

A | − | ∼ [xi]
∆≥
A ∪ [xk]∆≥

A |)
= 0.

(3) Similar to (2), we have that [xj ]
∆≥
A ⊆ [xk]∆≥

A , hence ∼ [xj ]
∆≥
A ⊇∼ [xk]∆≥

A . Thus

D∆
A (xj , xi) − D∆

A (xk, xi)

=
1
|U |(| ∼ [xj ]

∆≥
A ∪ [xi]

∆≥
A | − | ∼ [xk]∆≥

A ∪ [xi]
∆≥
A |)

≥ 1
|U |(| ∼ [xk]∆≥

A ∪ [xi]
∆≥
A | − | ∼ [xk]∆≥

A ∪ [xi]
∆≥
A |)

= 0.

This completes the proof.

From Definition 5.1, let (xi, xj) ∈ U × U , we can construct a dominance rela-
tion matrix with respect to A induced by the dominance relation R∆≥

A (∆ =
U, D,UD , DU). From this matrix, the whole dominance degree of each object can
be calculated according to the following formula

D∆
A (xi) =

1
|U | − 1

∑
j �=i

D∆
A (xi, xj), xi, xj ∈ U.

From the whole dominance degree of each object on the universe, we can rank
all objects according to the number of D∆

A (xi) R∆≥
A (∆ = U, D,UD , DU), a larger

number implies a better object. This idea can be understood by the following exam-
ple. For simplicity, we only consider the decision induced by the dominance relation
RUD≥

AT .

Example 5.1. Continue from Example 3.2, rank objects in U according to the
dominance relation RUD≥

AT .

By computing, we can get the dominance relation matrix as follows

D∆
AT =




1 0.7 0.9 0.9 0.6 1 1 0.7 1 0.8
0.7 1 1 0.9 0.6 0.8 0.7 1 0.7 0.6
0.4 0.5 1 0.7 0.3 0.8 0.4 0.5 0.4 0.3
0.7 0.7 1 1 0.4 0.9 0.7 0.7 0.7 0.6
0.8 0.8 1 0.8 1 1 0.8 0.8 0.8 0.8
0.6 0.4 0.9 0.7 0.4 1 0.6 0.4 0.6 0.4
1 0.7 0.9 0.9 0.6 1 1 0.7 1 0.8

0.7 1 1 0.9 0.6 0.8 0.7 1 0.7 0.6
1 0.7 0.9 0.9 0.6 1 1 0.7 1 0.8
1 0.8 1 1 0.8 1 1 0.8 1 1



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Therefore, we have that

D∆
AT (x1) = 0.84, D∆

AT (x2) = 0.78, D∆
AT (x3) = 0.48, D∆

AT (x4) = 0.71,

D∆
AT (x5) = 0.84, D∆

AT (x6) = 0.56, D∆
AT (x7) = 0.84, D∆

AT (x8) = 0.78,

D∆
AT (x9) = 0.84, D∆

AT (x10) = 0.93.

In the following, ranking objects according to the number of D∆
AT (xi), a object

with larger number implies a better object.

x10 �




x1

x5

x7

x9


 �

(
x2

x8

)
� x4 � x6 � x3.

6. Criterion Reduction to Disjunctive Set-Valued OIS

In this section, the approaches to the criterion reductions in a disjunctive set-valued
ordered information system are presented by using the discernibility matrices, the
superset-subset relationship among the four types of criterion reductions are estab-
lished, and an illustrative examples is employed to show their mechanisms as well.

Firstly, we give the definitions of criterion reductions of a disjunctive set-valued
ordered information system.

Definition 6.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS and A ⊆
AT . If R∆≥

A = R∆≥
AT and R∆≥

B 
= R∆≥
AT for any B ⊂ A, then we call A a ∆ criterion

reduction of S.

When ∆ equals to U , D, UD and DU, the corresponding criterion reduction
can be called up criterion reduction, down criterion reduction, up-down criterion
reduction and down-up criterion reduction, respectively.

Theorem 6.1. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT . If
A is a ∆ (∆ =U, D, UD, DU) criterion reduction, then D∆

A (xi, xj) = D∆
AT (xi, xj),

xi, xj ∈ U .

Proof. It can be proved from Definition 5.1 and Definition 6.1.

It is obvious that a criterion reduction of a disjunctive set-valued OIS is a mini-
mal attribute subset satisfying R∆≥

A = R∆≥
AT . An attribute a ∈ AT is called dispens-

able with respect to R∆≥
AT if R∆≥

AT = R∆≥
(AT−{a}); otherwise a is called indispensable.

The set of all indispensable attributes is called the core with respect to the domi-
nance relation R∆≥

AT and is denoted by core∆(AT ). An attribute in the core must be
in every criterion reduction (like the case in complete/incomplete OIS, an OIS may
have many reductions, denoted by red∆(AT )). Thus core∆(AT ) =

⋂
red∆(AT ).

The core may be an empty set.
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Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT . For convenient
representation, let ∆ =U, D, UD, DU, denote by

Dis∆(x, y) = {a ∈ A | (x, y) 
∈ R∆≥
{a}},

then we call Dis∆(x, y) the ∆ discernibility attribute set between x and y, and

Dis∆ = (Dis∆(x, y) : x, y ∈ U)

the ∆ discernibility matrix of disjunctive set-valued OIS. Clearly, for ∀x, y ∈ U we
have Dis∆(x, y) ∩ Dis∆(y, x) = Ø.

The following property provides a judgement method of a ∆ criterion reduction
of disjunctive set-valued OIS.

Theorem 6.2. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT,

and Dis∆(x, y) the ∆ discernibility attributes set of S with respect to R∆≥
AT , then

R∆≥
AT = R∆≥

A iff A ∩ Dis∆(x, y) 
= Ø (where Dis∆(x, y) 
= Ø).

Proof. “⇒” Let R∆≥
AT = R∆≥

A , from the definition of the dominance relation, we
have that for arbitrary x ∈ U, [x]∆≥

AT = [x]∆≥
A holds. If some y 
∈ [x]∆≥

AT , then
y 
∈ [x]∆≥

A . Therefore, there exists a ∈ A such that (x, y) 
∈ [x]∆≥
{a} . So one has

a ∈ Dis∆(x, y). Hence, when Dis∆(x, y) 
= Ø we have A ∩ Dis∆(x, y) 
= Ø.
“⇐” From the definition of the ∆ discernibility attribute set, we know that

if (x, y) 
∈ [x]∆≥
AT for any (x, y) ∈ U × U, then Dis∆(x, y) 
= Ø. And since A ∩

Dis∆(x, y) 
= Ø, there exists a ∈ A such that a ∈ Dis∆(x, y), i.e. (x, y) 
∈ [x]∆≥
{a} .

So (x, y) 
∈ [x]∆≥
A . Hence R∆≥

AT ⊇ R∆≥
A . On the other hand, it follows from A ⊆ AT

that R∆≥
AT ⊆ R∆≥

A . Hence, one has R∆≥
AT = R∆≥

A .
This completes the proof.

Definition 6.2. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT ,
and Dis∆(x, y) the ∆ discernibility attributes set of S with respect to R∆≥

AT .
Denote by

M∆ =
∧{∨

{a : a ∈ Dis∆(x, y)} : x, y ∈ U
}
,

then M∆ is referred to as the ∆ discernibility function.

By using the ∆ discernibility function, we can design the approach to the ∆
criterion reduction in a disjunctive set-valued OIS as follows.

Theorem 6.3. Let S = (U, AT, V, f) be a disjunctive set-valued OIS. The minimal
disjunctive normal form of discernibility function M∆ is

M∆ =
t∨

k=1

(
qk∧

s=1

ais

)
,

where
∧qk

s=1 ais represents the conjunction operation among elements in ais

and
∨t

k=1(
∧qk

s=1 ais) denotes the disjunction operation among sets. Denote by
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Bk = {ais : s = 1, 2, . . . , qk}, then {Bk : k = 1, 2, . . . , t} are the set of all ∆ crite-
rion reductions of this system. In fact, these Bk is obtained from M∆ by applying
the multiplication and absorption laws, which satisfies that every element in Bk only
appears one time.

Proof. It follows directly from Theorem 6.1 and the definition of minimal disjunc-
tive normal form of the ∆ discernibility function.

Theorem 6.3 provides a kind of practical approaches to the four criterion reduc-
tions in a disjunctive set-valued ordered information system.

In the following, an illustrative example is employed to analyze the mechanism
of this kind of approach. For simplicity, we only discuss the up-down criterion
reduction.

Example 6.1. Continue from Example 3.1, compute all up-down criterion reduc-
tions in Table 2.

By computing, we can obtain the UD discernibility matrix of this system (see
Table 3).

Hence, we have that

M∆ = (a2 ∨ a3) ∧ a3 ∧ a1 ∧ (a4 ∨ a5) ∧ a4 ∧ (a1 ∨ a5) ∧ a5 ∧ (a1 ∨ a3 ∨ a5)

∧ (a1 ∨ a3) ∧ (a3 ∨ a5) ∧ (a1 ∨ a4 ∧ a5) ∧ a2

= a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5.

Therefore, {a1, a2, a3, a4, a5} is a unique up-down criterion reduction for this
system, that is, any criterion cannot be eliminated from Table 2 under the domi-
nance relation RUD≥

AT .
In succussion, we reveal the implication relationship among the four types of

criterion reductions in disjunctive set-valued order information systems.

Table 3. The UD discernibility matrix of Table 2.

xi/xj x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 Ø a2, a3 a3 a3 a1 Ø Ø a2, a3 Ø a3

x2 a4, a5 Ø Ø a4 a1, a5 a5 a4, a5 Ø a4, a5 a5

x3 a1, a5 Ø Ø Ø a1, a5 a5 a1, a5 Ø a1, a5 a1, a3, a5

x4 a1 a2 Ø Ø a1 Ø a1 a2 a1 a1, a3

x5 a4, a5 a2 Ø a4 Ø Ø a4, a5 a2 a4, a5 a3, a5

x6 a4, a5 a2 Ø a4 Ø Ø a4, a5 a2 a4, a5 a3, a5

x7 Ø Ø Ø Ø a1 Ø Ø Ø Ø a3

x8 a1, a4, a5 Ø Ø a4 a1 Ø a1, a4, a5 Ø a1, a4, a5 a1, a3, a5

x9 Ø a2 Ø Ø a1 Ø Ø a2 Ø Ø
x10 Ø a2 Ø Ø a1 Ø Ø a2 Ø Ø
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(III)
up-down criterion reduction

(IV)
down-up criterion reduction

(I)
up criterion reduction

(II)
down criterion reduction

Fig. 4. Superset-subset relationship among the four types of criterion reductions.

Theorem 6.4. Let S = (U, AT, V, f) be a disjunctive set-valued OIS, A ⊆ AT .
Then the following implications between properties of respective criterion reductions
hold

(1) [RU≥
A = RU≥

AT ] ⇒ [RDU≥
A = RDU≥

AT ],

(2) [RD≥
A = RD≥

AT ] ⇒ [RDU≥
A = RDU≥

AT ],

(3) [RUD≥
A = RUD≥

AT ] ⇒ [RDU≥
A = RDU≥

AT ],

(4) [RUD≥
A = RUD≥

AT ] ⇒ [RU≥
A = RU≥

AT ],

(5) [RUD≥
A = RUD≥

AT ] ⇒ [RD≥
A = RD≥

AT ].

Proof. (1) Suppose that RDU≥
A 
= RDU≥

AT when RU≥
A = RU≥

AT . Since A ⊆ AT,

we have that RDU≥
AT ⊆ RDU≥

A . Hence, there exists a order pair (x, y) ∈ RDU≥
A

and (x, y) 
∈ RDU≥
AT . From (3) of Theorem 3.4, we can get that (x, y) ∈ RU≥

A and
(x, y) 
∈ RU≥

AT , i.e. RU≥
A 
= RU≥

AT . This yields a contradiction. Thus RDU≥
A = RDU≥

AT

holds if RU≥
A = RU≥

AT .
The proofs of (2), (3), (4) and (5) is similar to that of (1).

Based on the above analysis, the implication relationship among the four types
of criterion reductions in a disjunctive set-valued ordered information system can be
summarized, and the corresponding superset-subset relationship graph is depicted
in Fig. 4.

In Fig. 4, an arrow stands for an implication between two dominance relations.
For example, “(I) up criterion reduction → (III) up-down criterion reduction” means
(I) ⇒ (III). Thus, in a disjunctive set-valued ordered information system, for each
UD criterion reduction A of S, there must exist a U criterion reduction B of S,
such that B is a subset of A. The interpretation of the rest implications are all
similar to that of (I) ⇒ (III). Note that the four types of criterion reductions can
degenerate into the classical criterion reduction of an order information system.

7. An Application for Venture Investment

Venture capital has become an increasingly important source of financing for new
companies, particularly when such companies are operating on the frontier of



February 11, 2010 11:11 WSPC/173-IJITDM S0219622010003646

On Dominance Relations in Disjunctive Set-Valued Ordered Information Systems 29

emerging technologies and markets. It plays an essential role in the entrepreneurial
process.42 For an investor or decision maker, he may need to adopt a better one from
some possible investment projects or find some directions from existing successful
investment projects before investing. The purpose of this section is, through a ven-
ture investment issue, to illustrate how to make a decision by using the approaches
proposed in this paper.

Let us consider an investment issue of a venture investment company. There
are five investment projects xi (i = 1, 2, . . . , 5) can be considered. They can be
evaluated from the view of venture factors. Venture factors are classified into six
factors, which are market venture, technology venture, management venture, envi-
ronment venture, production venture and finance venture. These six factors are all
increasing preference and the value of each project under each factor is given by an
evaluation expert through a set value. Table 4 is an evaluation table about venture
investment given by an expert, where U = {x1, x2, x3, x4, x5}, AT = {Market, Tech-
nology, Management, Environment, Production, Finance}. For convenience, in the
sequel, M1, T, M2, E, P, F will stand for Market, Technology, Management, Envi-
ronment, Production and Finance, respectively. For convenience, we only consider
Up dominance relation in this case study. Similarly, one can obtain the correspond-
ing decisions through using the rest three dominance relations.

From Table 4, we have that

U/RU≥
AT = {[x1]

U≥
AT , [x2]

U≥
AT , [x3]

U≥
AT , [x4]

U≥
AT , [x5]

U≥
AT },

where [x1]
U≥
AT = {x1, x3}, [x2]

U≥
AT = {x1, x2, x3, x4}, [x3]

U≥
AT = {x3}, [x4]

U≥
AT =

{x1, x3, x4} and [x5]
U≥
AT = {x1, x2, x3, x4, x5}.

From the definition of dominance degree, we can get the dominance relation
matrix of this table with respect to U/RU≥

AT as




1 1 0.8 1 1
0.6 1 0.4 0.8 1
1 1 1 1 1

0.8 1 0.6 1 1
0.4 0.8 0.2 0.6 1




Table 4. An interval ordered information system about venture
investment.

Projects M1 T M2 E P F

x1 {3, 4} {4, 5} {3, 4} {3, 4} {2, 3} {4, 5}
x2 {1, 2} {1, 2} {1, 3} {1, 3} {2, 3} {1, 3}
x3 {3, 4} {4, 5} {3, 5} {3, 4} {3, 5} {4, 5}
x4 {2, 3} {4, 5} {2, 3} {2, 4} {2, 3} {3, 5}
x5 {1, 2} {1, 2} {1, 3} {1, 2} {2, 3} {1, 3}
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Table 5. The discernibility matrix of Table 4.

xi/xj x1 x2 x3 x4 x5

x1 Ø M1TM2EF Ø M1M2 M1TM2EF
x2 Ø Ø Ø Ø E
x3 M2P M1TM2EPF Ø M1M2P M1TM2EPF
x4 Ø M1TEF Ø Ø M1TEF
x5 Ø {E} Ø Ø Ø

Therefore, one can obtain that

DU
AT (x1) = 0.95, DU

AT (x2) = 0.70, DU
AT (x3) = 1.00,

DU
AT (x4) = 0.85 and DU

AT (x5) = 0.60.

As follows, we rank these five projects according to the number of DU
AT (xi). A

project with whole dominance degree implies that it has higher investment venture.

x3 � x1 � x4 � x2 � x5.

Thus, the investment venture of project x3 is highest and that of project x5 is
lowest. The decision maker may select the project x5 to invest.

To extract much simpler criterion representation, we compute criterion reduc-
tions of this information system. The criterion reductions of this information system
can be obtained by the proposed reduction approach in this paper. Table 5 is the
discernibility matrix of this disjunctive set-valued OIS, where values of DisU (xi, xj)
for any pair (xi, xj) of projects are placed.

From Table 5, one can obtain that

MU = (M1TM2EF ) ∧ (M1M2) ∧ E ∧ (M2P ) ∧ (M1TM2EPF )

∧ (M1M2P ) ∧ (M1TEF )

= (M1 ∨ M2) ∧ E ∧ (M2 ∨ P )

= (M2 ∧ E) ∨ (M1 ∧ E ∧ P ) ∨ (M1 ∧ E ∧ M2).

Hence, there are three criterion reductions in this disjunctive set-valued
ordered information system about venture investment, which are {Management,
Environment}, {Market, Environment, Production} and {Market, Environment,
Management}. From this result, we know that the venture factor Environment is
indispensable for this decision problem. Therefore, market venture, management
venture, environment venture and production venture are four important venture
factors for this investment issue.

8. Conclusions

To recapitulate, a set-valued information systems is an important formal frame-
work for the development of decision support systems. Because of the existence of



February 11, 2010 11:11 WSPC/173-IJITDM S0219622010003646

On Dominance Relations in Disjunctive Set-Valued Ordered Information Systems 31

set-values, it can be classified into two categories: disjunctive and conjunctive. We
focused on the former in this paper.

According to four types of dominance relations in the disjunctive set-valued
information systems, a dominance-based rough sets approach have been estab-
lished, which is mainly based on substitution of the indiscernibility relation by
the dominance relations. A new sorting approach to all objects in a given sys-
tem have been presented, which is based on the corresponding classes of objects
induced by a dominance relation. To simplify a disjunctive set-valued ordered infor-
mation system, criterion reductions of disjunctive set-valued ordered information
systems have been investigated, which eliminate only that information that is not
essential from the view of the ordering of objects. It should be noted that the inter-
relationships among the four types of dominance relations have been established
as well, which include corresponding dominance classes, rough sets approaches,
sorting for objects and criterion reductions. It is hoped that the present study
can further stimulate investigation for decision making in ordered information
systems.
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