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Based on an intuitionistic knowledge content nature of information gain, the concept
of combination entropy CE(A) in incomplete information systems is first introduced,
and some of its important properties are given. Then, the conditional combination en-
tropy CE(Q | P ) and the mutual information CE(P ;Q) are defined. Unlike all ex-
isting measures for the uncertainty in incomplete information systems, the relation-
ships among these three concepts can be established, which are formally expressed as
CE(Q | P ) = CE(P ∪Q)−CE(P ) and CE(P ;Q) = CE(P )−CE(P | Q). Furthermore,
a variant CE(CA) of the combination entropy with maximal consistent block nature is
introduced to measure the uncertainty of an incomplete information system in the view
of maximal consistent block technique. Its monotonicity is the same as that of the com-
bination entropy. Finally, the combination granulation CG(A) and its variant CG(CA)
with maximal consistent block nature are defined to measure discernibility ability of an
incomplete information system, and the relationship between the combination entropy
and the combination granulation is established as well. These results will be very helpful
for understanding the essence of knowledge content and uncertainty measurement in
incomplete information systems. Note that the combination entropy also can be further
extended to measure the uncertainty in non-equivalence-based information systems.

Keywords: Incomplete information systems; combination entropy; combination granula-
tion; maximal consistent block.

1. Introduction

Rough set theory, introduced by Pawlak,1,2 is a relatively new soft computing tool

for the analysis of a vague description of an object. The adjective vague, referring

to the quality of information means inconsistency or ambiguity which follows from

∗This is an extended version of the paper presented at the First International Conference on
Rough Sets and Knowledge Technology, Chongqing, China.
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information granulation. The rough sets philosophy is based on the assumption

that with every object of the universe there is associated a certain amount of infor-

mation (data, knowledge), expressed by means of some attributes used for object

description. Objects having the same description are indiscernible (similar) with

respect to the available information. The indiscernibility relation thus generated

constitutes a mathematical basis of rough set theory; it induces a partition of the

universe into blocks of indiscernible objects, called elementary sets, that can be used

to build knowledge about a real or abstract world.1–5 The use of the indiscernibility

relation results in information granulation.

The notion of information systems (sometimes called data tables, attribute-

value systems, knowledge representation systems, etc.), provides a convenient tool

for the representation of objects in terms of their attribute values.6–9 According

to whether or not there are missing data (null values), information systems can be

classified into two categories: complete and incomplete.10

The information entropy and the information granulation are two main ap-

proaches to measuring the uncertainty of a complete/incomplete information sys-

tem. The entropy of a system as defined by Shannon gives a measure of the uncer-

tainty about its actual structure.11 It has been a useful mechanism for characterizing

the information content in various modes and applications in many diverse fields.

The information granulation is another measure for the uncertainty of an informa-

tion system. In general, the information granulation represents the discernibility

ability of an information/knowledge in information systems. The smaller the in-

formation granulation is, the stronger its discernibility ability is Refs. 12 and 13.

Several authors (see, e.g. Refs. 14–17) have used Shannon’s concept and its vari-

ants to measure the uncertainty in rough set theory. However, Shannon’s entropy

is not fuzzy entropy, and cannot measure the fuzziness in rough set theory. A new

information entropy was proposed by Liang in Refs. 18 and 19, some important

properties of this entropy were derived as well. Unlike the logarithmic behavior

of Shannon’s entropy, the gain function of Liang’s entropy possesses the comple-

ment nature. Liang’s entropy can be used to measure the fuzziness of rough set

and rough classification. However, since the equivalence classes are only regarded

as the unit of information granule of a complete information system, these mea-

sures cannot be used to deal with an incomplete information system. Based on

this consideration, Liang extended his information entropy to an incomplete in-

formation systems and established the relationship between the information en-

tropy and the information granulation.12 It is mentioned that the tolerance class

of each object in the universe is regarded as the unit of information granule of

Liang’s entropy. To consider minimal information granule in an incomplete infor-

mation system, Leung and Li20 apply the concept of a maximal consistent block

to formulate a new approximation to an object set with high level of accuracy.

Guan21 has extended the maximal consistent block technique to set-valued in-

formation systems. This method has been used for attribute reduction and rule

acquisition in an incomplete information system. Mi et al.22 gave a new fuzzy
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entropy and applied it for measuring the fuzziness of a fuzzy-rough set based

partition. In the literature,23 Qian and Liang proposed the concepts of combina-

tion entropy and combination granulation for measuring the uncertainty in complete

information systems, which information gains possess intuitionistic knowledge con-

tent nature. Qian and Liang also investigated combination entropy and combination

granulation in the context of incomplete information systems.24 As we know, the re-

lationship among the information entropy, the conditional entropy and the mutual

information can satisfy an identical equation in a complete information system, i.e.,

the mutual information is equal to the difference that the information entropy is

subtracted from the conditional entropy. For example, this identical equation is all

satisfied by both classical Shannon’s entropy and Liang’s entropy in complete infor-

mation systems.11,13 However, so far this relationship has not been reported in an

incomplete information system, which would baffle further research and application

of information entropy theory.

This paper aims to present a new method for measuring the uncertainty of

knowledge in any kind of non-equivalence-based information systems. For conve-

nience, we only focus on incomplete information systems in this paper. In Sec. 2,

some preliminary concepts such as complete information systems, incomplete infor-

mation systems and maximal consistent blocks are briefly recalled. In Sec. 3, the

concepts of the combination entropy, the conditional combination entropy and the

mutual information of an incomplete information system are introduced, their some

important properties are induced, and the relationships among them are established

as well. In Sec. 3, based on maximal consistent block technique, a variant of the

combination entropy is introduced to an incomplete information system, and several

useful properties are given as well. In Sec. 4, the combination granulation and its

variant are defined to measure the discernibility ability of an information/knowledge

in incomplete information systems. The relationship between the combination en-

tropy and the combination granulation is established. Finally, Sec. 5 concludes the

paper.

2. Incomplete Information Systems

In this section, we will review some basic concepts such as incomplete information

systems, tolerance relation and maximal consistent block.

An information system is a pair S = (U, A), where,

(1) U is a non-empty finite set of objects;

(2) A is a non-empty finite set of attributes;

(3) for every a ∈ A, there is a mapping a, a : U → Va, where Va is called the

value set of a.

Each subset of attributes P ⊆ A determines a binary indistinguishable relation

IND(P ) as follows

IND(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v)}.
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Table 1. The incomplete information system about car.

Car Price Mileage Size Max-Speed

u1 high low full low
u2 low * full low
u3 * * compact low
u4 high * full high
u5 * * full high
u6 low high full *

It can be easily shown that IND(P ) is an equivalence relation on the set U .

For P ⊆ A, the relation IND(P ) constitutes a partition of U , which is denoted

by U /IND(P ).

It may happen that some of the attribute values for an object are missing. For

example, in medical information systems there may exist a group of patients for

which it is impossible to perform all the required tests. These missing values can

be represented by the set of all possible values for the attribute or equivalence by

the domain of the attribute. To indicate such a situation, a distinguished value, a

so-called null value is usually assigned to those attributes.

If Va contains a null value for at least one attribute a ∈ A, then S is called an

incomplete information system, otherwise it is complete.25,26 Further on, we will

denote the null value by ∗.

Let S = (U, A) be an information system, P ⊆ A an attribute set. We define a

binary relation on U as follows

SIM(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v) or a(u) = ∗ or a(v) = ∗}.

In fact, SIM(P ) is a tolerance relation on U . The concept of a tolerance relation

has a wide variety of applications in classification.25,26

It can be easily shown that SIM(P ) =
⋂

a∈P SIM({a}).

Let SP (u) denote the set {v ∈ U |(u, v) ∈ SIM(P )}. SP (u) is the maximal set

of objects which are possibly indistinguishable by P with u.

Let U /SIM (P ) denote the family sets {SP (u)|u ∈ U}, the classification or

the knowledge induced by P . A member SP (u) from U /SIM (P ) will be called a

tolerance class or a granule of information. It should be noticed that the tolerance

classes in U /SIM (P ) do not constitute a partition of U in general. They constitute

a covering of U , i.e., SP (u) 6= Ø for every u ∈ U , and
⋃

u∈U SP (u) = U .

Example 1. Consider descriptions of several cars in Table 1.

This is an incomplete information system, where U = {u1, u2, u3, u4, u5}, and

A = {a1, a2, a3, a4} with a1-Price, a2-Mileage, a3-Size, a4-Max-Speed. By comput-

ing, it follows that

U /SIM (A) = {SA(u1), SA(u2), SA(u3), SA(u4), SA(u5)},
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where SA(u1) = {u1}, SA(u2) = {u2, u6}, SA(u3) = {u3}, SA(u4) = {u4, u5},

SA(u5) = {u4, u5, u6}, SA(u6) = {u2, u5, u6}.

Now we define a partial order on the set of all classifications of U . Let S = (U, A)

be an incomplete information system, P, Q ⊆ A. We say that Q is coarser than P

(or P is finer than Q), denoted by P � Q, if and only if SP (ui) ⊆ SQ(ui) for

∀i ∈ {1, 2, . . . , |U |}. If P � Q and P 6= Q, we say that Q is strictly coarser than P

(or P is strictly finer than Q) and denoted by P ≺ Q.

In fact, P ≺ Q ⇔ for ∀i ∈ {1, 2, . . . , |U |}, we have that SP (ui) ⊆ SQ(ui), and

∃j ∈ {1, 2, . . . , |U |}, such that SP (uj) ⊂ SQ(uj).

However, tolerance classes are not the minimal units for describing knowledge

or information in incomplete information system.20

Let S = (U, A) be an information system, P ⊆ A an attribute set and X ⊆ U

a subset of objects. We say X is consistent with respect to P if (u, v) ∈ SIM(P )

for any u, v ∈ X . If there does not exist a subset Y ⊆ U such that X ⊂ Y , and

Y is consistent with respect to P , then X is called a maximal consistent block of

P . Obviously, in a maximal consistent block, all objects are not indiscernible with

available information provided by a similarity relation.20

Henceforth, we denote the set of all maximal consistent blocks determined by

P ⊆ A as CP , and the set of all maximal consistent blocks of P which includes

some object u ∈ U is denoted as CP (u). It is obvious that X ∈ CP if and only if

X =
⋂

u∈X

SP (u).20

Example 2. Computing all maximal consistent blocks of A in Table 1.

By computing, from Example 1, we have that

CA = {{u1}, {u2, u6}, {u3}, {u4, u5}, {u5, u6}},

CA is the set of all maximal consistent blocks determined by A on U .

Here, we define another partial relation in incomplete information systems.

Let S = (U, A) be an incomplete information system, P, Q ⊆ A. CP =

{P 1, P 2, . . . , P m}, CQ = {Q1, Q2, . . . , Qn}. We define the partial relation �
′

as

follows

P �
′

Q ⇔ for every P i ∈ CP , there exists Qj ∈ CQ such that P i ⊆ Qj .

If P �
′

Q and P 6= Q, i.e., for some P i0 ∈ CP , there exists Qj0 ∈ CQ such that

P i0 ⊂ Qj0 , we denote it as P ≺
′

Q.

3. Combination Entropy in Incomplete Information Systems

In this section, the combination entropy in an incomplete information system is

introduced to measure the uncertainty of a knowledge in incomplete information

systems. Some of its properties are discussed as well.

Let S = (U, A) be an incomplete information system. By U /SIM (A) = {SA(u) |

u ∈ U}, we denote the classification or the knowledge induced by A. Of particular
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interest is the discrete classification

U /SIM (A) = ω = {SA(u) = {u} | u ∈ U} (1)

and the indiscrete classification

U /SIM (A) = δ = {SA(u) = {U} | u ∈ U}, (2)

or just δ and ω if there is no confusion as to the domain set involved.

Definition 1. Let S = (U, A) be an incomplete information system and

U /SIM (A) = {SA(u1), SA(u2), . . . , SA(u|U |)}. The combination entropy of A is

defined as

CE(A) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SA(ui)|

C2
|U |

, i ≤ |U |, (3)

where
C2

|U|−C2
|SA(ui)|

C2
|U|

denotes the probability of pairs of the elements which are

probably distinguishable from each other within the whole number of pairs of the

elements on the universe U .

If U /SIM (A) = ω, then the combination entropy of A achieves the maximum

value CE(A) = 1;

If U /SIM (A) = δ, then the combination entropy of A achieves the minimum

value CE(A) = 0.

Obviously, for an incomplete information system S = (U, A), we have that

0 ≤ CE(A) ≤ 1.

Example 3. (Continued from Example 1) Computing the combination entropy of

A in Table 1.

By computing, we have that

CE(A) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SA(ui)|

C2
|U |

=
1

6

(

15 − 0

15
+

15− 1

15
+

15 − 0

15
+

15 − 1

15
+

15− 3

15
+

15 − 3

15

)

=
41

45
.

Remark. In fact, several authors have applied Shannon’s entropy and its variants

for measuring the uncertainty in the context of complete information systems.14–17

However, these entropies can not be used in incomplete information systems. Fur-

thermore, the literatures27,28 investigated how to measure the uncertainty of a

partition-based fuzzy rough set and that of a fuzzy information system, respec-

tively. Whereas, these two measures only deal with the fuzziness and also can not
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be used for incomplete information systems. Note that the above combination en-

tropy proposed can measure both the uncertainty in complete information systems

and that in incomplete information systems, which may be better for calculating

the uncertainty in the context of incomplete information systems.

Proposition 1. Let S = (U, A) be a complete information system and

U /IND(A) = {X1, X2, . . . , Xm}. Then, the combination entropy of A degenerates

into

CE(A) =

m
∑

i=1

|Xi|

|U |

(

1 −
C2

|Xi|

C2
|U |

)

,

i.e.,

CE(A) =
1

|U |

|U |
∑

i=1

(

1 −
C2

|SA(ui)|

C2
|U |

) =
m
∑

i=1

|Xi|

|U |
(1 −

C2
|Xi|

C2
|U |

)

.

Proof. Let U /IND(A) = {X1, X2, . . . , Xm}, Xi = {ui1, ui2, . . . , uisi
} (i ≤ m),

where |Xi| = si, and
m
∑

i=1

si = |U |, then the relationships among the elements in

U /SIM (A) and the elements in U /IND(A) are as follows

Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi
) ,

i.e.,

|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi
)| .

Hence, we have that

CE(A) =

m
∑

i=1

|Xi|

|U |
(1 −

C2
|Xi|

C2
|U |

)

= 1 −
1

|U |

m
∑

i=1

|Xi| ×
C2

|Xi|

C2
|U |

= 1 −
1

|U |

m
∑

i=1

|SA(ui1)| + |SA(ui1)| + · · · + |SA(uisi
)|

|Xi|

C2
|Xi|

C2
|U |

= 1 −
1

|U |

m
∑

i=1

C2
|SA(ui)|

C2
|U |

=
1

|U |

|U |
∑

i=1

(1 −
C2

|SA(ui)|

C2
|U |

) .

This completes the proof. �
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Remark. Proposition 1 states that the combination entropy in complete informa-

tion systems is a special instance of the combination entropy in incomplete infor-

mation systems. It means that the definition of combination entropy of complete

information systems is a consistent extension to that of incomplete information

systems.

Proposition 2. Let S = (U, A) be an incomplete information system and P, Q ⊆

A two subsets on A. If P ≺ Q, then CE(P ) > CE(Q).

Proof. Let U /SIM (P ) = {SP (u1), SP (u2), . . . , SP (u|U |)} and U /SIM (Q) =

{SQ(u1), SQ(u2), . . . , SQ(u|U |)}. If P ≺ Q, then for ∀i ∈ {1, 2, . . . , |U |}, we have

that SP (ui) ⊆ SQ(ui) and there exists j ∈ {1, 2, . . . , |U |} such that SP (ui) ⊂

SQ(ui), i.e., |SP (ui)| < |SQ(ui)|.

Hence, we have that

|SP (ui)| < |SQ(ui)| ⇒ C2
|SP (ui)|

< C2
|SQ(ui)|

⇒

|U |
∑

i=1

C2
|SP (ui)|

<

|U |
∑

i=1

C2
|SQ(ui)|

⇒ 1 −
1

|U |

|U |
∑

i=1

C2
|SQ(ui)|

C2
|U |2

< 1 −
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

C2
|U |2

⇒ CE(Q) < CE(P ) ,

i.e.,

CE(P ) > CE(Q) .

This completes the proof. �

Proposition 2 states that the combination entropy of knowledge increases as

tolerance classes become smaller through finer classification.

Definition 2. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information sys-

tems. The combination entropy of P ∪ Q is defined as

CE(P ∪ Q) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SP (ui)∩SQ(ui)|

C2
|U |

. (4)

Definition 2 denotes the combination entropy of the new information system

composed of two given information systems with the same universe U .

From the above definition, the following properties can be obtained.

Proposition 3. The following properties hold

(1) CE(P ∪ Q) ≥ CE(P );

(2) CE(P ∪ Q) ≥ CE(Q).
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Proof. They are straightforward. �

Corollary 1. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information sys-

tems. If P � Q, then CE(P ∪ Q) = CE(P ).

Proof. It is straightforward. �

Definition 3. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information sys-

tems. The conditional combination entropy of Q with respect to P is defined as

CE(Q | P ) =
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)∩SQ(ui)|

C2
|U |

. (5)

Definition 4. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information sys-

tems. The mutual information between P and Q is defined as

CE(P ; Q) = CE(P ) + CE(Q) − CE(P ∪ Q) . (6)

The following proposition will establish the relationships among the combina-

tion entropy, the conditional combination entropy and the mutual information in

incomplete information systems.

Proposition 4. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information

systems. Then the following properties hold

(1) CE(Q | P ) = CE(P ∪ Q) − CE(P ),

(2) CE(P ; Q) = CE(P ) − CE(P | Q) = CE(Q) − CE(Q | P ).

Proof. (1) From Definition 3, we have that

CE(Q | P ) =
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)∩SQ(ui)|

C2
|U |

= 1 −
1

|U |

|U |
∑

i=1

C2
|SP (ui)∩SQ(ui)|

C2
|U |

− 1 +
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

C2
|U |

=
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SP (ui)∩SQ(ui)|

C2
|U |

−
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SP (ui)|

C2
|U |

= CE(P ∪ Q) − CE(P ) .

(2) From Definition 4 and (1), we have that

CE(P ; Q) = CE(P ) + CE(Q) − CE(P ∪ Q)

= CE(Q) − (CE(P ∪ Q) − CE(P ))

= CE(Q) − CE(Q | P ) .
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Like this proof, the equation CE(P ; Q) = CE(P ) − CE(P | Q) can be proved.

This completes the proof. �

It should be noted that these equations cannot be satisfied by some existing

measures in incomplete information systems. These relationships will be helping

for understanding the essence of the knowledge content and the uncertainty in an

incomplete information system.

Proposition 5. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information

systems. Then CE(Q | P ) = 0 iff P � Q.

Proof. (1) Suppose P � Q. Hence, for arbitrary ui ∈ U , we have that SP (ui) ⊆

SQ(ui), i.e., SP (ui) ∩ SQ(ui) = SP (ui).

Therefore, we have that

CE(Q | P ) =
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)∩SQ(ui)|

C2
|U |

=
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)|

C2
|U |

= 0 .

(2) Suppose CE(Q | P ) = 0, we need to prove P � Q. If P � Q not holds, then

there exists some uj ∈ U such that SP (uj) ⊆ SQ(uj) not holds, i.e.,

1 ≤ |SP (uj) ∩ SQ(uj)| < |SP (uj)| .

Hence, we have that

CE(Q | P ) =
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)∩SQ(ui)|

C2
|U |

=
1

|U |

|U |
∑

i=1,i6=j

C2
|SP (ui)|

− C2
|SP (ui)∩SQ(ui)|

C2
|U |

+
1

|U |

C2
|SP (uj)|

− C2
|SP (uj)∩SQ(uj)|

C2
|U |

≥
1

|U |

C2
|SP (uj )| − C2

|SP (uj )∩SQ(uj)|

C2
|U |

>
1

|U |

C2
|SP (uj)|

− C2
|SP (uj)|

C2
|U |

= 0 .
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This yields a contradiction. Thus, P � Q.

This completes the proof. �

Proposition 5 states that in the same universe, a knowledge cannot provide the

system any additional uncertainty (classification information) if it is coarser than

the original knowledge.

For knowledge discovery based on information systems, one often meets a special

type of information systems, called decision information systems, which can be used

to extract decision rules. In a given decision information system, there is such an

attribute D which is called a decision attribute. This decision attribute usually

generates the corresponding partition or covering. In the following, to reveal the

relationship between condition attributes and the decision attribute, we discuss two

relative properties.

Proposition 6. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information

systems and D be a decision attribute. If P � Q, then CE(P | D) ≥ CE(Q | D).

Proof. Since P � Q, we have that SP (ui) ⊆ SQ(ui) and |SP (ui) ∩ SD(ui)| ≤

|SQ(ui) ∩ SD(ui)| for arbitrary ui ∈ U , SD(ui) ∈ U /SIM (D). Therefore, we have

that

CE(Q | D) =
1

|U |

|U |
∑

i=1

C2
|SD(ui)|

− C2
|SD(ui)∩SQ(ui)|

C2
|U |

≤
1

|U |

|U |
∑

i=1

C2
|SD(ui)|

− C2
|SD(ui)∩SP (ui)|

C2
|U |

= CE(P | D) .

This completes the proof. �

Proposition 6 indicates that the finer a condition knowledge is, the more classi-

fication information it can provide to an apriori knowledge (target decision).

However, the reverse relation of this proposition cannot be established in general.

Example 4. Let the universe U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Assume that

U/SIM (P ) = {{1, 3, 4}, {2, 5, 6}, {1, 3, 4}, {1, 3, 4}, {2, 5, 6}, {2, 5, 6}, {7, 8, 9, 10},

{7, 8, 9, 10}, {7, 8, 9, 10}, {7, 8, 9, 10}},

U/SIM (Q) = {{1, 5}, {2, 3, 4, 6, 7}, {2, 3, 4, 6, 7}, {2, 3, 4, 6, 7}, {1, 5}, {2, 3, 4, 6, 7},

{2, 3, 4, 6, 7}, {8, 9, 10}, {8, 9, 10}, {8, 9, 10}},

and

U/SIM (D) = {{1, 3, 5, 8, 9}, {2, 4, 6, 7, 10}, {1, 3, 5, 8, 9}, {2, 4, 6, 7, 10}, {1, 3, 5, 8, 9},

{2, 4, 6, 7, 10}, {2, 4, 6, 7, 10}, {1, 3, 5, 8, 9}, {1, 3, 5, 8, 9}, {2, 4, 6, 7, 10}, } .
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It is easily computed that

CE(P | D) =
1

450
(9 + 9 + 9 + 10 + 10 + 9 + 9 + 9 + 9 + 9) =

46

225
,

CE(Q | D) =
1

450
(9 + 4 + 10 + 4 + 9 + 4 + 4 + 9 + 9 + 10) =

36

225
,

i.e., CE(P | D) ≥ CE(Q | D).

However, P � Q cannot be satisfied in fact.

In practice, CE(D|P ) can be usually used to define the significance of an at-

tribute set. In the following, we discuss the relationship between two conditional

combination entropies in incomplete information systems.

Proposition 7. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information

systems and D be a decision attribute. If D � P � Q, then CE(D | P ) ≤ CE(D |

Q).

Proof. Since D � P � Q, we have that SP (ui) ⊆ SQ(ui) and |SP (ui)| ≤ |SQ(ui)|,

and SP (ui) ∩ SD(ui) = SQ(ui) ∩ SD(ui) = SD(ui), for arbitrary ui ∈ U , SD(ui) ∈

U /SIM (D). From the definition of the conditional combination entropy, we have

that

CE(D | P ) − CE(D | Q)

=
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

− C2
|SP (ui)∩SD(ui)|

C2
|U |

−
1

|U |

|U |
∑

i=1

C2
|SQ(ui)|

− C2
|SQ(ui)∩SD(ui)|

C2
|U |

=
1

|U |C2
|U |

|U |
∑

i=1

((C2
|SD(ui)|

− C2
|SD(ui)|

) − (C2
|SQ(ui)|

− C2
|SP (ui)|

))

=
1

|U |C2
|U |

|U |
∑

i=1

(C2
|SP (ui)|

− C2
|SQ(ui)|

)

≤ 0 .

This completes the proof. �

Proposition 7 shows that the coarser a condition knowledge is, the more classifi-

cation information it can preserve with respect to a target decision. In other words,

if CE(D | P ) ≤ CE(D | Q), one says that the attribute set P is more significant

than the attribute set Q with respect to the target decision D.

Corollary 2. Let S1 = (U, P ), S2 = (U, Q) be two incomplete information systems

and D be a decision attribute. If P � Q � D, then CE(D | P ) = CE(D | Q) = 0.
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From the above properties and discussions, one can know that the combination

entropy can well characterize the uncertainty of knowledge in incomplete informa-

tion systems. In the definition of combination entropy, C2
|SA(ui)|

denotes the pairs

of the elements which are probably indistinguishable from each other within the

tolerance class SA(ui). In fact, given any binary relation, one can induce a cover

of the universe and determine a particular information system. Through using the

idea of the combination entropy, we may use the combination entropy or its variants

to measure the uncertainty of the information systems induced by a given binary

relation. In other words, the combination entropy can not only characterize the

uncertainty of an incomplete information system, but also measure those of some

more kinds of information systems.

4. The Variant of Combination Entropy for Maximal Consistent

Block Technique

Because the maximal consistent block technique can describe the minimal units for

a knowledge or information in incomplete information systems,20 in this section, a

variant of the combination entropy with maximal consistent block nature is intro-

duced to measure the uncertainty of an incomplete information system. It has very

useful properties.

Let S = (U, A) be an incomplete information system. By CA =

{A1, A2, . . . , Am}, we denote the maximal consistent blocks induced by A. Of par-

ticular interest is the discrete classification

CA = ω = {u} | u ∈ U}

and the indiscrete classification

CA = δ = {U} | u ∈ U},

or just δ and ω if there is no confusion as to the domain set involved.

Definition 5. Let S = (U, A) be an incomplete information system, P ⊆ A,

CP = {P 1, P 2, . . . , P m}. The combination entropy of CP is defined as

CE(CP ) =
1

m

m
∑

i=1

C2
|U | − C2

|P i|

C2
|U |

. (7)

where
C2

|U|−C2

|P i|

C2
|U|

denotes the probability of pairs of the elements which are probably

distinguishable each other within the whole number of pairs of the elements on the

universe U in the view of maximal consistent block technique.

If CP = ω, then the combination entropy of A achieves the maximum value

CE(CP ) = 1;

If CP = δ, then the combination entropy of A achieves the minimum value

CE(CP ) = 0.



November 20, 2009 12:20 WSPC/118-IJUFKS 00630

868 Y.-H. Qian, J.-Y. Liang & F. Wang

Obviously, for an incomplete information system S = (U, A), we have that

0 ≤ CE(CA) ≤ 1.

Example 5. (Continued from Example 2) Computing the combination entropy

with maximal consistent block nature of A in Table 1.

By computing, we have that

CE(CA) =
1

m

m
∑

i=1

C2
|U | − C2

|Ai|

C2
|U |

=
1

5

(

15− 0

15
+

15− 1

15
+

15 − 0

15
+

15− 1

15
+

15 − 0

15

)

=
24

25
.

Proposition 8. Let S = (U, A) be an incomplete information system, P, Q ⊆ A

two subsets on A, CP = {P 1, P 2, . . . , P m}, CQ = {Q1, Q2, . . . , Qn}. If P ≺
′

Q,

then CE(CP ) > CE(CQ).

Proof. Thus P ≺
′

Q, for every P i ∈ CP , there exists Qj ∈ CQ such that P i ⊆ Qj ,

and for some P i0 ∈ CP , there exists Qj0 ∈ CQ such that P i0 ⊂ Qj0 and m > n.

For Qj0 ∈ CQ, there exist {P i1 , P i2 , . . . , P is} (P ik ∈ CP , k = {1, 2, . . . , s})

such that each P ik ⊆ Qj0 , where P i0 ∈ {P i1 , P i2 , . . . , P is}. Hence, |P ik | ≤ |Qj0 |,

|P i0 | < |Qj0 |, and C2
|P ik |

≤ C2
|Qj0 |

, C2
|P i0 |

< C2
|Qj0 |

. So 1
s

∑s

k=1 C2
|P ik |

< C2
|Qj0 |

.

Therefore, we have that

CE(CQ) =
1

n

n
∑

j=1

C2
|U | − C2

|Qj |

C2
|U |

= 1 −
1

n

(

n
∑

j=1,j 6=j0

C2
|Qj |

C2
|U |

+
C2

|Qj0 |

C2
|U |

)

< 1 −
1

n

(

n
∑

j=1,j 6=j0

C2
|Qj |

C2
|U |

+
1

s

s
∑

k=1

C2
|P ik |

C2
|U |

)

≤ 1 −
1

m

m
∑

i=1

C2
|P i|

C2
|U |

= CE(CP ) .

It is clear that CE(CP ) > CE(CQ).

This completes the proof. �
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Proposition 8 shows that the combination entropy with maximal consistent

block nature of knowledge increases as maximal consistent blocks become smaller

through fine classification.

Proposition 9. Let S = (U, A) be an incomplete information system, P, Q ⊆ A

two subsets on A. If P �
′

Q, then CE(P ) ≥ CE(Q).

Proof. Suppose that U /SIM (P ) = {SP (u1), SP (u2), . . ., SP (u|U |)}, U /SIM (Q) =

{SQ(u1), SQ(u2), . . . , SQ(u|U |)}, CP = {P 1, P 2, . . . , P m} and CQ = {Q1, Q2, . . . ,

Qn}.

It follows from the definition of �
′

that for arbitrary P i ∈ CP , there exists

Qj ∈ CQ such that P i ⊆ Qj .

Next, we prove that SP (u) ⊆ SQ(u) for ∀u ∈ U . We know that SP (u) =
⋃

{Xk ∈

CP | Xk ⊆ SP (u)} =
⋃

{Xk ∈ CP (u)} (k ≤ m) and SQ(u) =
⋃

{Yt ∈ CQ | Yt ⊆

SQ(u)} =
⋃

{Yt ∈ CQ(u)} (t ≤ n) from Property 4 in Ref. 20. From the definition

of maximal consistent block, we have that u ∈ CP (u), u ∈ CQ(u), u 6∈ CP −CP (u)

and u 6∈ CQ−CQ(u). Hence, it follows from P �
′

Q that for arbitrary Xk ∈ CP (u),

there exist Yt ∈ CQ(u) such that Xk ⊆ Yt. Thus, for arbitrary u ∈ U , we have that

SP (u) =
⋃

{Xk ∈ CP | Xk ⊆ SP (u)} =
m
⋃

k=1

Xk

⊆

n
⋃

t=1

Yt =
⋃

{Yt ∈ CQ | Yt ⊆ SQ(u)}

= SQ(u) ,

that is |SP (u)| ≤ |SQ(u)|.

Hence, we have that

CE(P ) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SP (ui)|

C2
|U |

≥
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SQ(ui)|

C2
|U |

= CE(Q) .

This complete the proof. �

Proposition 9 states that the combination entropy of knowledge increases as

maximal consistent blocks become smaller through fine classification.

Remark. From the proof above, it is easy to see that SP (u) ⊆ SQ(u) for arbitrary

u ∈ U if P �
′

Q, i.e., the partial relation P � Q can be induced by the partial

relation P �
′

Q. Hence, the partial relation �
′

is a special instance of the partial

relation � in incomplete information systems in fact.
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5. Combination Granulation in Incomplete Information Systems

In this section, the combination granulation and its variant with maximal consistent

block nature in an incomplete information system are introduced. They have some

very useful properties. The relationship between the combination entropy and the

combination granulation in incomplete information systems is established.

Definition 6. Let S = (U, A) be an incomplete information system, U/SIM(A)

= {SA(u1), SA(u2), . . . , SA(u|U |)}. The combination granulation of A is defined as

CG(A) =
1

|U |

|U |
∑

i=1

C2
|SA(ui)|

C2
|U |

, (8)

where
C2

|SA(ui)|

C2
|U|

denotes the probability of pairs of the elements on tolerance class

SA(ui) within the whole number of pairs of the elements on the universe U .

If U /SIM (A) = δ, then the combination granulation of A achieves the maximum

value CG(A) = 1.

If U /SIM (A) = ω, then the combination granulation of A achieves the minimum

value CG(A) = 0.

Clearly, for an incomplete information system S = (U, A), we have that 0 ≤

CE(G) ≤ 1.

Proposition 10. Let S = (U, A) be a complete information system and

U /IND(A) = {X1, X2, . . . , Xm}. Then knowledge granulation of A degenerates

into

CG(A) =

m
∑

i=1

|Xi|

|U |

C2
|Xi|

C2
|U |

,

i.e.,

CG(A) =
1

|U |

|U |
∑

i=1

C2
|SA(Ui)|

C2
|U |

=

m
∑

i=1

|Xi|

|U |

C2
|Xi|

C2
|U |

.

Proof. Let U /SIM (A) = {X1, X2, . . . , Xm}, Xi = {ui1, ui2, . . . , uisi
}, where

|Xi| = si.
m
∑

i=1

|si| = |U |.

The relationship between the elements in U /SIM (A) and the elements in

U /IND(A) can be described as follows

Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi
) ,

i.e.,

|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi
)| .
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Therefore, we have that

CG(A) =

m
∑

i=1

|Xi|

|U |

C2
|Xi|

C2
|U |

=
1

|U |

m
∑

i=1

|SA(ui1)| + |SA(ui2)| + · · · + |SA(uisi
)|

|Xi|

C2
|Xi|

C2
|U |

=
1

|U |

|U |
∑

i=1

C2
|SA(ui)|

C2
|U |

.

This completes the proof. �

Remark. Proposition 10 states that the combination granulation in complete infor-

mation systems is a special instance of the combination granulation in incomplete

information systems. It means that the definition of combination granulation in

complete information systems is a consistent extension to that of incomplete infor-

mation systems.

Proposition 11. Let S = (U, A) be an incomplete information system and P, Q ⊆

A two subsets on A. If P ≺ Q, then CG(P ) < CG(Q).

Proof. Let U /SIM (P ) = {SP (u1), SP (u2), . . . , SP (u|U |)} and U /SIM (Q) =

{SQ(u1), SQ(u2), . . . , SQ(u|U |)}. If P ≺ Q, then SP (ui) ⊆ SQ(ui) (i ∈ {1, 2, . . .,

|U |}), and ∃j ∈ {1, 2, . . ., |U |} such that SP (ui) ⊂ SQ(uj), i.e., |SP (uj)| < |SQ(uj)|.

Hence, it follows that

|SP (uj)| < |SQ(uj)| ⇒ C2
|SP (uj)|

< C2
|SQ(uj )|

⇒

|U |
∑

i=1

C2
|SP (ui)|

<

|U |
∑

i=1

C2
|SQ(ui)|

⇒ CG(P ) =
1

|U |

|U |
∑

i=1

C2
|SP (ui)|

C2
|U |

<
1

|U |

|U |
∑

i=1

C2
|SQ(ui)|

C2
|U |

= CG(Q) ,

i.e.,

CG(P ) < CG(Q) .

This completes the proof. �

Proposition 11 states that the combination granulation of knowledge decreases

as tolerance classes become smaller through finer classification.

Here, we will establish the relationship between the combination entropy and

the combination granulation in incomplete information systems as follows.
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Proposition 12. Let S = (U, A) be an incomplete information system and

U /SIM (A) = {SA(u1), SA(u2), . . . , SA(u|U |)}. Then, the relationship between the

combination entropy CE(A) and combination granulation CG(A) is as follows

CE(A) + CG(A) = 1. (9)

Proof. Let S = (U, A) be an incomplete information system, U /SIM (A) =

{SA(u1), SA(u2), . . . , SA(u|U |)}.

By Definition 1 and Definition 2, we have that

CE(A) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SA(ui)|

C2
|U |

=
1

|U |

|U |
∑

i=1

(

1 −
C2

|SA(ui)|

C2
|U |

)

= 1 −
1

|U |

|U |
∑

i=1

C2
|SA(ui)|

C2
|U |

= 1 − CG(A) .

Obviously, CE(A) + CG(A) = 1.

This completes the proof. �

Remark. Proposition 12 shows the relationship between the combination entropy

and the combination granulation is strict complement relationship, i.e., they pos-

sess the same capability on depicting the uncertainty of an incomplete information

system.

Example 6. For Table 1, U = {u1, u2, u3, u4, u5, u6}, A = {Price, Mileage, Size,

Max − Speed} and U /SIM (A) = {{u1}, {u2, u6}, {u3}, {u4, u5}, {u4, u5, u6},

{u2, u5, u6}}. By computing, it follows that

CE(A) =
1

|U |

|U |
∑

i=1

C2
|U | − C2

|SA(ui)|

C2
|U |

=
1

6

(

1 +
14

15
+ 1 + +

14

15
+

12

15
+

12

15

)

=
41

45
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and

CG(A) =
1

|U |

|U |
∑

i=1

C2
|SA(ui)|

C2
|U |

=
1

6

(

0 +
1

15
+ 0 +

1

15
+

3

15
+

3

15

)

=
4

45
.

It is obvious that CE(A) + CG(A) = 1, i.e., the sum of the combination entropy

and combination granulation of A is constant 1.

Definition 7. Let S = (U, A) be an incomplete information system, P ⊆ A,

CP = {P 1, P 2, . . . , P m}. The combination granulation of CP is defined as

CG(CP ) =
1

m

m
∑

i=1

C2
|P i|

C2
|U |

. (10)

where
C2

|P i|

C2
|U|

denotes the probability of pairs of the elements in the maximal con-

sistent block P i within the whole number of pairs of the elements on the universe

U .

If CP = δ, then the combination granulation of CP achieves the maximum value

CG(CP ) = 1.

If CP = ω, then the combination granulation of CP achieves the minimum value

CG(CP ) = 0.

Clearly, for an incomplete information system S = (U, A), we have that 0 ≤

CE(CA) ≤ 1.

Proposition 13. Let S = (U, A) be an incomplete information system, P, Q ⊆ A

two subsets on A, CP = {P 1, P 2, . . . , P m} and CQ = {Q1, Q2, . . . , Qn}. If P ≺
′

Q,

then CG(CP ) < CG(CQ).

Proof. Thus P ≺
′

Q, for every P i ∈ CP , there exists Qj ∈ CQ such that P i ⊆ Qj ,

and for some P i0 ∈ CP , there exists Qj0 ∈ CQ such that P i0 ⊂ Qj0 and m > n.

For Qj0 ∈ CQ, there exist {P i1 , P i2 , . . . , P is} (P ik ∈ CP , k = {1, 2, . . . , s})

such that each P ik ⊆ Qj0 , where P i0 ∈ {P i1 , P i2 , . . . , P is}. Hence, |P ik | ≤ |Qj0 |,

|P i0 | < |Qj0 |, and C2
|P ik |

≤ C2
|Qj0 |

, C2
|P i0 |

< C2
|Qj0 |

. So 1
s

∑s
k=1 C2

|P ik |
< C2

|Qj0 |
.

Therefore, we have that

CE(CQ) =
1

n

n
∑

j=1

C2
|Qj |

C2
|U |

=
1

n

(

n
∑

j=1,j 6=j0

C2
|Qj |

C2
|U |

+
C2

|Qj0 |

C2
|U |

)
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>
1

n

(

n
∑

j=1,j 6=j0

C2
|Qj |

C2
|U |

+
1

s

s
∑

k=1

C2
|P ik |

C2
|U |

)

>
1

m

m
∑

i=1

C2
|P i|

C2
|U |

= CE(CP ) .

It is clear that CE(CP ) < CE(CQ).

This completes the proof. �

Proposition 13 states that the combination granulation of knowledge decreases

as maximal consistent blocks become smaller through finer classification.

Proposition 14. Let S = (U, A) be an incomplete information system and P, Q ⊆

A two subsets on A. If P �
′

Q, then CG(P ) ≤ CG(Q).

Proof. Analogous to the proof of Proposition 8, it is easy to be proved. �

Proposition 14 shows that the combination granulation decreases with maximal

consistent blocks becoming smaller through finer classification.

Analogous to Proposition 12, one can establish the relationship between the

combination entropy CE(CA) and the combination granulation CG(CA) in incom-

plete information systems.

Proposition 15. Let S = (U, A) be an incomplete information system, CA =

{A1, A2, . . . , Am}, then the relationship between the combination entropy CE(CA)

and combination granulation CG(CA) is as follows

CE(CA) + CG(CA) = 1 . (11)

Proof. It is straightforward. �

Remark. Proposition 15 shows the relationship between the combination entropy

CE(CA) and the combination granulation CG(CA) is the strict complement rela-

tionship, i.e., they possess the same capability on depicting the uncertainty of an

incomplete information system in the view of maximal consistent block technique.

Example 7. For Table 1, U = {u1, u2, u3, u4, u5, u6}, A = { Price, Mileage, Size,

Max-Speed }, CA = {{u1}, {u2, u6}, {u3}, {u4, u5}, {u5, u6}}. By computing, it

follows that
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CE(CA) =
1

m

m
∑

i=1

C2
|U | − C2

|Ai|

C2
|U |

=
1

5

(

1 +
14

15
+ 1 +

14

15
+ 1

)

=
24

25

and

CG(CA) =
1

m

m
∑

i=1

C2
|Ai|

C2
|U |

=
1

5

(

0 +
1

15
+ 0 +

1

15
+

1

15

)

=
1

25
.

It is obvious that CE(CA)+CG(CA) = 1, i.e., the sum of the combination entropy

and the combination granulation of A is constant 1.

6. Comparison Analysis of Combination Entropy with Several

Representative Entropies

Information entropy is one more kind of approaches to measuring the uncertainty

of an information system. In this section, we review several existing forms of infor-

mation entropy in information systems, and perform comparison analysis of com-

bination entropy with each of them in the context of information systems.

The entropy of a system as defined by Shannon11 also can be used to measure

the uncertainty of an information system. In Shannon’s entropy, an equivalence

partition is regarded as a finite probability distribution, and the proportion of each

equivalence class from a given partition within the universe is seen as its probability

on the universe. It can be formally defined as follows.

Definition 8.11 Let S = (U, A) be a complete information system and U /IND

(A) = {X1, X2, . . . , Xm}. Shannon’s entropy of A is defined as (see Fig. 1)

H(A) = −

m
∑

i=1

pi log2 pi = −

m
∑

i=1

|Xi|

|U |
log2

|Xi|

|U |
, (12)

where pi = |Xi|
|U | represents the probability of equivalence class Xi within the uni-

verse U .

Although several authors have used Shannon’s entropy and its variants to mea-

sure uncertainty in information systems, it has some limitations. In fact, Shannon’s

entropy is not a fuzzy entropy, and can not measure the fuzziness in information
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Fig. 1. Sketch map of Shannon’s entropy with two equivalence classes.
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Fig. 2. Sketch map of Liang’s entropy with two equivalence classes.

systems. To overcome the limitation, in the literature,18 Liang et al. proposed a new

information entropy. Unlike the logarithmic behavior of Shannon’s entropy, the gain

function of this entropy possesses the complement nature. The new entropy can be

used to measure both the uncertainty of an information system and the fuzziness of

a rough set and a rough classification in rough set theory. In complete information

systems, Liang’s information entropy is defined by the following.

Definition 9.18 Let S = (U, A) be a complete information system and U /IND

(A) = {X1, X2, . . . , Xm}. The information entropy of A is defined as (see Fig. 2)
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Fig. 3. Sketch map of rough entropy with two equivalence classes.

IE(A) =

m
∑

i=1

|Xi|

|U |

|Xc
i |

|U |
, (13)

where Xc
i is the complement set of Xi, i.e., Xc

i = U − Xi.

In rough set theory, there is a kind of especial uncertainty, i.e.,

roughness.1,13,17,23 For a given information system, we need to assess its rough-

ness for a target concept or a target decision. An uncertainty measure, called rough

entropy, is always employed to calculate roughness degree of an information sys-

tem. Liang et al.13 introduced the concept of rough entropy to Palawk’s rough set

theory for measuring the roughness degree of a complete information system. The

following definition gives the depiction of the rough entropy.

Definition 10.13 Let S = (U, A) be a complete information system and

U /IND(A) = {X1, X2, . . . , Xm}. Rough entropy of A is defined as (see Fig. 3)

Er(A) = −

m
∑

i=1

|Xi|

|U |
log2

1

|Xi|
. (14)

For a complete information system, the mechanism of combination entropy can

be illustrated by the following Fig. 4.

In an given partition, the elements in an equivalence class cannot be distin-

guished each other, but the elements in different equivalence classes can be distin-

guished each other. In the view of combination entropy, the knowledge content of

an information system is the whole number of pairs of the elements which can be

distinguished each other on the universe. Based on this consideration and analyses

in this paper, we can obtain two advantages of combination entropy, which are

listed as follows.
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Fig. 4. Sketch map of Combination entropy with two equivalence classes.

• It can measure more clearly the knowledge content of an information system.

In fact, from Figs. 1, 2 and 4, it can be seen that the maximum value of each

of Shannon’s entropy and Liang’s entropy is one, and the maximum value of the

combination entropy varies from big to small with the size of the universe becoming

larger. It is because that, in Shannon’s entropy and Liang’s entropy, probability

distribution usually is considered. In other words, the uncertainty of an information

system is based on its probability distribution. Rough entropy, in some sense, is an

information granulation, which is used to measure the roughness of an information

system. However, the combination entropy is based on the intuitionistic knowledge

content nature of information gain, in which we need to compute the number of

pairs of the elements that can be distinguished each other on the universe. Hence,

the combination entropy can measure more clearly the knowledge content of an

information system.

• Unlike all existing measures for the uncertainty in incomplete information

systems, the relationships among the three concepts (combination entropy, con-

ditional combination entropy and mutual information) can be established, which

are formally expressed as CE(Q | P ) = CE(P ∪ Q) − CE(P ) and CE(P ; Q) =

CE(P ) − CE(P | Q). This relationship is very significant for reasonably applying

an uncertainty measure to incomplete information systems. However, all existing

entropies and their extensions in incomplete information systems can not estab-

lish the above relationship, which is inconsistent with classical entropy theory in

statistics.

Therefore, the combination entropy may be a much better uncertainty measure

for measuring the knowledge content of an information system.



November 20, 2009 12:20 WSPC/118-IJUFKS 00630

A New Method for Measuring the Uncertainty in Incomplete Information Systems 879

7. Conclusions

In the present research, the concepts of the combination entropy CE(A), the con-

ditional combination entropy CE(Q | P ) and the mutual information CE(P ; Q)

are introduced to incomplete information systems. Their gain functions possess the

intuitionistic knowledge content nature. Unlike all existing measures for the un-

certainty in incomplete information systems, the relationships among these three

concepts can satisfy the equation CE(Q | P ) = CE(P ∪ Q) − CE(P ) and the

equation CE(P ; Q) = CE(P ) − CE(P | Q). Furthermore, based on the maximal

consistent block technique, a variant CE(CA) of the combination entropy with

maximal consistent block nature is introduced for measuring the uncertainty of an

incomplete information system. Its monotonicity is the same as that of the combina-

tion entropy. Finally, the combination granulation CG(A) and its variant CG(CA)

with maximal consistent block nature are defined to measure knowledge granula-

tion in incomplete information systems. The relationship between the combination

entropy and the combination granulation is established as well, which is the strict

complement relationship. These results have a wide variety of applications, such as

measuring the knowledge content, measuring the significance of an attribute set,

constructing a decision tree and building a heuristic function in a heuristic reduct

algorithm in incomplete information systems. Note that the combination entropy

also can be further extended to measure the uncertainty in non-equivalence-based

information systems.
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