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Incomplete Multigranulation Rough Set

Yuhua Qian, Jiye Liang, and Chuangyin Dang, Senior Member, IEEE

Abstract—The original rough-set model is primarily concerned with the
approximations of sets described by a single equivalence relation on a given
universe. With granular computing point of view, the classical rough-set
theory is based on a single granulation. This correspondence paper first
extends the rough-set model based on a tolerance relation to an incomplete
rough-set model based on multigranulations, where set approximations are
defined through using multiple tolerance relations on the universe. Then,
several elementary measures are proposed for this rough-set framework,
and a concept of approximation reduct is introduced to characterize
the smallest attribute subset that preserves the lower approximation and
upper approximation of all decision classes in this rough-set model. Finally,
several key algorithms are designed for finding an approximation reduct.

Index Terms—Attribute reduction, granular computing, information
systems (ISs), rough set.

I. INTRODUCTION

Rough-set theory, proposed by Pawlak and Skowron [24], [26], has
become a well-established mechanism for uncertainty management
in a wide variety of applications related to artificial intelligence [4],
[11], [12], [17], [43], [44], [58]. In this framework, an attribute set is
viewed as a granular space, which partitions the universe into some
knowledge granules or elemental concepts. Partition, granulation, and
approximation are the methods widely used in human’s reasoning
[55], [56]. Rough-set methodology presents a novel paradigm to deal
with uncertainty and has been applied to feature selection [18], [48],
[49], knowledge reduction [9], [16], [51], rule extraction [1], [8], [35],
[50], [59], uncertainty reasoning [20], [25], [31], decision evaluation
[36]-[38], and granular computing [2], [3], [19], [21], [29], [30],
[52], [57].

Knowledge representation in the rough-set model is done via in-
formation systems (ISs) which are a tabular form of an OBJECT —
ATTRIBUTE VALUE relationship, similar to relational databases. An
IS is an ordered triplet S = (U, AT, f), where U is a finite nonempty
set of objects, AT is a finite nonempty set of attributes (predictor
features), and f, : U — V,, for any a € AT, where V, is the domain
of an attribute a. For any « € U, an information vector of x is given
by Inf(z) = (a, fo(z))|a € AT In particular, a target IS is given by
S = (U,AT, f,D,g), where D is a finite nonempty set of decision
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attributes and g4 : U — V; for any d € D, where Vj is the domain of
a decision attribute d.

In the past ten years, under different conditions, several extensions
of the rough-set model have been accomplished [26]-[28], which
include variable precision rough-set model [60], rough-set model
based on tolerance relation [13], [14], [32], [45], [47], Bayesian rough-
set model [46], fuzzy rough-set model [5], rough fuzzy set model [5],
and fuzzy probabilistic rough-set model [10]. In the view of granular
computing proposed by Zadeh [56], a target concept in these models is
always characterized via the so-called upper and lower approximations
under a single granulation, i.e., the concept is depicted by available
knowledge induced from a single relation (such as equivalence rela-
tion, tolerance relation, and reflexive relation) on the universe. This
approach in describing a target concept relies mainly on the following
assumption.

If P and @ are two sets of predictor features and X C U is a
target concept, then the rough set of X is derived from the quotient
set U/(P U Q). In fact, the quotient set is equivalent to the formula

PUQ={P,NQ,;: P, cU/P,Q; € U/Q}.

This assumption implies the following conditions.

1) Any two attributes must be independent in ISs.

2) An intersection operation between any FP; and (); can be
performed.

3) The target concept is approximately described by using the
quotient set U/(P U Q).

In fact, the target concept is described by using a finer granula-
tion (partitions) formed through combining two known granulations
(partitions) induced by two-attribute subsets. Although it generates a
much finer granulation and more knowledge granules, the combina-
tion/fining destroys the original granulation structure/partitions [34].

However, this assumption, in general, cannot always be satisfied
in many practical issues. For example, in some decision-making
processes, for the same object (or sample, project, and element),
there is a contradiction/inconsistent relationship between its values
under one-attribute set P and those under another attribute set Q.
In other words, we cannot perform intersection operations between
their quotient sets, and the target concept cannot be approximated by
the quotient set U/(P U Q). In this case, we often need to describe
concurrently the target concept through multiple binary relations (e.g.,
equivalence relation, tolerance relation, reflexive relation, and neigh-
borhood relation) on the universe according to user requirements or
targets of problem solving [34].

In view of granular computing, an equivalence relation (or a
tolerance relation) on the universe can be regarded as a granulation,
and a partition (or a cover) on the universe can be regarded as a
granulation space [19], [53], [54]. Hence, the classical rough-set theory
is based on a single granulation (only one equivalence relation). Note
that any attribute set can induce a certain equivalence relation in a com-
plete IS. In the literature, to more widely apply the rough-set theory
in practical applications, Qian and Liang [34] extended Pawlak’s
single-granulation rough-set model to a multigranulation rough-set
model (MGRS), where the set approximations are defined by multiple
equivalence relations on the universe. In the literature [39]-[42],
Rasiowa er al. also investigated the approaches to approximation based
on many indiscernibility relations for rough approximations. However,
in essence, the approximations in these approaches are still based on a
singleton granulation induced from an indiscernibility relation, which
can be applied to knowledge representation in distributive systems
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and groups of intelligent agents. Furthermore, in the literature [33],
Qian er al. gave several basic views for establishing an MGRS model
in incomplete ISs.

The main objective of this correspondence paper is to fully establish
a rough-set model based on multiple tolerance relations in incomplete
ISs. The rest of this paper is organized as follows. Some basic concepts
in complete MGRS are briefly reviewed in Section II. In Section III, a
rough-set model based on multiple tolerance relations, called incom-
plete MGRS, is proposed in incomplete ISs, some of its important
properties are investigated, and several elementary measures for this
rough-set model are presented, which are accuracy measure, quality
of approximation, and precision of approximation. In Section IV, we
first introduce a concept of approximation reduct to the incomplete
MGRS, which is based on the so-called upper approximation reduct
and lower approximation reduct, and then design two algorithms to
compute the upper/underapproximation reducts for applications of this
theory in practical issues. In Section V, an illustrative example shows
the actual applicability of the proposed approach. Finally, Section VI
concludes with some remarks.

II. PRELIMINARIES

Throughout this correspondence paper, we assume that the universe
U is a finite nonempty set. Suppose that U/IN D(P) is a partition
of U induced by the attribute set P in an IS. For z € U, let [z]p be
the class containing = in U/IN D(P) and 0p the equivalence relation
associated with U/IND(P), i.e., z0py < [z]p = [y]p.

In the rough-set model MGRS, unlike Pawlak’s rough-set theory,
a target concept is approximated through multiple partitions induced
by multiple equivalence relations [34]. Suppose that S = (U, AT, f)
is a complete IS, then X C U, and P, Ps,..., P,, are m-attribute
subsets. We define a lower approximation and an upper approximation
of X related to Py, P, ..., P,, by the following:

ZPiX = U{x|[m]pL Cc X, for some i < m}
i=1
&)

Y PX =~ P~ X). )

Similarly, the boundary region in MGRS can be extended as
anle Pi(X) = Z:’;l PX\ Z:’;l PX.

Fig.LI_ shows the difference between Pawlak’s rough-set model and
the MGRS model.

In the figure, the bias region is the lower approximation of a
set X obtained by a single granulation P U (), which are ex-
pressed by the equivalence classes in the quotient set U/(P U Q),
and the shadow region is the lower approximation of X induced by
two granulations P + @), which are characterized by the equivalence
classes in the quotient set U/ P and the quotient set U/Q together.

III. MGRS IN INCOMPLETE ISS

In this section, we extend MGRS in complete ISs to MGRS in
incomplete ISs, which is just called incomplete MGRS.

A. Incomplete ISs

For an IS, any attribute domain V,, may contain special symbol
“x” to indicate that the value of an attribute is unknown. Here, we

[x1p X

x|

U— e —Iylo
[¥] p \\/

E Lower approximation under a granulation

- Lower approximation under multi granulations

Fig. 1. Difference between Pawlak’s rough-set model and MGRS.

TABLE 1
INCOMPLETE TARGET IS ABOUT AN EMPORIUM INVESTMENT PROJECT

Project Locus Investment  Population density  Decision
el common high 0.88 Yes
ez bad high * Yes
e3 bad * 0.33 No
ey bad low 0.40 No
es bad low 0.37 No
eg bad * 0.60 Yes
e common high 0.65 No
e good * 0.62 Yes

assume that an object € U possesses only one value for an attribute
a,a € AT. Thus, if the value of an attribute a is missing, then the real
value must be from the set V, \ {*}. Any domain value different from
“x” will be called regular. A system in which values of all attributes
for all objects from U are regular (known) is called complete and
is called incomplete, otherwise [13]-[15], [18]. In particular, S =
(U, AT, f, D, g) is called an incomplete target IS if values of some
attributes in AT are missing and those of all attributes in D are regular
(known), where AT is called the conditional attributes and D is the
decision attributes.

Example 1: Here, we employ an example to illustrate some con-
cepts of an incomplete target IS and computations involved in our
proposed incomplete MGRS. Table I depicts an incomplete target IS
containing some information about an emporium investment project.
Locus, Investment, and Population density are the conditional at-
tributes of the system, and Decision is the decision attribute (in the
sequel, L, I, P, and D will stand for Locus, Investment, Popula-
tion density, and Decision, respectively). The attribute domains are
as follows: VI, = {good, common,bad}, V; = {high,low}, Vp =
{0.88,0.33,0.40,0.37,0.60, 0.65,0.62}, and V, = {Yes, No}.

Let S = (U, AT, f) be an incomplete IS. Each subset of attributes
P C AT determines a binary relation SIM (P) on the universe U [13]

SIM(P) ={(u,v) e U x U |Va € P,a(u) = a(v)
ora(u) = xora(v) = *}.
The relation SIM (P), P C AT, is a tolerance relation. If the at-
tributes P C AT are numerical attributes, we define another tolerance
relation as follows:

SIM(P) ={(u,v) e U xU|Va € P,|a(u) —a(v)| <,

ora(u) = *ora(v) =*,J, > 0}.
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Fig. 2. Set approximation in Kryszkiewicz’s rough-set model.

It can be shown that SIM(P) = J,_p STM({a}). Let Sp(u)
denote the set {v € U|(u,v) € SIM(P)}. Clearly, Sp(u) is the
maximal set of objects which are possibly indistinguishable by P
with u. Let U/SIM (P) denote the family of sets {Sp(u)|lu € U}
called the classification or knowledge induced by the attributes P. A
member Sp(u) from U/SIM(P) is called a tolerance class or an
information granule. Note that the tolerance classes in U/SIM (P)
cannot constitute a partition of the universe U in general. They
constitute a cover of U, i.e., Sp(u) # @ for every object u € U and
U. cv Sp(u) = U.In particular, the identity partition is the cover that
each of the tolerance classes contains only a singleton set, and the
universal partition is the cover that each of tolerance classes is equal
to the universe set. The former is the finest cover on any nonempty
set, and the latter is the roughest cover on the universe U. For an
incomplete target IS S = (U, AT, f, D, g), if SIM(AT) C 0p, we
say S is consistent, and otherwise, .S is inconsistent [18].

Given the earlier discussion, we can then define a partial order on
the set of all classifications of U. Let S = (U, AT, f) be an incomplete
IS and P,Q € AT'. One says that P is finer than an attribute set Q
(or @ is coarser than P) if and only if Sp(u;) C Sg(u;) for any
1€41,2,...,|U|},denotedby P < Q.If P < Qand U/SIM (P) #
U/SIM(Q), one says that P is strictly finer than an attribute set
Q (or @ is strictly coarser than P), denoted by P < Q[33]. In fact,
P =<Q < Sp(u;) CSq(u)Vie {1,2,...,|U|}, and there exists at
leastone j € {1,2,...,|U|} such that Sp(u;) C Sg(u;).

B. Incomplete MGRS on Two Granulation Spaces

Simply, we first investigate the approximation of a target set under
two tolerance relations on the universe, i.e., how to approximate a
target concept through using two granulation spaces.

Definition 1: Let S = (U, AT, f) be an incomplete IS, P,Q C AT
two-attribute subsets, and X C U. A lower approximation and upper
approximation of X in U are defined by the following:

P+ QX = | J{z|Sp(z) C X or Sg(z) C X} 3)
P+ QX = ~P+Q(~ X). “4)
The order pair (P + QX, P + QX) is called a rough set of X with

respect to P + Q. The area of uncertainty or boundary region of this
rough set is defined as

Bnpio(X) =P+ QX \ P+ QX.

One can understand the rough-set approximation based on multiple
tolerance relations and show the difference between the incomplete
MGRS and the classical rough-set framework based on a tolerance
relation proposed by Kryszkiewicz [13] through Figs. 2 and 3 and
Example 2.

Sp(»)
SpI=S,(0 Sy
U — N
S =5,
X3  Upper approximation under granulations P + Q

Lower approximation under granulations I + O

Fig. 3. Set approximation in incomplete MGRS.

In Fig. 2, the dashed region is the lower approximation of
a set X obtained by a single granulation P U @, and the bias region
is the upper approximation of X induced by the granulation P U () in
Kryszkiewicz’s incomplete rough-set model. However, in Fig. 3, the
dashed region is the lower approximation of a set X obtained by two
granulations P + (), and the bias region is the upper approximation of
X induced by the granulations P + @ in incomplete MGRS.
Example 2 (Continued From Example 1): Let X = {e1, e, eq, €5}
and dp = 0.1. Three covers can be induced from Table I as follows:
U/S]M(L) :{{eh 67}7 {627 €3,€4, €5, 66}7
{627 €3,€4,€5, 66}) {621 €3, €4, 65, 66}7
{627 €3,€4,6€s5, 66}7 {623 €3, €4, 65, 66}7
{er,er} {es}}
U/SIM(P) :{{617 62}7 {ela €2, €3, €4, €5, €6, €7, 68}5
{627 €3, €4, 65}7 {627 €3, €4, 65}7
{627 €3,€4, 65}7 {627 €6, €7, 68}7
{62, €6,€7, 68}7 {627 €6, €7, 68}}
U/SIM(LU P)={{e1},{e2, €3, €1, €5, €6}, {2, €3, €4, €5},
{627 €3, €4, 65}7 {621 €3, €4, 65}7

{ea, e}, {er}, {es}}

From Definition 1, one can obtain that
L+ PX =| J{z|SL(z) C X or Sp(x) C X}

={es} U{ei} = {er,es}
L+ PX = ~L+P(~X)

= {@ u @} = {61762363364365566367368}'

However, the lower approximation and the upper approximation of
X in the classical rough-set model based on a single tolerance relation
are calculated as follows:

LUPX = J{z|Stur(@) € X} = {e1, eq, €5}
LUPX = J{z|Stup(z) N X # 2}
= {61762763764765756768}~
Clearly, it follows from the earlier computations that
L+ PX ={ej,es} C{e1,e6,es} = LUPX

L + PX = {61762763764765766767768}

D{e1,ea,€3,64,65,65,e5} = LUPX.

The difference between the two kinds of set approximations can be
easily understood by the following theorem.
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Theorem 1: Let S = (U, AT, f) be an incomplete IS and X C U
and P, Q C AT be two-attribute subsets. Then, the following proper-
ties hold.

1) P+QX CPUQRX.

2) P+QX D PUQKX.

Proof:

1) For any = € P+ QX, from Definition 1, it follows that
Sp(x) CX or So(z) C X. Hence, € Sp(z)NSy(x).
But Sp(x)NSq(z) € Spug(x)Vx e U. Therefore,
x € SPUQ(ZB), ie., P+QX - PUQX

2) From the classical rough-set model based on a tolerance
relation, we know that PUQX =~ PUQ(~ X). Accord-
ing to the result of 1), one can obtain that PUQX =
~PUQ(~X)C~ P+ Q(~X)=P+QX

1: Bnp(X) Q BTLP+Q(X)

Corollary and  Bng(X) C
Bnpq(X).

From the definition of set approximations under two granulation
spaces, one can get the following properties of the lower approxima-
tion and the upper approximation.

Theorem 2: Let S = (U, AT, f) be an incomplete IS and X C U
and P, Q C AT be two-attribute subsets. Then, the following proper-

ties hold.

1) P+QX CX CP+QX.

2) PrQ@=P+Qo =0, P+QU =P+ QU =U.

3) P+Q(~X)=~P+QX,P+Q(~X)=~P+QX.
4) P+ QX =PXUQX.
5) P+QX =PXNQX.
6) P+QX =Q+PX,P+QX =Q+ PX.

To establish the relationship between the approximation of a single
set and that of two sets approximated through using two granulations,
the following properties are given.

Theorem 3: Let S = (U, AT, f) be an incomplete IS and X,Y C
U and P,Q C AT be two-attribute subsets. Then, the following
properties hold.

D P+QXNY)=(PXNPY)U(QXNQY).
2) P+Q(XUY)=(PXUPY)N(QXUQY).
3)) P+QXNY)CP+QRXNP+QY.

4 P+QXUY)DP+QXUP+QY

5 XCY=P+QXCP+QY.

6) XCY=P+QXCP+QY.

7) P+Q(XUY)2 P+QX UP+QY.

8 P+QXNY)CP+QXNP+QY.

C. Incomplete MGRS on Multiple Granulation Spaces

Based on the earlier conclusions, we can then extend the rough-set
model based on a single tolerance relation to a rough-set model based
on multigranulations in the context of incomplete ISs.

Definition 2: Let S = (U, AT, f) be an incomplete IS and X C U
and Py, P, ..., P,, C AT be m- attribute subsets. We define a lower
approximation of X and an upper approximation of X with respect to
Py, P, ..., P, by the following:

ZPZ-X:U{:HSPL,(Q:)QX, for some ¢ < m}
i=1

&)

> PX=~) P(~X) (6)
=1 i=1

7=

Similarly, the area of uncertainty or boundary region in incomplete
MGRS can be represented as

“m m
BHZL P (X) = Z PiX\ P,X.

1=1

From this definition, we obtain the following interpretations.

1) The lower approximation of a set X with respect to Z:’;l P;
is the set of all objects, which can be certainly classified as X
using ™" | P; (are certainly X in view of Y ™" ;).

2) The upper approximation of a set X with respect to Zzl P;is
the set of all objects, which can be possibly classified as X using
>, P; (are possibly X in view of ) ™" P;).

3) The boundary region of a set X with respect to Zzl P; is the
set of all objects, which can be classified neither as X nor as
~ X using " P,

To apply this approach in practical issues, we present here an
algorithm for computing a lower approximation of a set X in this
rough-set model based on multiple tolerance relations.

Algorithm I: Let S = (U, AT, f) be an incomplete IS and X C U
and P C AT, where P = {Py, Ps,..., P, }.

This algorithm gives the lower approximation of X by P:
Yo PiX = U{z|Sp, (z) € X,i <m}.

We use the following pointers.

1) i =1,2,...,mpoints to P;.
2) j=1,2,...,|U|points to Sp, (u;) € U/SIM(F;).
3) L records the computation of the lower approximation.

For every i and j, we check whether Sp, (u;) N X = Sp, (u;). If
Sp,(u;) N X = Sp,(u;), then we put u; into the lower approximation
of X: L — LU {u,;}.

(I1) Compute m covers: U/SIM(P), U/SIM(P),...,

U/SIM(P,,);
(I2)Seti «— 1,5 «— 1, L = &;
(I3) For i = 1 to m Do
For j = 1to |U| Do
If Spi(uj‘) NnNX = Spi (’Uj), then
let L «— LU {u,},
Endif
Endfor
Setj — 1,
Endfor
(I4) The computation of the lower approximation X by P is
completed. Output the set L.

We know that the time complexity of computing m covers is
O(m|U|?). The time complexity of (I3) is also O(m|U|?) as there
are ™ | P;| intersections Y/ N X (< |U] x |U]) to be calculated.
Hence, the time complexity of Algorithm Iis O(m|U|?).

This algorithm can be run in parallel mode to compute concurrently
all corresponding covers and intersections from many attributes. Its
time complexity will be O(|U|?). Like this idea, the algorithm for
computing the upper approximation of a set can also be designed
correspondingly.

Directly from Definition 2, one can obtain the following properties
of the lower approximation and the upper approximation in incomplete
MGRS.

Authorized licensed use limited to: CityU. Downloaded on March 28,2010 at 05:06:42 EDT from IEEE Xplore. Restrictions apply.



424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 2, MARCH 2010

Theorem 4: Let S = (U, AT, f) be an incomplete IS and X C U
and Py, Ps, ..., P, C AT be m-attribute subsets. Then, the follow-
ing properties hold.

D 221 PX = U:il X
2) Yt PRX =", PX.
3) ZZ1 P :11 PX.
4) Z:’;l Pi(~X) =~ Zzl P;X.

Proof:

=~

1) From (4) in Theorem 2, it can be easily proved.
2) From (3) and 1) in this theorem, one can have

3) From (3), it is straightforward.
4) Let X =~ X in (3). Then, we have ) ™ P

" PX.

NX) =~

Theorem 5: Let S =
X1,X5,...,X,, CU be nsubsets on U and Py, P, ...,
be m-attribute subsets. Then, the following properties hold.

(U, AT, f) be an incomplete IS and
P, C AT

1

U 1y

IR

N

cCoC
Il

SLS oo o

O CCDODC

Theorem 6: Let S = (U, AT, f) be an incomplete IS and
X1,Xa,..., X, CUwith X; C X, C--- C X, ben subsets on U
and Py, Ps, ..., P, C AT be m-attribute subsets. Then, the follow-
ing properties hold.

N

YT PX,Cy " PX,
2) YL PXiCy "t PXyC e

- C 27;1 PiXo.
CY L PX

Proof: Suppose 1 <14 < j < n,then X; C Xj.

1) Clearly, X; N X; = X;. Hence, it follows from 3) in Theorem 5
that

m

ZPX ZP (XN X;) CZPX mZPX

Thus, > PX; =" PX;NY " PX;. Therefore,
we have that ) ™" P, X; C Y™™ P, X;. Therefore, it follows
that )37 PXy C YT PXo C--- C 3T P

2) Clearly, X; U X; = X;. Hence, it follows from 4) in Theorem 5
that

m

ZPX ZP (X;UX; szjpixiuipixj.
i=1 =1

Thus, > ™" P X; =Y " PiX;UY " P, X;. Therefore,
we have that Z:’;l P, X,; C Z:n:l P, X ;. Therefore, it follows
thatz:’;l P,LXl Q Z:ll PZ.XQ Q . szl P,LXn

Theorem 7: Let S = (U, AT, f) be an incomplete IS and X C
U and P={P\,P,,..., Py} with P, <Py =< < P,¥P, C
A (i < m). Then, the following properties hold.

HY" PX=PX.
2) Y PX=PX.

Proof: Suppose 1< j<k<m with P; X P,. From the
definition of <, we know that for any Sp, (x) € U /SIM(P;), there
exits Sp, (x) € U/SIM (Py) such that Sp]( x) C Sp, (x). Therefore,
one can obtain that

PX = {z|Sp(x) C X} D PX =

{x|Spk(m)§X}

ie,Pj+ P, X =P XUP,X =P;X.Since P, 2 P, X--- X P,
onecangetthaty " P,X =J" PX=PX.
Similarly, we also have that

PiX = {x|Spj(x)ﬂX7$®}

D PX = {x|Spk($)ﬂX7£®}

ie, P+ P, X = EX NP,X = ﬁjX . Hence, one can obtain that
:11 PX = ﬂ:;EX =P X.

D. Several Elementary Measures in Incomplete MGRS

In this section, we investigate several elementary measures in
incomplete MGRS and their properties.

Uncertainty of a set (category) is due to the existence of a borderline
region. The bigger the borderline region of a set is, the lower the
accuracy of the set is (and vice versa). To more precisely express
this idea, we introduce the accuracy measure to incomplete MGRS
as follows.

Definition 3: Let S = (U, AT, f) be an incomplete IS and X C U
and P={P,P,,...,P,}V P, C AT. Approximation measure of
X by P is defined as

_[ziey

™
e

where X # &, | X| denotes the cardinality of set X.
From this definition, one can derive the following theorem.
Theorem 8: Let S = (U, AT, f) be an incomplete IS and X C U,
P={P,Ps,...,P,}VP;, C AT, and P’ C P be a subset of P.
Then

ap(X) > ap(X) > ap,(X), (i< m).
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TABLE II
DATA SETS DESCRIPTION

Data sets Samples Numerical features Symbolic features Decision classes
breast-cancer-wisconsin 699 0 2
audiology 200 0 69 24
hepatitis 155 6 13 2
crx 690 6 9 2

Proof: Since P’ C P, it follows from Definition 2 that

rx2>

1 P,eP,P;¢P’

Pxc )

1 P;eP,P;ZP’

Cs

J

PX

.
Il

DL

N

P X.

.
Il

Then, it is clear that |[J" 6 PX|> |UpvePPv€P, P X| and
MLy PiX[ < |Np,epp,¢p PiX|. Hence

|

= _ 1:1%)(“
Srex| INEEX]

CYP(X

PX

’UPieP,PigP’ Pz‘X’

’ ‘ZP,LeP,PigEP’

‘nPiEP,Pigp/ EX‘ ‘ZR;EP,R;QP’ PiX’

:Oép/(X).

Similarly, we have ap/(X) > ap,(X) (¢ < m). Thus, ap(X) >
Oépl(X) Z ap; (X) (Z S m)

Theorem 8 shows that the approximation measure of a target con-
cept enlarges as the number of granulations for describing the concept
increases.

Example 3 (Continued From Example 2): Suppose A = {L, P}.
Computing the approximation measures, it follows that

) IL+PX| 1
o = =" = —
4 I+Px| 4
LX 1
ar(X) :7:%)(} =3
PX 1

Clearly, it follows from the earlier computations that a4 (X) >
ar(X) and aas(X) > ap(X).

In particular, a4 (X) > ar(X) if L < P, which can be easily
derived from Theorem 7.

Note that the approximation measure of a target concept approx-
imated by using multiple granulations is always much better than
that approximated by using a single granulation, which is suitable for
more precisely characterizing a target concept and problem solving
according to user requirements.

Definition 4: Let S = (U, AT, f, D, g) be an incomplete target IS,
U/IND(D) be a decision induced by the decision attributes D, and
P ={P,P,,...,P,} be m-attribute sets. Approximation quality of
D by P, also called a degree of dependence, is defined as

> {‘Z;’;l Piy‘ Y € U/IND(D)}

(P, D) = U]

®)

This measure can be used to evaluate the deterministic part of the
rough-set description of U/I N D(D) by counting those objects which

can be reclassified as blocks of U/IN D(D) with the knowledge given
by Zzl P;. As a result of the earlier definition, we come to the
following two theorems.

Theorem 9: Let P = {Py, P,,...,P,} be m-attribute sets and
Dy, Dy with Dy < D, be two decisions, then v(> " | P;, D) <
AL, P D)

Theorem 10: Let P ={Py,P,,...,P,} be m-attribute
sets and D be a decision. If P’ C P, then fy(zzl P, D) >
'V(Zpiep/ PivD) 2 'V(P’MD)'

Gediga and Diintsch [6] introduced a simple statistic 7(R, X) =
|RX|/|X| for the precision of (deterministic) approximation of X C
U given U/IN D(R), which is not affected by the approximation of
~ X. This is just the relative number of elements in X which can be
approximated by R. Clearly, w(R, X) > «(R, X). It is important to
point out that (R, X) requires complete knowledge of X, whereas
« does not, since the latter uses only the rough set (RX, RX). In
incomplete MGRS, it can be extended to be the formula

™ (i P¢,X) = 7‘2111 PiX‘

| X

It is clear that 7(} " P;, X) > (> " P;, X). In fact, this
measure denotes the relative number of objects in X which can be
approximated by Z:’;l P;. Then, the following theorem can be easily
proved.

Theorem 11: Let P ={P,P,,...,P,} be me-attribute sets
and X be a target concept. If P’ C P, then 71'(2;7;1 P, X) >
W(Zpiep/ P, X)>w(P;, X).

(C))

E. Experimental Analysis

In the following, through experimental analyses, we illustrate the
difference between the incomplete MGRS and Kryszkiewicz’s rough-
set model. We have downloaded four public data sets (incomplete
target ISs) from UCI Repository of machine learning databases, which
are described in Table II.

Here, we compare the degree of dependence in incomplete MGRS
with that in Kryszkiewicz’s rough-set model on these two practical
data sets. The comparisons of values of two measures with the numbers
of features in these two data sets are shown in Figs. 4-7.

In Figs. 4-7, the term MGRS is the incomplete MGRS frame-
work proposed in this correspondence paper, and the term SGRS
is Kryszkiewicz’s rough-set model. It is shown in Figs. 4-7
that the value of the degree of dependence in incomplete MGRS is
not bigger than that in Kryszkiewicz’s rough-set model for the same
number of selected features, and this value increases as the number of
selected features does in the same data set. In particular, from Fig. 6, it
is easy to see that the values of the degree of dependence in incomplete
MGRS are equal to zero when the number of features falls in between
one and five. In this situation, the lower approximation of the target
decision equals an empty set in the incomplete decision table. In
essence, it is because that the tolerance classes induced by a singleton
attribute are all coarser than those induced by all attributes. One can
draw the same conclusion from the other figures. Further illustrations
and applications are shown in Section V.
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Fig. 4. Variation of the 2° of dependence with the numbers of features
(data set breast-cancer-wisconsin).
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(data set audiology).

IV. ATTRIBUTE REDUCTION IN INCOMPLETE MGRS

Reduct is a minimal attribute subset of the original data which
is independent and has the same discernibility power as all of the
attributes in the classical rough-set framework. Obviously, reduction
is a feature-subset selection process, where the selected feature subset
not only retains the representation power but also has the minimal
redundancy [22], [23]. In this section, we deal with attribute reduction
in incomplete MGRS.

We first introduce the notions of two approximation distribution
functions. Let S = (U, AT, f, D, g) be an incomplete target IS, P C
AT, and the decision U/IND(D) = {Y1,Ys,---,Y,}. Lower ap-
proximation distribution function and upper approximation function
are defined as

Dp= (Y PV, PYsy...,) PY,
P,cP P,eP P,cP

Dp=| PYi. ) PYa... ) PY,
PepP P,epP P,ep
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Fig. 6. Variation of the 2° of dependence with the numbers of features
(data set hepatitis).
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(data set crx).

Through using these two approximation distribution functions, three
new reducts can be defined in the following, which are lower approxi-
mation reduct, upper approximation reduct, and approximation reduct.

Definition 5: Let S = (U, AT, f, D, g) be an incomplete target IS
and P be a nonempty subset of AT

1) f Dp = D .4, we say that P is a lower approximation consis-
tent set of S. If P is a lower approximation consistent set and no
proper subset of P is lower approximation consistent, then P is
called a lower approximation reduct of S.

2) If Dp = D 4, we say that P is an upper approximation consis-
tent set of S. If P is an upper approximation consistent set and
no proper subset of P is upper approximation consistent, then P
is called an upper approximation reduct of S.

3) If P is not only a lower approximation reduct but also an upper
approximation reduct, then P is called an approximation reduct
of S.

It is easy to prove that an upper approximation consistent set
must be a lower approximation consistent set. However, the converse
relationship cannot be satisfied in an inconsistent incomplete target IS.
From the earlier definition, it is clear that P is a lower approximation
consistent set if and only if P is an upper approximation consistent set
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Fig. 8. Relationship between approximation reducts and approximation core.
in a consistent incomplete target IS. In particular, if U/IND(D) =
X, we can regard P as a lower approximation reduct, an upper
approximation reduct, and an approximation reduct of a target concept
X, respectively.

Let A be the set of all lower approximation reducts and B be the set
of all upper approximation reducts. Then, it is obvious that the set of
all approximation reducts C = A N B.

Suppose that S = (U, AT, f,D,g) be an incomplete target
IS, where U = {61, €2,... ,e‘U‘}, AT = {}Dl7 Pg, “ee 7P|AT|}9 and
U/IND(D) ={Y1,Ys,...,Y,.}. We denote all lower approxima-
tion reducts of Y € U/IND(D) by A(Y'), all upper approxima-
tion reducts of Y € U/IND(D) by B(Y), and all approximation
reductsof Y € U/IND(D) by C(Y'), respectively. Moreover, we call
Core(A(Y)) the lower approximation core of Y, Core(B(Y)) the
upper approximation core of Y, and Core(C(Y")) the approximation
core of Y, respectively.

Theorem 12: Let S = (U, AT, f, D, g) be an incomplete target IS
and U/IND(D) = {Y1,Ya,...,Y,.}. Then

A= ﬂ A(Y,) B= ﬁ B(Y},).

We call Core(A)=[)A;(A; € A), Core(B)=(\B;(B; €
B), and Core(S) =[] C;(C; € C) as the lower approximation core,
the upper approximation core, and the core of an incomplete target IS
S, respectively.

Theorem 13: Let S = (U, AT, f, D, g) be an incomplete target IS
and U/IND(D) = {Y1,Ys,...,Y,.}. Then

Core(A) = ﬂ Core (A(Yy))

Core(B) = ﬂ Core (B(Yy)) -
k=1

Clearly, Core(S) = Core(A) N Core(B). In fact, the core is in-
dispensable to construct an approximation reduct. Fig. 8 shows the
relationship between the approximation reducts and the approximation
core of a target IS.

Now, we consider how to find attribute reducts from an in-
complete target IS in the framework of incomplete MGRS. Let
S =(U,AT, f,d,g) be an incomplete target IS, where U =
{er,e2,...,ev}, AT ={P1,Ps,...,Par}, and U/IND({d}) =
{Y1,Ys,...,Y.}. As follows, in the framework of incomplete MGRS,
we design an algorithm for computing all lower approximation reducts,
i.e., all subsets ATy : ATy1, ATya, ..., ATys of AT such that we have
as follows: 1) d s, = d 4 and 2) if AT” C ATp, thend s, # d -

Algorithm II: This algorithm gives all lower approximation reducts
of the incomplete target IS S (similar to the idea in [7, Algorithm K]).

Let wus denote the binomial coefficients by
|AT|!/EN|AT| — E)!.

[
C\AT\ B

1) Let us denote C|1AT\ = |AT| one-attribute subsets by
AT11 == {Pl}
ATy ={P},...,ATy; = {Pj}a---,ATwllAﬂ ={Pan}.

2) Let us denote CF,; = [AT|(|AT| — 1)/2! two-attribute sub-
sets by

ATQl :{Pl,P2}7 .. .,ATQJ'
:{Pl,Pj}7 .. ‘,ATQCQ

AT

= {HAT|—17]D|AT|}~

3) Generally, let us denote ClkATl = |AT|!/K\(|AT| — k)'k-

attribute subsets by

ATkl :{Pl,PQ,...,Pk},...,ATkj,...,Achk

AT

= {F’\AT|—I@+17 . »P|AT\—17P|AT\} .

4) Notice that C4TI=1 and the |AT'|-attribute subset is

|AT|
AJ—] ATH - AT
The algorithm is to search subsets of AT as follows: singletons,
two-attribute subsets, . . ., t-attribute subsets, and so on. Continue up

to the unique | AT|-attribute subset AT itself.
We use the following variables.

1) s—The number of the lower approximation reducts we have
already found.

2) t—Counting from 1 to s.

3) k—We are currently searching k-attribute subset AT} ;.

4) j—We are currently searching the jth subset AT}; in all k-
attribute subsets ATy, ..., ATy, ..., AT cr

[AT|

1) Setj «— 1,5« 0,k «— 1;
(112) While k& < |AT'| Do
Jj—1
While j < C"fATl Do
fort =1to s Do
If ATy, C ATy, then break;
Endif
Endfor
if QATM =d 4, then
s s+ 1, ATos — ATy,
Endif
je—J+1
Endwhile
k—k-+1;
Endwhile
(I13) Output ATy, AToa, - -
reducts).

.,ATys (s lower approximation

The time complexity of this algorithm for all lower approxima-
tion reducts is exponential since it checks all subsets in 24T " and
|247'| = 2/AT1 We know that the time complexity of computing | AT|
covers is O(|AT||U|?), and the time complexity of computing a lower
approximation of every Y € U/IND({d}) by AT}; (k < |AT)) is
O(|AT||U|?). Thus, the time complexity of Algorithm 1T is

24T O (JAT||U? + |AT||U?) = O (2471|AT||U)?) .

Through Algorithm II, one can obtain that the attribute set {L, P}
is only one lower approximation reduct of Table I. However, the time
complexity of Algorithm II is exponential so that it cannot be applied
efficiently in practical applications. To reduce the time complexity of

Authorized licensed use limited to: CityU. Downloaded on March 28,2010 at 05:06:42 EDT from IEEE Xplore. Restrictions apply.



428 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 2, MARCH 2010

computing an approximation reduct, we introduce, in the following,
two heuristic functions, which are an importance measure of lower
approximation and an importance measure of upper approximation.

Let S = (U, AT, f,D,g) be an incomplete target IS and P be
a nonempty subset of AT. Given a condition attribute a € P and
Y € U/IND(D), we first give two preliminary definitions in the
following, which will be helpful for constructing heuristic functions.

Definition 6: We say that a is lower approximation significant in P
with respect to X if

1P| 1P|
ZPXD > PRX, (PeP)
i=1,P;#a

and a is not lower approximation significant in P with respect to X if

1P| I
ZPX— Y RX, (PeP)
i=1,P;#a

where | P| is the cardinality of attribute set P.

Definition 6 shows that if a is lower approximation significant with
respect to X, then the lower approximation of X will become smaller;
if a is not lower approximation significant with respect to X, then the
lower approximation of X will be keep unchanged.

Definition 7: We say that a is upper approximation significant in P
with respect to X if

P P
ZPXC Z PX, (P, eP)
i=1,P;#a

and a is not lower approximation significant in P with respect to X if

P P
ZPX— Y PX, (PeP)
i=1,P;#a

where | P| is the cardinality of attribute set P.

Analogously to Definition 6, Definition 7 states that if a is upper
approximation significant with respect to X, then the upper approx-
imation of X will become bigger; if a is not upper approximation
significant with respect to X, then the upper approximation of X will
be keep unchanged.

Through these two definitions, one can easily construct two heuristic
functions. An important measure of lower approximation of P C AT
with respect to D is defined as

SPY\ S BRY

i=1 i=1,P;¢P
|U|

2

YeU/D

Sp(D) = (10)

and an important measure of upper approximation of P C AT with
respect to D is defined as

2

YeU/D

$ PY\ZPY

i=1,P;¢P

Ul

amn

ST(D) =

In particular, when P = {a}, S, (D) and S%(D) can be regard as
the importance measure of lower approximation and the importance
measure of upper approximation of the attribute a € AT with respect
to D, respectively.

From Algorithm I, we know that the time complexity of com-
puting the lower approximation of Y by P = {Py,Ps,...,P,}

is O(m|U|?). For computing the measure of importance of a, we
need to calculate the lower approximations for at most |U| times.
Therefore, the time complexity of computing an importance measure
of lower/upper approximation of an attribute with respect to D is
O(m|U?).

From the earlier denotations,
conclusions.

1) Sp(D) > 0and SF(D) > 0.

2) P isnotlower approximation significant with respect to D if and
only if Sp(D) = 0.

3) P is not upper approximation significant with respect to D if
and only if ST(D) = 0.

As follows, we provide a heuristic algorithm based on the impor-
tance measure of lower approximation of a condition attribute with
respect to the decision attribute d to find a lower approximation reduct
in an incomplete target IS.

Algorithm III: Let S = (U, AT, f,d,g) be a complete target
IS, where U = {61,62, ey €|U|}, AT = {Pl, Pg, ey }D‘AT‘}, and
U/IND({d}) = {Y1,Y>,...,Y,}. This algorithm finds a lower
approximation reduct through using a heuristic.

The following variables will be used in the algorithm.

we come to the following

1) AT,—To record a lower approximation reduct.
2) 1—We are currently searching the ith condition attribute AT in
the sequence given.
(II1) Compute |AT| covers and a decision
U/IND({d}):
(12) Sort AT = {P{, P, ...
(I113) Seti « 1, ATy = @
(4 If d 4 g, # dsp, then
ATO — ATO U Pi/’
i— 1+ 1;
(II15) Found a lower approximation reduct:
set ATy.

partition

Py} where Sy (d) > Sy (d):

ATp. Output the

The time complexity of this algorithm for computing |AT'| covers,
and a decision partition U/IND({d}) is O(|AT||U|?). The time
complexity of computing | AT'| importance measures is O(|AT||U?),
and the time complexity of sorting is O(]AT| log, |AT'|). Moreover,
the time complexity for running |AT| comparisons d = d 4 is
O(|AT||U|3). Thus, the time complexity of Algorithm III is

O (IAT||U)> + |AT||U|* + | AT | log, | AT

+AT||U®) = O (JAT||U®) .

Through Algorithm III, a lower approximation reduct can be found,
which keeps the lower approximation distribution function of this
incomplete target IS. Analogously, we can design a heuristic algorithm
to find an upper approximation reduct of an incomplete target IS
through using a heuristic function S¥ (D).

V. APPLICATION TO VENTURE INVESTMENT

Venture capital has become an increasingly important source of
financing for new companies, particularly when such companies are
operating on the frontier of emerging technologies and markets. It
plays an essential role in the entrepreneurial process. For an investor or
decision maker, he may need to adopt a better one from some possible
investment projects or find some directions from existing successful
investment projects before investing. The purpose of this section is,
through a venture-investment issue, to illustrate the mechanism of
incomplete MGRS and its applications.
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TABLE 1II
INCOMPLETE EVALUATION TABLE ABOUT VENTURE INVESTMENT
U E, Es E3 Ey4 Es D
1 2 3 3 2 3 High
T2 1 3 3 2 2 High
T3 1 1 1 1 1 Low
x4 1 1 1 1 1 Low
5 1 1 1 1 1 Low
T * 2 1 2 2 High
x7 2 2 2 2 2 Low
s 3 2 2 3 3 High
xg 2 3 2 3 1 High
x10 1 1 * 1 2 Low
11 3 2 3 3 3 High
z12 2 3 3 2 * High
13 1 2 3 1 2 Low
T14 * 3 1 3 3 High
15 2 1 * 1 1 Low
16 2 2 2 2 1 Low
T17 2 1 2 2 2 Low
18 1 1 3 1 2 Low
19 3 3 3 3 3 High
20 2 2 1 1 2 High
21 2 2 * 1 1 Low
22 1 3 1 1 2 High
To3 * 2 2 2 * High
o4 1 1 2 2 1 Low
25 1 1 2 2 2 Low
26 1 3 1 2 2 High
a7 1 2 3 1 2 Low
Tog 2 3 3 1 1 High
29 2 3 3 2 1 High
T30 2 2 1 1 1 High
31 2 3 1 1 1 High
T32 2 1 3 2 2 Low
33 3 2 3 3 2 High
34 1 1 3 1 1 Low
I35 2 2 2 1 1 Low
I36 2 2 2 1 1 Low
x37 2 3 * 2 2 High
38 3 3 1 3 3 High
39 1 1 1 1 2 Low
T40 3 3 1 3 3 High
x41 1 2 2 1 1 Low
T42 1 1 2 2 2 Low
43 1 2 3 2 2 Low
xra4 2 3 3 2 * High
T45 3 3 2 3 3 High
T46 3 2 2 3 3 High
T47 2 1 1 1 1 Low
T48 2 1 1 1 2 Low
T49 3 3 2 3 3 High
50 1 1 2 1 2 Low

Let us consider a real investment issue of a venture-investment
company (here, we conceal the company’s name and the details
of investment projects). There are 50 investment projects x; (i =
1,2,...,50) to be considered, which are evaluated by five evaluation
experts. Venture level is classified to three: classes 1, 2, and 3. The
bigger the value of venture level is, the higher the venture of investment
project is. Table III is an incomplete evaluation table about venture
investment given by these five experts, in which the symbol “x”
means that an expert cannot decide the venture level of a project. In
the evaluation process, each of the evaluation experts makes a deci-
sion independently, i.e., one does not perform intersection operations
between any two evaluation results. For this situation, the classical
Kryszkiewicz’s rough-set model will be helpless. In the following, we
apply incomplete MGRS proposed in this correspondence paper for
decision-making.

From Table III, it is easy to see that U/IND(D) = {{x1, x2,
Z6,Xg, Lo}, {T3, g, T5,T7,T10}}. Suppose that Y = {x1,x2, xe,
xg, o} and Y = {x3, 4, T5,T7,T10}-

To acquire certain decision rules, we only calculate the lower
approximation of the decision D with respect to the five granula-
tion spaces determined by the five experts. It easily follows from
Definition 2 that

D, ={{z1, 20,28, 29}, {w3, 24, %5, 210} } -

From Definition 5, one can obtain the following lower

approximation reducts of Table III, which are as follows:
A(D) = {{E17 E2}7 {E27 E4}7 {E27 ES}} .

Thus, there is only a core E5. That is to say, the decision given by
the second expert is indispensable.

From the earlier three reducts, one can extract three groups of
certain decision rules as follows:

(By = 3)V (B, = 3) = (D = High),
(B2 =1) = (D = Low);

(B2 =3) v (B4 = 3) = (D = High),
(B2 =1)V (Ey =1) = (D = Low);

(E> =3)V (Es = 3) = (D = High),
(B2 =1)V = (D = Low)

In addition, from (10), one can calculate the importance measure
of lower approximation of each expert’s decision. Through using
the sequence and Algorithm III, we obtain one of the reducts from
Table III, which is { Es, E }.

Remark: The incomplete MGRS model does not attempt to keep or
reduce the uncertainty induced by the classical Kryszkiewicz’s model
but aims at concept representation and rule extraction on the basis of
keeping the original granulation structures. The incomplete MGRS has
several useful applications.

1) It can deal with intelligent decision-making under multiple gran-
ulations. For example, the earlier evaluation issue demands that
each of the evaluation experts makes a decision independently,
i.e., one does not perform intersection operations between any
two evaluation results.

2) To extract decision rules from distributive decision systems
using rough-set approaches, the incomplete MGRS can largely
reduce the time complexity of rule extraction when the increase
of uncertainty is tolerable, in which there is no need to perform
the intersection operations in between all the sites.

VI. CONCLUSION

The contribution of this correspondence paper is twofold. On one
side, the incomplete single-granulation rough-set theory has been
extended, and an incomplete MGRS model has been obtained. In this
extension, the approximations of sets are defined by using multiple
tolerance relations on the universe. These tolerance relations can be
chosen according to user requirements or targets of problem solving.
The theoretical analyses show that some properties of the original
incomplete rough-set model become special instances of incomplete
MGRS. Under the incomplete MGRS, we also have developed several
important measures, such as the accuracy measure, the quality of
approximation, and the precision of approximation. On the other side,
to acquire a brief representation for the approximation of a target
decision, the attribute reduction has been discussed in incomplete ISs.
A concept of approximation reduct has been used to characterize the
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smallest attribute subset that preserves the lower approximation and
upper approximation of all decision classes in incomplete MGRS.
Two key attribute reduction algorithms have been designed, which will
be helpful for applying this theory in practical issues. The MGRS
framework proposed in this correspondence paper maybe lead to
a mechanism for more widely applying the incomplete rough-set
theory in real-world applications. Above all, the incomplete MGRS
can be applied to concept representation, rule extraction, and data
analysis from incomplete data set under multigranulation spaces and
has much wider applicability ranges than Kryszkiewicz’s rough-set
model.
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