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rough membership degree is regarded as its fuzzy membership degree, a rough set can
induce a fuzzy set. This relationship motivates us to assert that there may exist some inher-
ent relations between the roughness of a rough set and the fuzziness of the fuzzy set
induced from the rough set. This assertion leads us to the question: Can the existing fuzzy

Ilgz{lvgvgrsdes; entropies be used to evaluate the roughness of a rough set? To answer this question, we
Fuzzy set first analyze how the boundary region varies when the partition of the universe becomes
Roughness coarser, and then exploit this analysis in the introduction of a more appropriate definition
Fuzzy entropy on the roughness of a rough set. To determine whether a fuzzy entropy can be used to eval-
Granular computing uate the roughness of a rough set or not, we develop three methods for estimating the abil-

ity of a fuzzy entropy to measure the roughness. The experiments show that these methods
are very effective and can be applied to select a fuzzy entropy as a measure of the rough-
ness of a rough set.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Proposed by Pawlak in [36], rough set theory is based on the assumption that every object of the universe is associated
with certain information (data, knowledge). The main goal of rough set theory is to synthesize the approximation of concepts
from the acquired data [19,39]. Fuzzy set theory was introduced by Zadeh in [58], which provides an effective tool for rep-
resenting vague concepts by allowing partial memberships [53]. It addresses the ill-defined boundary of a class through a
continuous generalization of set characteristic functions. As a generalization of classical set theory, both rough set theory
and fuzzy set theory have been used to model uncertainty [16]. As pointed out in [59], a fuzzy set characterizes the uncer-
tainty that results from a class with unsharp boundaries, whereas a rough set describes the uncertainty generated from coar-
sely describing a crisp set.

On the connections and differences between rough set theory and fuzzy set theory is a fundamental question [37]. There
have been many studies on this topic. Most researchers generally accept that the two theories are related but distinct
[1,6,16,30,37]. Therefore, it is very significant to integrate the two theories in terms of the construction of models and mea-
sures of uncertainty. To date, many relevant papers have been published in the literature. First, we review several represen-
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tative studies on the construction of models. Dubois and Prade [7] combined rough set theory with fuzzy set theory to define
the fuzzy rough sets. This model employed the min and max fuzzy operators to describe the fuzzy lower and upper approx-
imations. Radzikowska and Kerre [43] defined fuzzy rough sets in a more general manner based on the T-equivalence rela-
tion. The fuzzy lower and upper approximations were constructed by an implicator and a triangular norm. Mi and Zhang [29]
presented a new fuzzy rough set definition based on a residual implication 0 and its dual ¢. Yeung et al. [57] defined lower
and upper approximations based on arbitrary fuzzy relations using a constructive approach. In the following, several repre-
sentative studies on uncertainty measures of a rough set will be reviewed. Chakrabarty et al. [5] proposed a fuzziness mea-
sure of a rough set, which is essentially a fuzzy entropy of the fuzzy set induced by the rough set’s boundary region. Xu and
Zhang [47] presented new lower and upper approximations in a generalized rough set induced by a covering and provided a
measure of roughness by a rough membership function in covering approximation spaces. Yang and John [51] investigated
the propagation of the roughness of rough sets under union, intersection, difference and complement operations, and deter-
mined their bounds under these situations. Qian et al. [40,41] defined fuzziness measures to compute the fuzziness of clas-
sification. Hu et al. [11-13] introduced probability into fuzzy approximation space and presented a theory of fuzzy
probabilistic approximation spaces that combined probability, fuzziness and roughness into a rough set model. These studies
are helpful for establishing the relationship between rough and fuzzy sets and understanding the essence of the uncertainty
in decision tables.

Based on some of the studies mentioned above, one can find that by means of a rough membership function [19,39], a
rough set determines one corresponding fuzzy set, and the fuzziness of the rough set can be evaluated by fuzzy entropies.
To date, many fuzzy entropies have been proposed for evaluating fuzziness. Pal and Bezdek [32,33] surveyed several fuzzy
entropies for a finite universal set. Liu [24] suggested an axiomatic definition of entropy, distance measure and similarity
measure as well as the relationship between these three concepts. Kosko [18] observed the relationship between distance
measure and fuzzy entropy from another viewpoint. Using Kosko’s subsethood measure, Bhandari and Pal [3] provided a
fuzzy information measure to estimate the discrimination between two fuzzy sets, defined an information distance known
as divergence between fuzzy sets, and deduced a new fuzzy entropy. Luca and Termini [25] defined a fuzzy logarithm en-
tropy formula on a limit universe. Pal and Pal [31] analyzed the classical Shannon’s information entropy and proposed a
new fuzzy entropy known as exponential entropy which can be applied to image-processing. Fan and Xie [8,9] proposed a
method to generate a fuzzy entropy by distance measure and described a fuzzy entropy generated by different g-similar-
ity measures. All of the above fuzzy entropies of fuzzy sets provide effective methods for measuring the fuzziness of a
fuzzy set.

For convenience of our further discussion, we also review several representative measures for evaluating the roughness of
a rough set. Pawlak [35,36,38] defined a roughness measure that reflects the ratio of the number of objects in a rough set’s
lower approximation to that in its upper approximation. Bianucci and Cattaneo [4] noted that the roughness measure is not
strictly monotonic with partition ordering. To solve this problem, Beaubouef et al. [2] investigated the measure of uncer-
tainty based on information theory in rough sets and rough relational databases by proposing a rough entropy, which is sig-
nificantly better than the Pawlak’s roughness measure. Liang et al. [20-23] introduced the concepts of information entropy,
rough entropy and knowledge granulation in rough set theory, in which the measures of accuracy, roughness and approx-
imation accuracy are enhanced. Studies have been performed on specific applications, such as image segmentation and clus-
tering. Pal et al. [34] used the idea of image granules to define the rough entropy of an image and employed the entropy in
the processing of image segmentation. Matyszko and Stepaniuk [26,27] proposed new algorithmic schemes for standard and
fuzzy rough entropy clustering algorithms (RECA) in rough entropy-based partitioning routines. Matyszko and Stepaniuk
[28] designed a new algorithm based on granular multilevel rough entropy evolutionary thresholding (MRET) that operates
on a multilevel domain.

Pawlak’s roughness measure depends on the size of the boundary region and upper approximation, which results in the
roughness measure not possessing strict monotonicity with partition ordering. Rough entropy depends on the size and
structure of the boundary region, the positive region and the negative region. In fact, the roughness of a rough set is
caused by those objects lying in the boundary region of a rough set. Therefore, there are certain shortcomings in the exist-
ing roughness measures. To overcome these shortcomings, we attempt to introduce a more appropriate measure for eval-
uating the roughness of a rough set. In the analysis, we observe that the roughness of a rough set arises from its boundary
region and that the rough membership degree of each object in the rough set’s boundary region is not zero. When an ob-
ject’s rough membership degree is regarded as its fuzzy membership degree, a rough set can induce a fuzzy set. This leads
to the question: can the fuzzy entropies of a fuzzy set be used to evaluate the roughness of a rough set? To answer this
question in this paper, we first review several common fuzzy entropies. We then develop three methods (JM1-JM3) for
determining whether those entropies can be used to evaluate the roughness of a rough set. The experiments show that
these methods provide an effective way to select an entropy as an appropriate roughness measure.

The remainder of the paper is organized as follows. Section 2 reviews some preliminary concepts and illustrates our moti-
vation. Section 3 presents three methods of judging whether fuzzy entropies can evaluate the roughness of a rough set. Sec-
tion 4 analyzes several common fuzzy entropies using the proposed methods. Section 5 demonstrates effectiveness of the
proposed methods by experiments. Section 6 concludes the paper with some remarks.
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2. Preliminaries
2.1. Rough set

An information system (also known as a data table, an attribute-value system, a knowledge representation system) is a
basic concept in rough set theory and provides a convenient framework for the representation of objects in terms of their
attribute values. Let S = (U,A) be an information system, where U is a non-empty and finite set of objects, known as a uni-
verse, and A is a non-empty and finite set of attributes. For each a € A, a mapping a : U — V, is determined by an information
system, where V, is the domain of a.

Each non-empty subset BCA determines an indiscernibility relation in the following way:
Rg = {(x,y) € U x Ula(x) = a(y),Va € B}, where a(x) and a(y) denote the values of objects x and y under a condition attribute
a, respectively.

The relation R partitions U into equivalence classes given by U/Rg = {[x]z|x € U}, just U/B, where [x]; denotes the equiv-
alence class determined by x with respect to B, i.e., [X]; = {y € U|(X,y) € Rg}. Furthermore, for any Y C U, one defines that
(B(Y),B(Y)) is the rough set of Y with respect to B, where the lower approximation B(Y) and the upper approximation
B(Y) of Y [36,38,54] are described by

B(Y) = {X|X,CY) and B(Y) = {x|[X},nY #0}.

The objects in B(Y) are with certainty classified as members of Y on the basis of knowledge in B, while the objects in B(Y)
are only classified as possible members of Y on the basis of knowledge in B. The set BNg(Y) = B(Y) — B(Y) is called the B-
boundary region of Y, and consists of those objects that cannot be decisively classified based on the knowledge in B. A set
is said to be rough (or crisp) if its boundary region is non-empty (or empty) [19].

Furthermore, we define a partial relation < on the family {U/B|B C A} as follows: U/A < U/B if and only if for every [x],
there exists [x;]; such that [x;], C [x;];, x;,x; € U.In this case, we say that B is coarser than A (or A is finer than B). If U/A < U/B

and U/A # U/B, we say that B is strictly coarser than A (or A is strictly finer than B), denoted by U/A < U/B (or U/B >~ U/A).
2.2. Fuzzy entropy

In this paper, R* = [0, +oc0), F(U) is the class of all fuzzy sets of U, and P(U) is the set of all of the crisp sets on the universe
U X, = Hxﬂi%+“x~;%+ e +“;" “ js a fuzzy set, where By ( ) is the membership function of X; € F(U). X;¢ indicates the
complement of)A(;, ie. ,u~ x)=1- ,u~]( ). For two fuzzy sets )Cf(; e F(U), le u)?z (the union of)?l and 5(;) is defined
g (),

The fuzzy set X;* is known as the sharpness of X; if ,ux~*( ) > ,ux~( ) when ,ux~( )>1 and ,ux~*(u) < ,ux~( ) when
1 1 1 1 1

as ,u)»{u;( )= max{,ux~ 1 ® }, and X1 N X3 (the intersection of X; and X3 ) is defined as Hg ~( ) = mln{,ux ©

() < 1. For fuzzy set X;, the crisp sets X year, X1 o € P(U) are defined as

5 x) = 07 luXI (X) g %
]7 ,uxl (X) > %’

Definition 2.1 [8,10]. A real function d : F2(U) — R* is a distance measure if d satisfies the following properties:

(DP1) d(X1,X7) = d(X2,X1), VX1,X2 € FU);

(DP2) d(X1,X1) =0, ¥X; € F(U);

(DP3) d(D,D°) = max- - d(X1,X3), VD € P(U);

(DP4) ¥X1,X3. X3 € F(U), if X; € X; C X3, then d(X1,X3) < d(X;,X3) and d(Xz, X3) < d(X7,X3).
__Let U= {x1,%s,...,X,} be a finite set, X; ,Xz € F(U) be two fuzzy sets. The fuzzy Minkowski distance D}, between X; and
X, is defined as [17]

1/p
D}y (X1, Xz) = (Zlu () — (&-)l") , p=1,

where By (X) and 1 (x) are the membership functions of x in X7, X, € F(U), respectively.

Furthermore, Liu [24] noted that a distance is a o-distance measure on F(U) if for any X1, X2 € F(U) and D € P(U),
d(X;,X5) = d(X; ND, X, N D) +d(X; N D, X, N D°) holds. o -

Klir and Fogler [17] indicated that the fuzzy Hamming distance Dy(X;,X5) = Dy, (X1,X2) = S0, s (xi) — g (%) isao-
distance. ! :

Bhandari and Pal [3] introduced a g-distance that satisfies the conditions in [24] as follows:
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Fan et al. [8] defined another g-distance as

n

~ U~ (X)—p U~ (X) =
DE(Xl,Xz):Z<2—(1—,UXNI(X)‘*‘MX”Z(X))B S (1 pe () + g (0)e e

i=1

In the following, we review the definition of fuzzy entropy.

Definition 2.2 [8,10]. A real function e : F(U) — R" is called an entropy on F(U) if e possesses the following properties:
(EP1) e(D) = 0, VD € P(U);
(EP2) e([}]y) = maxacrw)e(X1);
(EP3) if X;* is a sharpened version of X1, then e(f(vl*) <eXq);
(EP4) e(X;%) = e(X1), VX € F(U);
where, [}] is the fuzzy set of U for which py (x) =3, vx € U. - - ~
Liu [24] concluded that a fuzzy entropy e is called a g-entropy on F(U) if e satisfies e(X) = e(X N D) +e(X N D), D € P(U).

Theorem 2.1. [24] Let e be an entropy on F(U). Then, e is a g-entropy if and only if VX1,X, € F(U),

e(X1) +e(Xz) = e(Xi N X;) +e(X; UX).
Fan et al. [9] introduced another theorem of ¢-entropy.

Theorem 2.2. [9] Let e be an entropy on F(U). Then e is a g-entropy if and only if for VX € F(U) and D € P(U),

e(X) = e(X N D) +e(X ND").
In the following, common fuzzy entropies are reviewed, which are divided into three types.

(1) Fuzzy entropies derived from the distance between a fuzzy set and its complement set
Liu [24] presented a fuzzy entropy based on a distance as

e, (X) =1-d(X,X), VX €F(U),
where d is a distance on F(U). If d is a g-distance measure on F(U), then e¢, (X) is a g-entropy on F(U).
Fan et al. [9] defined four fuzzy entropies as
oo dXUXSU) 4 o d(XUXS,0) o () — dXUX,U) 4 -  dXUXe,0)

uXe,
egZ (X) S - » €3 (X) AN ’ —= = > €5 (X) > v ’
d(X N Xe,U) d(X NXe,0) d(X N Xc,0) d(X N Xe,U)

where the distance measure d in e, and e% should satisfy d([1/2],U) = d([1 /2] 0). Furthermore, if d is a distance measure
and satisfies d(X;,X3) = d(X:¢, X2), X1, Xz € F(U), then ed,(X) = e%(X) and e, (X) = e% (X).
Fan and Ma [10] indicated if d is a normal distance measure, then

eds(X) =1 - d(X UX ,U) +d(X n X, U), e%(X)=1-d(XUX,0)+dXnX,0),

c

el(X)=1—d(XUX,U)+dXnX,0), eL(X)=1-dXUX,0)+dXnX,U),

and if d satisfies d(X;,X5) = d()?l ,)E ) Z . X5 € F(U), then e% (X) = e?,(X) = e%(X) = % (X).
Therefore, we believe that e%,, ed;, ed, and e’ are constructed in the same manner and e, e?,, e%; and e’ are similar.
Therefore, we select e, and e’ as the paper’s examples for analysis.
(2) Fuzzy entropy induced from a distance among a fuzzy set, its near set and its far set
Kaufman [15] defined an entropy generated by a distance measure as
oo 2
et (X) == Dy, P (X, Xuear), D=1,
where X is a fuzzy set in F(U) and D}, is the distance measure between two fuzzy sets proposed in [17]. That enf1 isao-
entropy is obvious.
Kosko [18] presented another distance-induced fuzzy entropy as

v Dl ()? jznear)
250 = DX Xy
ar

Fan and Xie [8] introduced a fuzzy entropy based on distance measures as
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d(}z7 y(near)

el (X) = —22 )
%) d(X, Xar)

where d is a g-distance and satlsﬁes d(D,[0]) = d(3D,D), VD € P(U), 3D is the fuzzy set that satisfies: (1 ),ulD( )=
(2) Hyp(X) =0 if x ¢ D, and d(X;¢,X5°) = d(Xl,Xz) VX1, X; € F(U). In fact, edi;(X) is the generalization of enfz( ).
ForasetD c U,
Fan et al. [9] proposed another entropy as

ed4(X) = d(X, Xuear) + 1 — d(X, Xpur),

wheredisao- dlstpance and satisfies d(3 D, [0]) = d(3D, D), VD € P(U) and d()/(vl‘i)/(vzf) = d()i,Xj), VX1,X; € F(U). Fan and Ma
[10] noted that enfl (X)(p = 2), en2(X) and eﬂB( ) are generally not o-entropies.

(3) Other fuzzy entropies

Fan and Ma [10] proposed a distance-induced fuzzy entropy, which is a o-entropy.

Let d be a normal g-distance measure on F(U). If d satisfies the following properties: (1) d(3D, [0]) = d(3D,D), VD € P(U),
(2) d(X:¢, X5°) = d(X1,X2), VX1, X5 € F(U), (3) 2d(D, g =1, VD € P(U), then

(X) =1-2d(X,[1/2])

lifx e D;

eol

is a normal o-entropy on F(U). The distance measures D and D; do not satisfy the condition (3): 2d(D, []) =
Fan and Ma [10] proposed a g-entropy as

e (X) /;Z< +(1 - ()" — 1), >0 a#1, f#0.

Renyi [44] defined the a-order entropy of a probability distribution (p;,p,,...,p,) as [1/(1 — )] In(>1,p*), o >0, o+ 1.
Similar to the above analysis, for a fuzzy set, Bhandari and Pal [3] defined the «-order entropy as
aO

e (X )—lﬁlngeéﬁ Zln () + (1= i (x)), 2> 0, a1,

Furthermore, Fan and Ma [10] provided the entropy formulas when =1 and g = o' as follows:

11j2<(ﬂ}(xi)“ +(1- H}(Xi))“)ﬁ — 1), >0, o#1.

i=1

e (X) =
e (%) = 3 () + (1 - ) —1). @> 0 a1,

lio‘i:‘l

Shannon [45] defined the entropy of a probability distribution (p,,p,,...,p,) as —=>_rp; Inp;. Applying this concept in
fuzzy set theory, Luca and Termini [25] introduced a logarithmic fuzzy entropy formula for a limit universe as

ety () = — 3 (s n s 0) + (1 0 (1 - p())). k>0
i=1

Pal and Pal [31] analyzed the classical Shannon information entropy and introduced exponential entropy. For a probability
distribution P = (p;,p,, - .., D,), €xponential entropy is defined by H = >"! , p;e!“Pi. For fuzzy sets, fuzzy entropy is denoted as

= 1 1 1—p~(x;) xi)
eas(X) :M—_l;(u;<xi>e W (1= e 1),
Yager [48-50] proposed a complement-based fuzzy entropy, which is denoted as
-~ 4
eos (X) = H;u;o«)(l — 15 (x1)).

Based on this definition, Liang et al. [20,21] introduced the fuzzy entropy to rough set theory.
For further investigation, we regard a fuzzy entropy as a function with regard to the membership function of every object

on the fuzzy set X, ie, e()~():f(,u;(x]),,u;(xz),...,,u;(xn)). It is obvious that these independent variables
(B (x1), 1 (%), .., ft=(Xq)) are symmetric, for example f (- (x1), 1z (%), - e (Xn)) = F (R (%)l (Xn 1), -, (X))

Theorem 2.3. Let e(X) :f(,u}(xl),,u}(xz), ce ,u;(xn)). If e(X) is a g-entropy, then

= gli(x)),
i=1
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where g(xi) :f(:u}(xl)v 0,... 0)

n-1
Proof. Let D; = Ul_,x;, X = Z]i Oy X By Theorem 2.2, e(X) = e(X N D) + e(X N D) is the sufficient and necessary
condition for o- entropy Therefore for Vx; € U
e(X) < e(XNDy)+e(XNDS)
<:>f(:u'}(x1 )7 07 s 70) +f(0* :u}(XZ): teey :u}(uﬂ))
n-1

=l (x).0,...,0) +e(Xy)

<:>f(,u;(x1)70, ...,0)+e(X;NDy) +e(X; N D3)

(:)f(,u}(xﬂ,O, s 70) +f(07 M}(X2)707 s 0) +e +f(07 s 707M;(XH))'
n-1 n-2 n-1

Furthermore, we assume g(x;) :f(u;()q), 0,...,0). Because these independent variables (,u;()q),,u;(xz), cee ,u;(xn)) are
symmetric, we have e

f(ﬂ’)‘(’(xl),07 s 70) +f(0 /’L;('(XZ)vov - ;0) +o +f(07 s ,O,M’)‘(’(Xn))
n-1 n-2 n-1
<:>f(,u}(x1),0, s 70) +f(,LL’)‘('(X2).,0, = 70) +ee +f(ﬂ;('(xn)707 cee O)

n-1 n-1 n-1

= Yelg). O

1 1 1
By Theorem 2 3, e, e, e, el el el e, el et el el €%, ek e, and es are all g-entropies.
The set-oriented view of rough sets starts from classical set algebra (2V, -, N, U) and associates a fuzzy set with each sub-
set of a universe. Rough membership function may be interpreted as a special type of fuzzy membership functions, which
can be interpreted in terms of probabilities defined simply by the cardinalities of sets [38,53]. In this view, a rough set Y

can induce a fuzzy set Y in F(U) if the membership function of x; in Y3 is denoted as ;- (xi) = 52, where Y C U is a crisp
B

set and [x;], denotes the equivalence class of x; determined by attribute set B. Therefore, it is possible to measure the rough-

ness of the rough set Y by using fuzzy entropies of the fuzzy set Ys.
2.3. The roughness of rough sets

The roughness of a rough set results from its boundary region. For describing the properties of a rough set, Pawlak [36]
discussed two numerical characterizations for evaluating a rough set’s imprecision, i.e., accuracy and roughness, which are
defined as follows.

Definition 2.3. [36] Let S5 = (U,A) be an information system, Y C U. Then, the roughness of Y with respect to A is defined as

AY)|
paY)=1- =0
IA(Y)|
where | - | denotes the cardinality of a set.

By means of the definitions of rough approximations, we obtain |A(Y)| < |B(Y)| and |A(Y)| = |B(Y)| if U/B = U/A, i.e.,
ps(Y) = p,(Y), if U/B > U/A. That is, p is not strictly monotonic with the partition ordering [4]. Furthermore, because
pa(Y)=1— IAM)| _ JAY)I-IAY)| _ [BNA(Y)]

A IA(Y)| IA(Y)| A’
region and upper approximation. The following example provides a concrete illustration.

, we obtain that the roughness measure is only determined by the size of the boundary

Example  21.Llet S = (U,A1), So= (U,A),  S3—=(UAs), Sa=(U,A)),  and  Ss—(U,B),  where
U = {X1,X2,X3,X4,X5,X6,X7,X8,X9,X10,X11,X12 }
U/Ar = {{X1,X2,X3,X4,X5, X6}, {X7,X8,X9,X10}, {X11,X12}}, U/A2 = {{X1,X3}, {X2,X4,Xs5,X6}, {X7,X8,X9,X10}, {X11,X12}},
U/As = {{X1,X2,X3,X4,X5,X6}, {X7,X8,X9,X10}, {X11}, {X12}}, U/As = {{X1,X3,X4}, {X2,X5,X6}, {X7,X3,X9,X10}, {X11,X12}},
U/B = {{)(’,1,)(2,)(3,)(4,)(5,)(6}7 {X7,X3,X9,X]Q,X1],X]2}}, and Y = {X],X27X7,X]1,X12}.

It is clear that U/B = U/A, ~ U/A,, U/B > U/A; = U/As and U/B = U/A; > U/A4. By calculation, one obtains

IB(Y)| = |6] =0, |B(Y)| = |{X1,X2,X3,X4,X5,X6} U {X7,Xs,X0,X10,X11,X12}| = 12,
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(a) The rough set derived from a given target concept  (b) Combination of classes in positive and
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Comblnation of Combination of el Combination of
Equivalence Classes Classes Equivalence Classes

(c) Combination of classes in positive and  (d) Combination of classes with the different  (¢) Combination of classes with the same
boundary region membership for the target concept in bound-  membership for the target concept in bound-
ary region ary region

Fig. 1. A rough set and all of the changes derived from the combination of the equivalence classes.
AL(Y)] = {xX11,%12} =2, |A1(Y)] = [{X1,X2,X3,X4,X5, X6} U {X7,Xs,X0, X10} U {X11,X12}| = 12,
A2 (V)| = [{X11, %12} = 2, \A_z(y)\ = [{X1,X3} U {X2,X4,X5,X6} U {X7,Xg,X9,X10} U {X11,X12}| = 12,
|A3(Y)| = [{X11,X12}| = 2, \E(Y)\ = [{X1,X2,X3,X4,X5,Xs} U {X7,Xs,X9,X10} U {X11} U {X12}| = 12,

|As(Y)| = [{%11,%12}] = 2,  [Aa(Y)] = |{X1,X3,Xa} U {X2,X5,X6} U {X7,Xs, X9, X10} U {X11,X12}| = 12.

Thus
|BNB(Y)| = ‘{X],X27X37X47X5,X5} ) {X77X87X97X]07X117X]2}| = 127
|BNa, (Y)| = [{X1,X2,X3,X4,X5,X5} U {X7,X3,X9,X10}| = 10,
[BNa, (Y)| = [{X1,X3} U {X2,Xa,Xs5,X6} U {X7,Xs,X9,X10}| = 10,
|BNa, (Y)| = [{X1,X2,X3,X4,X5,X5} U {X7,X3,X9,X10}| = 10,
[BNa, (Y)| = [{X1,X3,Xa} U {X2,X5,X6} U {X7,Xs,X9,X10}| = 10.
From ‘BND(eﬁnition 23, we \BNh(e)‘\le that pp(Y) = \B‘g?%‘ =12=1, p,(Y)= \ﬁx&()‘ﬂ -5 pu(Y)= \B‘g?g‘)\ —10_5
Pa,(Y) = ‘X?y)‘ 2=% Pa,(Y) = W = 2. Obviously, p,(Y) > Pa(Y) = pAZ( )= Pa,(Y) = Py, (Y).

From Example 2.1, it is clear that the structure of BN, (Y) is different from BN, (Y), even if the roughness of Y with respect
to A, is equal to that of Y with respect to A,. Therefore, we conclude that the roughness measure of a rough set in [36] does
not contain the structural information of its boundary region.

Bianucci and Cattanco [4] obtained the same results as Example 2.1 and introduced a quantitative valuation assumed to
satisfy (at least) the following two conditions:

(rel) the strict monotonicity condition: for any Y C U, U/A < U/B implies re,(Y) < reg(Y);

(re2) the boundary conditions: for any Y C U, re,(Y) =0, re;(Y) = 1, where w = {{x}|x € U} and ¢ = {U}.

The rough entropy proposed in [2] accords with the two conditions mentioned above, defined as follows:

Definition 2.4 [2] Let S = (U,A) be an information system, Y C U. Then the rough entropy of Y with regard to A is defined as
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" Xil g 1
En(Y) = —pa(V))_ " logs 7.
! Z] n X

where n = |U|] and U/A = {X1,X5,...,Xm}.

Definition 2.4 shows that Beaubouef’s rough entropy reflects not only the structural and size information of the boundary
region of a rough set but also takes the structural and size information of its positive and negative regions into account. How-
ever, the roughness of a rough set should be evaluated by the information in its boundary region rather than in its positive
and negative regions. The following example illustrates this definition.

Example 2.2 (Continued from Example 2.1). From the definition of Beaubouefs roughness measure, one has
Ea(Y) = —p, ()34 \Ul‘ log, o x By calculation, we obtain that the values of the roughness measure
Ep(Y) = 2.5058, Ex, (Y) = 1.7715, Ea,(Y) = 1.3889, Ea,(Y) = 1.6326, Es,(Y) = 1.3548. Thus, Eg(Y) > Ea, (Y) > Ea,(Y),
zEg(Y) > Ep, (Y) > Ea, (Y) and E4, (Y) = Ea, (Y).

Example 2.2 indicates that the size and structure of BNy, (Y) are the same as the size and structure of BNy, (Y). However,
the Beaubouef’s rough entropy values of the rough set Y are different with respect to A;, A, As, A4 and B. After analysis, we
find that the problem is caused by the part >_1", ﬁn‘ log, p}—‘ which shows that the rough entropy not only depends on the par-
tition of the boundary region of a rough set but also on the partition of its positive and negative regions. According to the
above analysis and the constraint conditions in [4], we propose a defintion of the roughness of a rough set as follows.

Definition 2.5. Let S; = (U,A) and S; = (U, B) be two information systems, Y C U. r is called as a roughness measure if r
satisfies the following properties:
(RP1) rg(Y) = ra(Y), if BNp(Y)/B = BNA(Y)/A;

(RP2) r5(Y) > ra(Y), if IBNg(Y)| > |BN4(Y)| and U/B =~ U/A;

(RP3) rg(Y) > ra(Y), if IBNg(Y)| = |BNa(Y)|, BNg(Y)/B - BNa(Y)/A and 3x; € BN4(Y) such that Ky (%) # Ky ( i)
(RP4) rg(Y) = ra(Y), if |BNg(Y)| = |BNa(Y)|, BNp(Y)/B - BN4(Y)/A and ,uy~B(x) By (x,) for Vx; €’ BNA(Y);
where fi (x;) = S o (xi) =t

Fig. 1 illustrates the four properties in Definition 2.5. Fig. 1a displays the rough set derived from a partition. Fig. 1b illus-
trates a rough set that is approximated by a much coarser partition than in Fig. 1a. From these two figures, we can see that
these two rough sets are identical, although they are under different partitions. Thus, their roughness values should be equal,
as the property (RP1) shows. Fig. 1c shows a rough set that is approximated by a coarser partition than Fig. 1a. The size of its
boundary region is larger than in Fig. 1a. According to these two figures, we can find that the rough set in Fig. 1c is coarser
than the one in Fig. 1a. As a result, the roughness of the rough set in Fig. 1c should be greater than that in Fig. 1a, as the
property (RP2) shows. Fig. 1d expresses a rough set that is approximated by a coarser partition than Fig. 1a. An equivalence
class in its boundary region is generated by combining two equivalence classes whose membership degrees on the fuzzy set
derived from the rough set in Fig. 1a are different. Therefore, the roughness of the rough set in Fig. 1d should be greater than
that in Fig. 1a, as the property (RP3) shows. Fig. 1e displays a rough set that is approximated by a coarser partition than
Fig. 1a. From it, we can see that an equivalence class in its boundary region is generated by combining two equivalence clas-
ses whose membership degrees on the fuzzy set derived from the rough set in Fig. 1a are the same. Therefore, the structure of
the combined equivalence class in Fig. 1e is the same as the two shown in Fig. 1b. Therefore, we believe that the roughness of
the rough set in Fig. 1e should be identical with the one in Fig. 1a, as the property (RP4) shows.

As mentioned above, roughness of a rough set arises from the existence of its boundary region. In such a boundary region,
each object has a non-zero rough membership degree. When an object’s rough membership degree is regarded as its fuzzy
membership degree, a rough set can induce a fuzzy set. Therefore, we assert that certain fuzzy entropies may be able to eval-
uate the roughness of a rough set. To illustrate the inference, we use the fuzzy entropy e,s in the following example.
Example 2.3 (Continued from Example 2.1). ?B,ﬁ,ﬂ:,ﬂ;ﬂ: € F(U) are five fuzzy sets derived from the rough sets
(B(Y),B(Y)), (A1(Y),A1(Y)), (A2(Y),A2(Y)), (A5(Y),As(Y)) and (A4(Y),A4(Y)), respectively. They are expressed as

U3 13 13 13 13 13 12 12 12 1/2 1/2 172

yB =—+ I
X1 X2 X3 X4 Xs X6 X7 Xg X9 X0 X1 X12

- 1/3 1/3 1/3 1/3 1/3 1/3 1/4 1/4 1/4 1/4 1 1
YA] :L+L+L+L+L+L+L+L+L+L+i+i7
X1 X2 X3 X4 X5 X6 X7 X3 Xq X0 X111 X12

— 1/2 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1 1
YAZ*L+ / +L+L+L L_’_L_’_LJ’_L L —_—t—,
X2 X3 X4 Xs X6 X7 X3 X9 X10  X11 X2

-— 13 1/3 1/3 1/3 1/3 1/3 1/4 1/4 1/4 1/4 1 1
YA3 :L+L+L+L+L+L+L+L+L+L+i+i7
X1 X3 X3 X4 X5 X6 X7 X3 X9 X10 X1 X2
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YA4:L+ / / +L+L+L+L+L+L+L+_ —
X2 X3 X4 X5 X6 X7 Xg X9 X0  X11 X12
The values of the fuzziness measure of each fuzzy set above can be calculated as follows:
eos(Yp) = 0.9444, e,5(Ya ) =0.6944, e5s(Ya,) = 0.6667, ens5(Ya,) =0.6944, eys(Ya,) = 0.6944.
Obviously, we have
eos(Ya,) = €as(Ya,),
when BNy, (Y)/A1 = BNy, (Y)/As & |BNga, (Y)/A1]| = [BN4, (Y)/As], which reflects that e,s accords with (RP1);
€os(Y5) > €os(Ya,).  €05(Y5) > €o5(Ya,), €as(Ys) > €05(Ya,) & €os(Yp) > €os(Va,),

when U/B > U/A; & |BNg(Y)/B| > |BNa, (Y)/A1|, U/B > U/A; & |BNg(Y)/B| > |BNa,(Y)/Aa|, U/Bs> U/As & |BNs(Y)/B| >
[BNa, (Y)/As|, U/B - U/A4 & |BNp(Y)/B| > |BNa,(Y)/As4|, which illustrates that e,s is coincident with (RP2);

€os(Ya,) > €o5(Ya,),

when BNy, (Y)/A1 > BN, (Y) /A2 & |BNa, (Y)/An| = [BNa, (Y) /o] & pi~(x1) = = (X2) # fi~ (%1) = pi~ (x2) & p—(X5) =

,uyT (x4) = “\Z (X5) = ,u(ﬁ (xg) # '“ﬁ (x3) = '“ﬁ (x4) = ,uﬁ(xs) = ,uy:« (xg), which shows that e,s accords with (RP3);
eos(Ya,) = eas(Ya,).

when BNy, (Y) /A1 = BNy, (Y)/Aq & BN, (Y)/A1] = [BNa, (Y)/Aa] & p—(X1) = -+ = U= (X12) = i~ (%1) = -+ = fi~ (X12), which

shows that e,5 accords with (RP4). A A A A

The results in Example 2.3 confirm that our estimation is correct. Thus, in the remainder of the paper, we examine further
the question “Can fuzzy entropies be used to evaluate the roughness of a rough set?”

3. Methods of judging whether fuzzy entropies evaluate roughness

In this section, we first investigate the change mechanism of fuzzy entropies varying with partition ordering. Next, based
on the mechanism, we propose three methods of determining whether fuzzy entropies can be used to evaluate the rough-
ness of a rough set.

For convenience, in the following, a fuzzy entropy e(~) is regarded as the function determined by n independent variables
(,u~(x1) s (X2), - (X)). Thus, it is straightforward to formulate a fuzzy entropy as e(X) = f(,u~(x1) B (X2), - s (Xn)),
where X is a fuzzy set on F(U).

Definition 3.1. Given a fuzzy set on F(U), we denote its fold set as
u(@—?ﬂﬁ 10 <3,
X 1- (0, p=(x)

where 1 (X) is the membership function of x in X € F(U), x € U.
In the following, we will analyze the relationship between e(X) and e(XF).

1
>§,

Property 3.1. Let X € F(U) be an arbitrary fuzzy set in U. If the fuzzy entropy e is a g-entropy, then
e(X) = e(XF).

Proof. Without any loss of generality, we suppose that for one fuzzy set X, u;(xi) <11 <i<p)and u;(x,) >lp<j<n).
Then fig, (%) = He (X0, pig, () = b (X0, fig (%) = 1= He(X), pig (%) = 1= g (). Let eo(XF) = flp, (1), phs (%)
By Theorem 2.2, we have

e(XF) =e(XFn D)+e()?FnDC)
=fpg (x1), - 1 (%),0,.., 0) + £(0, B (Ko1)o s, (Xn))
n-p p

= F(0). o (%) 0. 0) + (00T — (). T~ f ().
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— :“’;(Xl ) lvlf;(xp) o o =~ 0 l—lu;(xpﬂ ) 1 ﬁt;«(x")
Furthermore, let Dy = {X1,%;,.... %}, F1=—%—+ - +2—+zb+ 4+ and F =2+ +2+——+
Theanf:%+...+L+ x "

Xp Xp+1

e(F1) +e(Fy) = e(Fy) + e(F,%) = e(Fy N Fy) + e(F; UF,¢) = e(Dy) + e(X) = e(X).
Thus, e(XF) = e(X). O

For a non-g-entropy, we provide the following properties to indicate the relationship between e(X) and e()~<‘” ).

Property 3.2. Let X € F(U) be an arbitrary fuzzy set in U. Then

ed,(X) = e, (X").

Proof. Without any loss of generality, we suppose that for one fuzzy set X e F(U), ,u~(x,) 1(1<i<p) and
1(Xj) > 3 (p <j < n). Then,

X = U (%0) /30 - B () /% + Py (Xpi1) [Xpit - [ () /X,

X = (1= po () /a4 (1= (%)) % + (1= = (%p:1)) /X1 + -+ (1= fi=(%2)) /%0,

X = g (60) /31 -+ () /% (1= [ (Xpe1)) [Xpir + -+ (1= s (X0)) /X,

(XF)E = (1= p () /31 4+ (1= f () /X + [ (%p1) [Xpir + -+ = (X2) /X
Furthermore, we have

XX = (1) /%1 + -+ 4 (%) /X + (1 = fe(Xp11)) [Xper + -+ (1 = 1= (X)) /X,

XE O (XF) = () /o - 4 1 (3%9) /% + (1= [ (%p30)) Xpir + -+ (1 = (%)) /X,

XUX = (1= f () /X1 4+ 4 (1= (%)) /% + Je- (Xpe1) Xpsa + - + [ (Xn) /X,

XU (X" = (1= pga))x (1= i (00)) /% + B (K1) Xpi + -+ B (k)
It is obvious that X n X = XF 0 (XF)° and X uX¢ = XF U (XF)°. Therefore,

d(XFuU (X, U)  d(XUuXe,U)

d (YF\ _ _ ) _od (Y
c2X) = dXFN(RSU) dRNReU) 2 ®). O

Property 3.2 states that e M (XF), % (XF) and e (XF) are the same as ec2 (XF), €% (XF) and e (XF), respectively.
Property 3.3. Let X € F(U) be an arbitrary fuzzy set. Then,

DP ~ DD ~ ~
e (X) = ebn(XF), e (X) = eDu(R), el (X) = Py (XF), € (X) = ePh(XT).

Proof. Without any loss of generality, we suppose that for one fuzzy set X, ,u~( i) <3(1<i<p)and ,u;(xj) >1(p<j<n).
Then s (00) = 5 8. ity (60 = 5, (00 =0, g (060 = 5 () =1, M ) =1 = ), g, () =1y (%) =1,
= () =1- ,u}f (x;) =0. fr
far far

Therefore, we obtain

1/p
=qip (ZW}(XI') - :u}"e xi) P + Z 11— My () — (l - :u}m(xj)) |p>

i=1 j=p+1

2 n 1/p
= (Z'“} x) =My (x")p)

Similarly, ef;“g X) =€ U (XF), e et (X) = el (XF), el (X) = el (XF) can be proven. [
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Table 2
Roughness measures of the decision class in the dataset Spect.
Measure Class Number of condition attribute
22 20 18 16 14 12 10 8 6 4 2
p 1 0.2033 0.2358 0.2619 0.2698 0.3110 0.3789 0.4154 0.4771 0.6391 0.7903 1.0000
2 0.6533 0.7342 0.8148 0.8193 0.8587 0.8981 0.9391 0.9615 0.9942 1.0000 1.0000
E 1 0.0165 0.0258 0.0345 0.0392 0.0540 0.0814 0.1048 0.1503 0.2841 0.4503 0.7812
2 0.0530 0.0805 0.1074 0.1190 0.1490 0.1930 0.2370 0.3030 0.4419 0.5698 0.7812
9?1""' 1 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
2 0.1199 0.1648 0.1873 0.1948 02172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
e?lﬁ,, 1 0.0802 0.1054 0.1215 0.1264 0.1452 0.1673 0.1865 0.2155 0.3006 0.3292 0.3741
2 0.0802 0.1054 0.1215 0.1264 0.1452 0.1673 0.1865 0.2155 0.3006 0.3292 0.3741
e 1 0.1586 0.2030 0.2317 0.2401 0.2741 0.3146 0.3465 0.3957 0.5267 0.5740 0.6445
2 0.1586 0.2030 0.2317 0.2401 0.2741 0.3146 0.3465 0.3957 0.5267 0.5740 0.6445
e 1 0.1548 0.2003 0.2288 0.2374 0.2702 0.3081 0.3398 0.3865 0.5137 0.5545 0.6149
2 0.1548 0.2003 0.2288 0.2374 0.2702 0.3081 0.3398 0.3865 0.5137 0.5545 0.6149
6?2},, 1 0.0637 0.0898 0.1033 0.1079 0.1218 0.1362 0.1558 0.1711 0.2535 0.2594 0.2594
2 0.0637 0.0898 0.1033 0.1079 0.1218 0.1362 0.1558 0.1711 0.2535 0.2594 0.2594
egﬁ,, 1 0.1542 0.1934 0.2076 0.2128 0.2238 0.2319 0.2538 0.2567 0.3335 0.3230 0.2898
2 0.1542 0.1934 0.2076 02128 0.2238 0.2319 0.2538 0.2567 0.3335 0.3230 0.2898
e?z’ 1 0.0198 0.0313 0.0360 0.0379 0.0420 0.0452 0.0543 0.0556 0.0960 0.0904 0.0728
2 0.0198 0.0313 0.0360 0.0379 0.0420 0.0452 0.0543 0.0556 0.0960 0.0904 0.0728
e 1 0.0241 0.0378 0.0435 0.0457 0.0507 0.0545 0.0652 0.0670 0.1128 0.1062 0.0866
2 0.0241 0.0378 0.0435 0.0457 0.0507 0.0545 0.0652 0.0670 0.1128 0.1062 0.0866
efé" 1 0.1199 0.1648 0.1873 0.1948 02172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
2 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
6?6%4 1 0.1969 0.2487 0.2697 0.2770 0.2954 03115 0.3407 0.3530 0.4545 04514 0.4310
2 0.1969 0.2487 0.2697 0.2770 0.2954 0.3115 0.3407 0.3530 0.4545 0.4514 0.4310
efs' 1 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 0.4212 0.4346 0.4448
2 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 0.4212 0.4346 0.4448
el 1 0.1208 0.1657 0.1883 0.1958 0.2186 0.2415 0.2715 0.2946 0.4075 0.4160 0.4179
2 0.1208 0.1657 0.1883 0.1958 0.2186 0.2415 0.2715 0.2946 0.4075 0.4160 0.4179
ef}"ﬁ 1 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
2 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
eg]@l 1 0.2929 0.3603 0.3826 0.3908 0.4063 0.4157 0.4484 0.4470 0.5461 0.5234 0.4644
2 0.2929 0.3603 0.3826 0.3908 0.4063 0.4157 0.4484 0.4470 0.5461 0.5234 0.4644
enp2 1 0.0637 0.0898 0.1033 0.1079 0.1218 0.1362 0.1558 0.1711 0.2535 0.2594 0.2594
2 0.0637 0.0898 0.1033 0.1079 0.1218 0.1362 0.1558 0.1711 0.2535 0.2594 0.2594
egj% 1 0.0198 0.0313 0.0360 0.0379 0.0420 0.0452 0.0543 0.0556 0.096 0.0904 0.0728
2 0.0198 0.0313 0.0360 0.0379 0.0420 0.0452 0.0543 0.0556 0.096 0.0904 0.0728
ng% 1 0.0241 0.0378 0.0435 0.0457 0.0507 0.0545 0.0652 0.0670 0.1128 0.1062 0.0866
2 0.0241 0.0378 0.0435 0.0457 0.0507 0.0545 0.0652 0.0670 0.1128 0.1062 0.0866
eﬁ’f}ﬁ 1 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
2 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
33;4 1 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 0.4212 0.4346 0.4448
2 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 04212 0.4346 0.4448
egf'l 1 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 0.4212 0.4346 0.4448
2 0.1252 0.1698 0.1931 0.2006 0.2247 0.2498 0.2799 0.3061 0.4212 0.4346 0.4448
1 1 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
2 0.1199 0.1648 0.1873 0.1948 0.2172 0.2397 0.2697 0.2921 0.4045 0.4120 0.4120
ey 1 0.1406 0.1736 0.1978 0.2044 0.2352 0.2781 0.3071 0.3532 0.4752 0.5469 0.6473
2 0.1406 0.1736 0.1978 0.2044 0.2352 0.2781 0.3071 0.3532 0.4752 0.5469 0.6473
1 0.1117 0.1417 0.1616 0.1674 0.1915 0.2215 0.2441 0.2793 0.3730 0.4126 0.4699

(continued on next page)
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Table 2 (continued)

Measure Class Number of condition attribute
22 20 18 16 14 12 10 8 6 4 2
ek
2 0.1117 0.1417 0.1616 0.1674 0.1915 0.2215 0.2441 0.2793 0.3730 0.4126 0.4699

0.0611 0.0791 0.0903 0.0937 0.1066 0.1216 0.1341 0.1526 0.2028 0.2190 0.2430
0.0611 0.0791 0.0903 0.0937 0.1066 0.1216 0.1341 0.1526 0.2028 0.2190 0.2430

0.1539 0.1998 0.2282 0.2368 0.2694 0.3066 0.3383 0.3845 0.5108 0.5500 0.6083
0.1539 0.1998 0.2282 0.2368 0.2694 0.3066 0.3383 0.3845 0.5108 0.5500 0.6083

€o4

€o5

N = N =

Based on the above properties, in the remainder of the paper, we change the focus of the investigation from the change
mechanism e(X) to the change mechanism e(XF).

To provide a method of determining whether fuzzy entropies evaluate roughness, we introduce the following four
theorems.

Theorem 3.1. Let S; = (U,A) and S, = (U, B) be two information systems, and let Y C U and Ya, Y€ F(U) be two fuzzy sets. If
[xplp = [Xp)a U [Xqla (Xp,Xq € U), for Vx; ¢ [xplp such that [xi|p = [xi],, and Ky *xp) # Ky (xq) # N;B(Xp)v then

[[uplal x Al >~ (Xp) + [[Xqlal X At~ ~ (Xg) < 0.

YFYF YFYF

In particular, ifu (xp) <l & By (xp) <l & ,u~(x )< 3% and H (xp) >1¢& Hy (xp) = 1 & M (Xg) = 1

[[Xp]al x A,UY Fy, =~ (Xp) + qu]A| X A,uy Fy, F( ) =0,

AQY\
)
xilal

where By (x,) =

g (%) = B, and Ap - () = 1, (%) — g (),

Proof. To prove the theorem six cases should be investigated as follows.
(1) py (%) < 3 p1 (%p) < and - (xq) <5

A.u;;FYNAF(Xp) = .UYAF(XP) - ,UYBF(XP)
= .uy: (xp) — ,UYNH(XP)
_ IX]aNY] [Xplg N Y]

[Xplal [(Xp]g]
_ Xp]a N Y] [([Xpla U [Xg]a) N Y]
[Xplal [Xpla U [tgl4l
_ Xla O YT X [Xpla U Xglal  [Xplal X [([Xpla U [Xgla) N Y]
[Xp]a U [Xqlal X |[Xp]al |[Xp]a U Xqlal x [[Xpl4l
_Xla 0 Y| |Xqlal — HXP]A| X |Xqla MY
(IXp]al + [[Xglal) X [Xplal '

Similarly, we have
|[Xq]a N Y[ X |[Xp]al — I[Xqlal % [[Xp]a N Y]
(Ixqlal + [[xplal) X |[Xqlal .

Apg > (%) =
Thus,
[l X AR -, (%) + [ala] % Aft = (%) = 0.

(2) ;- () = b ;- (%) = $and g1 (%)) > }
Al ~ (Xp) = MYAF(XP) - ,“YEF(XP) =1- 'uy: (%) — (1 - ,“Y; (xp)) = ,u;B (*p) — /‘Y: (Xp).

YpFYaF
Similarly,
A/JY;FiF(Xq) =Ky (Xq) — Ky (Xp)-
According to Case (1),

|Xplal x Ap~ (;) =0.

e o) + [lal % Ay
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Table 3
Roughness measures of the decision class in the datasetKr-vs-kp
Measure Class Number of condition attribute
36 32 28 24 20 16 12 8 4
p 1 0.0000 0.3738 0.4052 0.4546 0.6907 0.7620 0.9226 0.9816 0.9991
2 0.0000 0.3850 0.4173 04711 0.6993 0.7629 0.8897 0.9535 0.9997
E 1 0.0000 0.0302 0.0382 0.0639 0.1579 0.2292 0.3905 0.6018 0.8660
2 0.0000 0.0311 0.0393 0.0663 0.1599 0.2294 0.3766 0.5846 0.8666
9?1"‘” 1 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
2 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
e?f” 1 0.0000 0.1148 0.1249 0.1507 0.2513 0.2961 0.4178 0.5819 0.8519
2 0.0000 0.1148 0.1249 0.1507 0.2513 0.2961 0.4178 0.5819 0.8519
e 1 0.0000 0.2195 0.2380 0.2826 0.4522 0.5189 0.6795 0.8393 0.9814
2 0.0000 0.2195 0.2380 0.2826 0.4522 0.5189 0.6795 0.8393 0.9814
e 1 0.0000 0.2170 0.2349 0.2794 0.4418 0.5072 0.6644 0.8277 0.9787
2 0.0000 0.2170 0.2349 0.2794 0.4418 0.5072 0.6644 0.8277 0.9787
eg},, 1 0.0000 0.1036 0.1117 0.1337 02111 0.2509 0.3588 0.5212 0.8336
2 0.0000 0.1036 0.1117 0.1337 02111 0.2509 0.3588 0.5212 0.8336
efzi,, 1 0.0000 0.2160 0.2232 0.2438 0.3000 0.3325 0.4161 0.5497 0.8357
2 0.0000 0.2160 0.2232 0.2438 0.3000 0.3325 0.4161 0.5497 0.8357
e?z' 1 0.0000 0.0393 0.0420 0.0501 0.0770 0.0953 0.153 0.2765 0.6814
2 0.0000 0.0393 0.0420 0.0501 0.0770 0.0953 0.153 0.2765 0.6814
e 1 0.0000 0.0470 0.0502 0.0599 0.0912 0.1121 0.1757 0.3064 0.7026
2 0.0000 0.0470 0.0502 0.0599 0.0912 0.1121 0.1757 0.3064 0.7026
efé” 1 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
2 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
e?é” 1 0.0000 0.2763 0.2876 0.3184 0.4077 0.4523 0.5589 0.6976 0.9099
2 0.0000 0.2763 0.2876 03184 0.4077 0.4523 0.5589 0.6976 0.9099
e’fG’ 1 0.0000 0.1920 0.2059 0.2420 0.3627 0.4172 0.5487 0.7054 0.9180
2 0.0000 0.1920 0.2059 0.2420 0.3627 0.4172 0.5487 0.7054 0.9180
el 1 0.0000 0.1885 0.2018 0.2370 0.3511 0.4040 0.5318 0.6888 0.9108
2 0.0000 0.1885 0.2018 0.2370 0.3511 0.4040 0.5318 0.6888 0.9108
egflMl 1 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
2 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
egjﬁﬂl 1 0.0000 0.3987 0.4093 0.4395 0.5076 0.5457 0.6287 0.7384 0.9168
2 0.0000 0.3987 0.4093 0.4395 0.5076 0.5457 0.6287 0.7384 0.9168
enf2 1 0.0000 0.1036 0.1117 0.1337 0.2111 0.2509 0.3588 0.5212 0.8336
2 0.0000 0.1036 0.1117 0.1337 0.2111 0.2509 0.3588 0.5212 0.8336
egj% 1 0.0000 0.0393 0.0420 0.0501 0.0770 0.0953 0.1530 0.2765 0.6814
2 0.0000 0.0393 0.0420 0.0501 0.0770 0.0953 0.1530 0.2765 0.6814
effg 1 0.0000 0.0470 0.0502 0.0599 0.0912 0.1121 0.1757 0.3064 0.7026
2 0.0000 0.0470 0.0502 0.0599 0.0912 0.1121 0.1757 0.3064 0.7026
eﬁf}ﬁ 1 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
2 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
e3;4 1 0.0000 0.1920 0.2059 0.2420 0.3627 0.4172 0.5487 0.7054 0.9180
2 0.0000 0.1920 0.2059 0.2420 0.3627 04172 0.5487 0.7054 0.9180
e,[:f'l 1 0.0000 0.1920 0.2059 0.2420 0.3627 0.4172 0.5487 0.7054 0.9180
2 0.0000 0.1920 0.2059 0.2420 0.3627 04172 0.5487 0.7054 0.9180
1 1 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
2 0.0000 0.1877 0.2009 0.2359 0.3486 0.4011 0.5282 0.6852 0.9093
ey 1 0.0000 0.1873 0.2047 0.2410 0.4033 0.4639 0.6126 0.7286 0.8194
2 0.0000 0.1873 0.2047 0.2410 0.4033 0.4639 0.6126 0.7286 0.8194
1 0.0000 0.1531 0.1664 0.1971 0.3191 0.3665 0.4810 0.5882 0.6815

(continued on next page)
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Table 3 (continued)
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Measure Class Number of condition attribute
36 32 28 24 20 16 12 8 4
e
2 0.0000 0.1531 0.1664 0.1971 0.3191 0.3665 0.4810 0.5882 0.6815
€04 1 0.0000 0.0855 0.0925 0.1100 0.1741 0.1998 0.2618 0.3260 0.3852
2 0.0000 0.0855 0.0925 0.1100 0.1741 0.1998 0.2618 0.3260 0.3852
€05 1 0.0000 0.2165 0.2342 0.2787 0.4394 0.5045 0.6610 0.8252 0.9781
2 0.0000 0.2165 0.2342 0.2787 0.4394 0.5045 0.6610 0.8252 0.9781
Table 4
Roughness measures of the decision class in the dataset Zoo.
Measure Class Number of condition attribute
16 14 12 10 8 6 4 2
P 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
2 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.3333 0.3333 0.3846 0.9697 1.0000 1.0000
5 0.0000 0.0000 0.4000 0.4000 0.4545 0.6000 0.8947 1.0000
6 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000
7 0.0000 0.0000 0.0000 0.0000 0.5556 0.9000 1.0000 1.0000
E 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7721
2 0.0000 0.0000 0.0000 0.0000 0.4078 0.5535 0.7001 0.7721
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.1173 0.1275 0.1569 0.5367 0.7001 0.7721
5 0.0000 0.0000 0.1407 0.1530 0.1854 0.3321 0.6264 0.7721
6 0.0000 0.0000 0.0000 0.0000 0.4078 0.5535 0.7001 0.7721
7 0.0000 0.0000 0.0000 0.0000 0.2266 0.4981 0.7001 0.7721
Ph 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1188
cl
2 0.0000 0.0000 0.0000 0.0000 0.0792 0.1980 0.2574 0.2574
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0396 0.0396 0.0396 0.1782 0.1980 0.1980
5 0.0000 0.0000 0.0396 0.0396 0.0396 0.0396 0.0792 0.1584
6 0.0000 0.0000 0.0000 0.0000 0.0792 0.0792 0.0792 0.0792
7 0.0000 0.0000 0.0000 0.0000 0.0198 0.0792 0.0990 0.0990
P 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1375
nfl
2 0.0000 0.0000 0.0000 0.0000 0.1940 0.1980 0.4437 0.4197
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.1990 0.1990 0.1780 0.1782 0.3379 0.3228
5 0.0000 0.0000 0.1990 0.1990 0.1780 0.0396 0.1365 0.1772
6 0.0000 0.0000 0.0000 0.0000 0.1940 0.0792 0.1365 0.1291
7 0.0000 0.0000 0.0000 0.0000 0.0890 0.0792 0.1961 0.1614
eg-sz 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 03717
2 0.0000 0.0000 0.0000 0.0000 0.1208 0.198 0.2722 0.2980
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0328 0.0328 0.0403 0.1782 0.2669 0.2795
5 0.0000 0.0000 0.0328 0.0328 0.0403 0.0396 0.1901 0.4226
6 0.0000 0.0000 0.0000 0.0000 0.1208 0.0792 0.1901 0.2034
7 0.0000 0.0000 0.0000 0.0000 0.0338 0.0792 0.2065 0.2217

(3) g (%) <3 MYA

(*p) > %aﬂd.u - (%) <3
») —

Apg o (%p) = p5 (% ( »)
21" ) i )
1 2\[’% ﬂY\ H plal + [[Xp]a N Y] X |[Xg]al + [[Xp]al X [[Xq]s N Y]
(I%p]al + 1[Xglal) x [[Xp]al ’

Similarly, we have

ApG o (Xq) =

|[Xq]a N Y] X |[Xp]al

(Ixqlal + [[xplal) x

[[Xq]al

= |[Xglal < |[xpla NY| _
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Fig. 3. Change of roughness measures in the dataset Kr-vs-kp.
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Fig. 4. Change of roughness measures in the dataset Zoo.

Therefore,

[l At - 0 [l ¢ At (k) = gl — 22l ol Xl

= [Xplal = 205 (%p) x |[Xp]a] < 0.

(4) 1 (%) <3 s (%) <hand s (xg) >}
Because [xp], is symmetrlc to [Xq], N |[upls] ¥ A,uy o, =~ (Xp) + [[Xqlal % A,u (xq), this case is analogous to Case (3). Thus,

Bolal % Atz () + [algl % Aty - (5) < 0.
(5) (%) = 3 p (Xp) <5 and fis(xg) >3
Mg 050 = B O0) = B () = 15 ) = (1 = 1 ) = = (1= 1 ) = 1 ) )
Similarly,
Mg ) == (g 00 = 1 (0.

Similar to Case (3), we have

[[Xp]al x ANY ry, ~ . (Xp) + [[Xq]al % A,uy Fy, = (%) = Z,U‘a(xp) % |[Xp]al = [[Xp]al < 0.
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Fig. 2. Change of roughness measures in the dataset Spect.

(6) kg (%) > 3 11> (%) > Jand p1 (xg) <

Because the [x,], is symmetric to [xq]A in [[Xp]a] % A,uy o7, = (%p) + |[Xqlal < A,uy /¥ ~,.(Xq), this case is similar to Case (5).
Therefore, we have

ol X Aty (%) + [Xalal x Aptg- - (%) < 0. O

Theorem 3.1 states that if K (Xp) #* U (Xq) # U (xp), then |[xp],] x A,uy /7, =~ (Xp) + | [Xqal xA,u iy ~,.(x4) < 0. Because
Ry (%) # s (%), g (Xp) # fiy- () and I ”(x,J o~ ,u~'3(xq) derive as u1~ (x,) #~ 1y (xq) # p1- (%) respec’hvely, they are re-
garded as one case. Furthermore it 1s obv10us that |[x,],] x A,uy ’7 F(xp) + [[Xq]g] x A,u (xg) =0 if ,uy~( Xp) =

A

M (Xq) = Mo (Xp)-

Ya

Ys FY F
In the following, we analyze the change of A,uy e =, (Xp) x A,uy v ~ . (Xq) with partition ordering.

Theorem 3.2. Let S; = (U,A) and S, = (U,B) be two information systems, Y CU and Y, Ys € F(U) two fuzzy sets. If
[xplg = [Xpla U [Xqla (xp,xq € U), for Vx; ¢ [xp]g such that [x;]z = [xi],, NYNA(XP) # ,“YNA(Xq) # ,uYNB( p), and My ( ) <% NYNA(XP) <3
and 1y (% (%q) <1 (or 1 ( S 1y (%p) = 1and ,uy~A(xq) > 1) then

AH;I;F@F(X;:) X AM;BF;AF(Xq) <0,

_ gl
(i) = Sr ARy

YpFY,F

where j1 (x;) = LAy

il * My, () = U (%) — U (Xi).

YuF YiF

Proof. (1) 1y (xp) <3, 1y (xp) <1and 1 ( q) <1

|[XP}A N Y| x |[Xglal — |Xplal X |[Xg]a N Y|)2
Ap~ x A =- <0.
R e (WEa v Ea AN
By the existing condition ,u~ (xp) # ,u~ (Xq) # ,u~( »), We have Au (x,,) A,uy~Fy~F(xq) <0.
(2) Ky (Xp) = 3, ﬂ,a(xp) >} and s ( 9 =3
. o (1%la N Y1 X Xalal = 1Xpal X [Xela N YT\
Al Gy o) X Al o) = ‘< (T lal + Kall) * [l <0
By the existing condition - (Xp) 7 - (Xq) # J~ (xp), we have Au;w (%p) x A,uy o7, ~. (%) <0. O

Theorem 3.3. Let S; = (U,A) and S, = (U,B) be two information systems, Y CU and Y, Vg e F(U) two fuzzy sets. If
Xpls = DXpla U gl (xpsXq € U) for Vi ¢ [plg such that [xlg = [Xla - (xp) # H (%) # i (%p), and fi (xp), f (xp) and

1 (xq) are not simultaneously greater or less than 1, then the sign of A,uy o =, (xp) x A,u\;BF;AF(xq) is uncertain, where

7 (o) = Bnr g (6) = BT A o (%) = g (6) = g, (%)
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Proof. To prove this theorem, four cases should be investigated as follows.

(1) K (*%p) < 3 Ky (%p) > 3 and Ky (xq) <3
|Xqla N Y] X |[Xplal = [Xqla| X |[Xpla N Y]

(Ixqlal + [[uplal) > |xqlal
_ Mg, (Xq) X [[Xp]al — Ha, (Xp) X |[Xp]al <0
|Xqlal + |[Xp]al -
Furthermore, it is obvious that the sign of 1- By (xp) — Hy (xp) is uncertain by the condition
A B

,Lt~(Xp) <3 & He () =3 & ﬂN(xq) <z

Therefore, the sign of Ay FY ~ . (Xp) x A,uy;F;F( q) = (1-— Ky (xp) — ,uy~B(xp)) X (,uy~A (Xq) — ,uy~g(xp))is also uncertain.

(2) 7, (%) < J 11 (%p) < and pi (xg) >

Because the [x,], is symmetric to [x4], in AH;F; (xp) X AL~

B TA

Ve
that the sign of A,uy /7, = (Xp) % A,uy oy, = (Xq) = (,uy~A (xp) — ( b)) X

Ky (Xq) —Hy (Xp) =

F( ) this case is analogous to Case (1). Thus, we obtain

)F 1- (xq) - ,uy~B(xp))15 also uncertain.
(3) g (%) = b p (xp) <3 and g (xg) > §
A (%) % Ay )
= (g (%) = (1= - 06)) x (1 = - () = (1 = 12 (%))
= (1= (%) = 15 (%)) % (15 (%) = 15 (%)

Similar to Case (1), the sign of A~ ~ (xp) x Auy k7 ~ (%) is also uncertain.

Ys FY F

(4) prg (%p) = 3 iy (xp) = 3 and puz (xq) < 5

Because [xp], is symmetric to [xg], in A,uﬁﬁ(xp) x A,uﬁﬁ(xq), this case is similar to Case (3). Therefore, the sign of

B TA B TA

A (%) X Al - (xg) = (1= 1y (%) = 1y (%)) X (i (%) = - (%)) also uncertain. O

From Theorems 3.2 and 3.3, we can see that 1f,u (xp) # ny (xq) # Il (xp), 1y (xp), Hy (xq) and ny (xp) are simultaneously
greater or less than ] then A,uy oy >~ (xp) x A,uy iy (xq) <0. Otherw1se the sign ofAuy o ’;( Xp) X A,uy~EFy~F(xq) is uncertain. Be-
cause - (xp) # ,u~( 7) n (xp) #* U (xp) and ,u (xp) # g (xq) deduce H (xp) # I (Xq) # I (xp) respectively, they are
regarded as one case. It is obv10us that A,u (xp) X A,uy e ~.(xg) =0 if B (Xp) = I (Xq) = I (Xp)-

To discover the general change mechamsm of the fuzziness measure of a rough set, the fuzzy entropy is formulated using

its Taylor’s expansion. The following theorem indicates the corresponding results.

Theorem 3.4. Let S; = (U,A) and S, = (U,B) be two information systems, Y CU and ?A,?B € F(U) two fuzzy sets. If
[xplg = [Xpla U [Xqla (Xp,Xq € U) and [xi]p = [Xi]o(VX; ¢ [Xp]p), then

e(Va) ~ e(Fa) ~fi i) ([laI8tG 5, 06) + [l - 00

Fite e, (B ) 2 2
TR x(txp}A(Auy;W;F(xp)) +|[xq1A|(Auy~BFY;F<xq>)>

SEL e+ % Tl [k (8087, 2,00 > B ) )

f” e gy ) 2 2
+ . < (Bl = ol (8117,
f” x,,)/kv (Xq) (,Ll +¢) ) 2
+ : < (Bl = oD (8117, )
Table 1
Description of three UCI datasets.
No. Datasets Objects Condition attributes Decision attributes Classes
1 Spect 267 22 1 2
2 Kr-vs-kp 3196 36 1 2
3 Zoo 101 16 1 7
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where Aps- o (xi) = po- (%) — Hp- (xi), fyw w My ) = ,Qw.)(u;ﬁ(x]) My (X2),o s B (X)), ,;L s, ) (g +6) = ,; e, )
(17000 1 5 s 0 50 ¢ At () 5 4 6 BB () ). and & €0,

Proof. From Properties 3.1,3.2,3.3, we have e(X) = e(XF) = f(,u~ (u1), ,u;F(uz),...,,u;F(un)). Because [x,]; = [X,], U [Xq], for
Xp,Xq € [Xp]p and [xi]; = [xi], for Vx; ¢ [x,]z, we have

e(Ya) —e(Ys) = e(Ya") - e(??)

_Zf#~x, yFyF sz ~XJ 'uyF+€”) ‘u~~(X1)XA'uYFYA()

uey  xF x,eijeU XF
1
= 3 St} AR ) S Y (M, w5+ €)% Bl 2 (00 % M 35)).
Xi€[Xplp xF # B Xi€[xplpX;j€lXplp xF A

Furthermore, because the function e(XF) is symmetric with respect to every independent variable e, (xi), for Vx; € [x,]p,
one has that ”~ (X')(lu;('r) :f/’,(; (up)(,u~ ); for Vx;,x; € [Xplp, VX; € [Xp], and Vx; € [x4],, one has that f/[~ w5 (,u~ +é) =

f”~ (xp y~ (xp) (,u + é) y~ (xq) /4~ (,u + C) = aand one haS that /t/~ (x;) ,u~ (%) ()u + é) p~ (%)) ;¢~ (:u + f)
u~F<Xp>u~F %0) (,uy~BF +¢&) = pﬂ e, ) (,u +¢) = b, where a, b are constants.
X X
Therefore, we have

e(Ya) ~ €(Ys) =i ny (Z Hoag )+ 3 Au;BF;AF(xa)

Xi€[Xpla Xi€[Xqla

a 2
4 (; (35 > - 3 (sn0)
xi€[Xqla
b
j Z ) x HY FyyF (%)
Xi€[XplaX;€[Xqla
b
R ( ) At %)
Xi€[xqlaXj€lXp
b A x A
+§>< G v, = (xi) % 'uYBFYA (%)
Xi€[XplaXj€[Xpla,i7]
b A x A
+ox i 0 X AR, = (%)

X €[XqlaX;€Xq]a.1#]

i B (a8 o 00 + [ 7 ) )
2 2
rox ([xp1A|< Biorn ) )+ el (8017, 2,00 )
0 ol il (811, 00 x Bl - ) )

2
+ 3% 1L = D (811,52, 00

NS NS

2
+ 3% Uyl = el (Bt 7, 09)) - O

Theorem 3.4 shows that the change of fuzzy entropies with the change of condition classes depends on the first- and sec-
ond-order partial derivatives of a fuzzy entropy and the membership of each object. Thus, we introduce the following judg-
ing method.

Judging method 1 (JM1)

A fuzzy entropy can evaluate the roughness of a rough set if it satisfies the following conditions:

(1) its second-order partial derivative with respect to two different independent variables is equal to zero;
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(2) its first-order partial derivative with respect to each independent variable is larger than zero;
(3) its second-order partial derivative with respect to the same independent variable is less than zero.

Remark. It is obvious that pt~ (x )f,uy (x;) for Vx; € U, i.e., A,u = U~ (%)) = 0if BN(Y)/B = BNa(Y)/A or if
IBN3(Y)| = [BNA(Y)|, BN (Y)/B'- BNA(Y)/A and (00 = 7, () ‘for@x, eBKf Addy*honally, from Definition 3.1 and The-

orem 3.4, we conclude that all of the fuzzy entroples satlsfy (RP1) and (RP4). Furthermore, 3x; € BN3(Y) such that
fi (%) # i~ (%) if BNs(Y)| > [BN4(Y)| and U/B - U/A or if |BN(Y)| = [BNa(Y)|, BNy (Y)/B - BN4(Y)/A and 3x; € BNa(Y) such
A B
that H (X)) # K (x;). Therefore, according to Definition 3.1 and Theorems 3.1,3.2,3.3,3.4, we have that the fuzzy entropies
B A

that fulfill the conditions in JM1 satisfy (RP2) and (RP3).
In the following, to provide the judging method for g-entropies, we introduce the following theorem.

Theorem 3.5. Let e(X) = f(,u~(x1) ,u}(xz), ey ,u;(xn)) and X € F(U). If e is a c-entropy, then, for Vx; € U,

f/ ( (Xl) NXF(Xz)""7/'t}F(Xn)) = ;’t;F(x,-)(Ov'"’0’#}‘:(&)»0»"'70)7
i-1 n—i

1"

”;F(xi)W;F(Xi)(H;F (X1)7 H}F (XZ)’ T ’M}F (x”)) :ﬁt/f;F(x,v)yf;F(x,v)(O’ ) 0, ,U,}F (Xi)’ 0: [EER) 0):

"

pe (x,-)psz(xJ) (ﬂ;F (X] )7 M’)‘(’F (Xz), oo HLL;('F (Xn)) =0.

Proof. Without any loss of generality, suppose D = {x;} and D° = {X;,...,Xi_1,Xi1,. . .,Xn}. By the conclusion of Theorem 2.2,
(e(X) = e(X ND) + e(X N D)), we have for Vx; € U,

I;;F(Xi)(uxp(xl) luxp(XZ)’ cee 7#};(“”)) :f/%‘(‘F(Xi)(O" SRR 07 ILI’}F(X[)7 07 cry 0)

i-1 n—i

+ ,i/l;F (x,-)(:u;('p (X]), [RRE} :u;('; (X,',]), O, .u}; (Xiﬂ)% RRE) :u;('p (Xﬂ))

:f';F(Xi)(O""’O’IJ’)ZF(Xi)’O"“’O)' O
i-1 n—i
Theorem 3.5 states that for g-entropy, the first condition in JM1 is naturally satisfied. Therefore, a o-entropy can be used
to evaluate the roughness of a rough set if the g-entropy satisfies the last two conditions in JM1.

Furthermore, by the results of Theorems 3.2 and 3.3, the change of fuzzy entropies with the combination of condition
classes results in uncertainty when the second-order partial derivative with respect to two different independent variables
is not equal to zero. According to the above analysis, we present another method as follows.

Judging method 2 (JM2)
A fuzzy entropy cannot evaluate the roughness of a rough set if the fuzzy entropy satisfies the following condition: its
second-order partial derivative with respect to two different independent variable is not zero.

Remark. From Definition 3.1 and Theorems 3.2,3.3,3.4, we have that the fuzzy entropies that satisfy the condition in JM2 are
contrary to (RP2) and (RP4).

To investigate other methods, we provide the following corollary, which can be straightforwardly derived from
Theorem 3.4.

Corollary 3.1. Let S; = (U,A) and S, = (U,B) be two information systems YCU and Ya,Ys e F(U) two fuzzy sets. If
[Xplg = [Xpla U [Xqla (Xp,Xq € U), for Vx; ¢ [xp]g such that [x;]z = [x;], and ,u~ (x; ;4~ (.uy T &) = fuN (x )”Np(xf)('uﬁf +8), (i #J),
then X

o i e 050+ 6
e(Va) = e(T) =i i) (IIAIAMG 2 00 + [k 5) ) =

2
< (Ibolal8rt g, 0 + AR 7 ) )

where A:u{,;{,;(xi) = p~(Xi) — ,Lt (i), fp~ (X)(#;/v[:) :f;/L~ (xi)(ﬂ~ (X]).,,Ll~ (x2),.. ,Ll (XH)) f:u~ (%) e (%) ('uY Pt &= u~ (x; );L';F(Xj)

Yp

<MY~BF(X1)+51xuy}(xl).,...,uyF(x,)+éleuy pyy i)y o (Xn) + Cn X AR FYF( i) |, and ¢ €[0,1).
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From Corollary 3.1, we can see that for the fuzzy sets derived from the two rough sets that are approximated by two
ordering partitions, the fuzzy entropy values are equal when the membership degrees of each object in the fuzzy sets are
simultaneously greater and less than 1 and their second-order partial derivatives with respect to two different independent
variables are equal to the second-order partial derivative with respect to the same independent variable. From this corollary,
we propose Judging method 3.

Judging method 3 (JM3)

A fuzzy entropy cannot evaluate the roughness of a rough set if the fuzzy entropy satisfies the following condition: its
second-order partial derivative with respect to two different independent variables is equal to the second-order partial
derivative with respect to the same independent variable.

Remark. From the Definition 3.1 and Theorems 3.1 and 3.4, we obtain that the fuzzy entropies that satisfy the condition in
JM3 do not meet (RP2) and (RP4).

4. Using fuzzy entropies to evaluate the roughness of rough sets

Because a rough set can induce a fuzzy set when an object’s rough membership degree is regarded as its fuzzy mem-
bership degree. Therefore, we speculate that certain fuzzy entropies can characterize the roughness of a rough set. In this
section, we investigate which fuzzy entropies can be used to evaluate roughness using the judging methods introduced
above.

4.1. Evaluating roughness with a a-entropy

For convenience, g-entropies are divided into three types: fuzzy entropies based on the Minkowski distance (p = 1), fuzzy
entropies based on Dr and D; and other entropies.

The o-entropies based on the Minkowski distance (p = 1)

Klir et al. [17] proposed the fuzzy Minkowski distance measure between two fuzzy sets. The fuzzy Minkowski distance is
o-distance when the parameter p = 1. In the following, we analyze the g-entropies based on this distance.

1 1 1 1 1
Proposition 4.1. The fuzzy entropies e?l"” , e?é” , egf"”], egf"jl, ef{"’ cannot evaluate the roughness of a rough set.

Proof. By Property 3.1 and the definition of the near set, we have
Dl & 2¢
e, (X") = f( 5 (X1) e (%), s (X)) = ﬁ;.u;p(xi)
By calculation,
, 2
M;F(XI)(M;F(X])7 H}F(Xz), s 7H;F(Xn)) = n >0, Vxel,
,1/4/~F (xi)/ka (xi)(:u;F (X]), XF (Xz), ERRR) H}F (xﬂ)) =0, vxieU,
X X
/Z~F(xf>u~F<x,>(”}r(X1)’“}F(XZ)’ e ,,u;F(xn)) =0, Vx,x€eU, i#].
X X

It is obvious that ;/J/;F(x,)/}(;‘r(x[)(/'t}g (XI)» lu;('p (X2)~, cee 7#;{’.‘ (Xﬂ)) = /L/;F (x,)p;F (%) (lu;('r (X1 )7 /'L;F (XZ)? s 71“};: (XH))(l 7£.]) Thereforev USing

1 1 1
DM DM

1 1
the method JM3, we obtain that e, e ,egf"q , ef}j‘, eaD]M cannot evaluate the roughness of a rough set. O
The following example illustrates the results of the above proposition.

Example 4.1. Let 51 = (U,A),Sz = (U,B), U= {X],X2,X3,X4,X5,X5,X7,X8,X9,X10}, U/A = {{)(1,)(2,)(37)(4,X5}7 {)(5,)(7,)(8}7
{X9,X10}}, U/B={{X1,X2,X3,X4,X5,X6,X7,Xs}, {Xo,X10}}, and Y = {x1,X4,X7,X9,X10}. By calculation, we obtain
BNA(Y) = {X],Xz,Xg,X4,X5} U {X57X77X8} and BNB(Y) = {X],Xz,X37U4,X5,X6,X77X3}. o

It is evident that BNg(Y)/B - BNA(Y)/A and |[BNA(Y)| = |BNg(Y)|. Furthermore, the two fuzzy sets Y,, Yp € F(U) can be
constructed by the two rough sets (B(Y),B(Y)) and (A(Y),A(Y)), respectively, which are denoted as

-~ 2/5 2/5 2/5 2/5 2/5 1/3 1/3 1/3 1 1
YA:L+L+L+L+L+L+L+L+_+_’
X1 X2 X3 X4 X5 X6 X7 Xg X9 Xi0

- 3/8 3/8 3/8 3/8 3/8 3/8 3/8 3/8 1 1
YB:L+L+L+L+L+L+L+L+

X1 X2 X3 X4 X5 X6 X7 X3 X9 X0
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Therefore, p (%1) # pg- (1), iy (X2) 7 g (x2) # - 7 U (Xg) # [ (Xs), Ho (Xo) = [ (Xo), [ (X10) = [ (X10)-
A B A B A B A

By calculation, one  obtains e (Ya) = €20 (V) = 0.6000, €Dl (Y,) = e (V) = 0.6000, €D (V) = D (V) = 0.6000,
w (Y,) = enf4( Y3) = 0.6000, €% (Y,) = €% (V5) = 0.6000, which contradicts (RP3).

nf4 ' ~ol

The o-entropies based on Dr and D;
Bhandari et al. [3] introduced a distance D;, and Fan and Xie [8] proposed another distance Dg. The two distance measures

are both o-distances. The g-entropies based on these distances are analyzed as follows.

Proposition 4.2. The fuzzy entropies e, eP el ebt, 55f4 and e , is able to evaluate the roughness of a rough set.

By the method JM1, we straightforwardly prove the above proposition. The following example illustrates its results.

Example 4.2 (Continued from Example 2.3). YB,YAI,YAZ Y4,,Ya, € F(U) are five fuzzy sets derived from rough sets
(B(Y),B(Y)), (A1(Y),A1(Y)), (A2(Y), A2(Y)), (A3(Y),A3(Y)) and (As(Y),Aq(Y)).

By calculation, one obtains
Dt (Yp) =0.9548, €% (Ys)=0.7181, e%(Ya)=06931, e’(Y,)=07181, e (Ya)=07181,
P (Yp) =0.9463, ePt(Y, ) =06988, e’ (Y, )=06715 e (Ys)=06988, e’ (Y,,)=0.6988,
e (Yp) = 0.8494, eD(Y, ) =0.5296, e%(Y,,)=05272, e%(Ya)=05296, e%(Y,,)=05296,
e’ (Ys) = 0.8362, elt(Ya)=05053, e%(Y,)=05049, e(Ya)=05053, e(Y,,)=0.5053,
e, (Ys) = 0.8494, et (Yy,) = 0.5296, e, (Y,,) = 05272, el (Va,) =0.5296, ebf,(Ys,) = 0.5296,

el (Y) = 08494, €l (Ya)=05296, el (Ys,)=05272, elf(Ya,)=0.5296, e (Ys,) = 0.5296.

Obviously, we have

(1) eff(?;) = e?f(?;) when BNy, (Y)/A1 = BN, (Y)/As & |BNa, (Y)/A1| = |BNa, (Y)/As], which is according with (RP1);

(2) egt(Ye) > ect (Ya,), ecf (Ya) > e (Ya,), eXfVp > el (Ya,), ef(Ya) > ef(Ya,)  when — U/B»-U/As & |BNg(Y)/B| >
IBN4, (Y)/A1l, U/B - U/A; & |BNg(Y)/B| > [BNg,(Y)/Az|, U/B - U/As & |BNg(Y)/B| > [BNa, (Y)/As| and
U/B >~ U/A4 & |BNg(Y)/B| > |BNa,(Y)/A4|, respectively, which are coincident with (RP2);

(3) €% (Ya,) > el (Ya,) When BNy, (Y)/Ar = BNy, (Y)/As & [BNa, (Y)/A1| = BN, (V) /Az| & fhy, (%1) = fty, (X2) < iy, (1) =
,uAZ (x2), whlch satisfies (RP3);

(4) e (Ya,) = €2 (YA4) when BNy, (Y)/A1 = BNa, (Y) /A2 & [BNg, (Y)/A1] = [BN, (Y)/Aa] & pi=(x1) = - = i~ (¥12) =

,uYA X)) =---= ,u (xu) which corresponds with (RP4).

Similarly, it is obvious that ¥, e, egf, elt, elf, and epl, satisfy (RP1)-(RP4).

Other g-entropies
In addition to the g-entropies induced from distance, there are several common entropies. In this section, we will inves-

tigate whether the common entropies can be used to evaluate the roughness of a rough set.
Proposition 4.3. The fuzzy entropies eJy , $ . €k, eoa, €95 is capable to evaluate the roughness of a roughness.
It is straightforward to prove the above proposition by the method JM1, which is illustrated by Example 4.3.

Example 4.3. (Continued from Example 2.3) Without any loss of generality, let the parameter k =1, o = 0.5 and 8 = 1. By
calculation, we obtain

e’ (Yg) = 0.8081, eg‘zﬁ(ym) 0.6377, e*/(Ya)=06261, e*(Y,)=06377, e*(Ys,)=0.6377,
ey (Yp) = 0.6648, ek (Ya ) =0.5057, ek(Ya,) =0.4904, ek(Ya,)=05057, ek(Ya,)=0.5057,
eoa(Ys) = 0.7874, ep(Ya, ) =0.5799, epa(Ya,) =0.5574, epa(Ya,)=0.5799, eos(Ya,)=0.5799,
eos(Ys) = 0.9444, e,5(Ys ) =0.6944, ey5(Ya ) =0.6667, eos(Ya,) =0.6944, eys(Ya,) = 0.6944.

As in Example 2.3, it is obvious that eZZ”, ek, e.sandeys can evaluate the roughness of a rough set.
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4.2. Evaluating roughness with non-c-entropy

In this section, for convenience, non-g-entropies are divided into three types: fuzzy entropies based on the Minkowski
distance (p = 1), fuzzy entropies based on the Minkowski distance (p > 2) and fuzzy entropies based on Dy and D;.

e and ey, are constructed based on the Minkowski distance (p = 1). We first analyze whether they can be used to eval-
uate the roughness of a rough set.

Proposition 4.4. The fuzzy entropies eCDZA” . enpy is incapable to evaluate the roughness of a rough set.
It is straightforward to prove Proposition 4.4 by JM3. The following example illustrates the proposition.

Example 4.4 (Continued from  Example 4.1). By calculation, one obtains e?z’lv'(i’VA) = e?z’b(i’vg) = 0.4286,
enr2(Ya) = en2(Yp) = 0.4286, which contracts with (RP3).

Proposition 4.5. The fuzzy entropies eczM, efg" and enf1 cannot evaluate the roughness of a rough set.
This proposition is straightforward to be proved with JM2, which is illustrated by the following example.

Example 4.5. (Continued from Example 4.1). For simplicity, without any loss of generality, we designate the parameter p as 2.
By calculation, we obtain  eZ(Y) =04699, e (V) =04685 e (Y4 ) =06202, €2, (?VB) =0.6195,

e2,(Y,) = 0.6733ande?;, (Y5) = 0.6708. It is obvious that e (Yp) < €2 (V). €% (V) < €% (V) nf](yg) < enf1 (Ya), which
does not accord with (RP3).
Bhandari et al. [3] introduced a distance D;, and Fan and Xie [8] proposed another distance Dg. The two distance measures
are both o-distances. Based on these measures, many fuzzy entropies were proposed. In the following, We investigate
whether they can be used to evaluate the roughness of a rough set.

Proposition 4.6. The fuzzy entropies eCDZE, e'gzl, €nf3 and e”f3 cannot evaluate the roughness of a rough set.

It is straightforward to prove the proposition by JM2. The following example illustrates its results.

Example 4.6. (Continued from Example 4.1). By calculation, we obtain DE(YNA) 0.1965, DE(?VB) =0.1953,
eny(Ya) = 02243, eDh;(Yp) = 02231, elf(Ya) = 0.1965, e, (Yp) = 0.1953, ebi;(Y,) =0.2243 and eby(Yp) = 0.2231. It is
obvious that eczf(YB) < e?zf(YA), ech(YB) < ech(YA) ,,f3(YB) < enf3(YA) and enf3(Y3) < enfL3(YA), which is incompatible with
(RP3).
Finally, the method proposed by us is not appropriate for certain entropies, such as e?f” (p = 2), because their second-or-
der partial derivatives with two different independent variables (the membership degree of each object) are not zero.

5. Experiment analysis

In this section, we will analyze how Pawlak’s roughness measure, Beaubouef’s rough entropy and the fuzzy entropies
change with the number of attributes provided in the practical datasets, which illustrate the results of Section 4 from the
perspective of experiments. The three datasets used in the experiment, described in Table 1, come from the UCI Machine
Learning Repository. All of the measures in this paper were computed on a personal computer equipped with Intel Core2
Quad CPU Q9400 and 2 GB Memory. The operation system is Windows XP. In the following tables and figures, all of these
measures have been normalized.

5.1. The analysis of Pawlak’s roughness measure and Beaubouef’s rough entropy

In the datasets Spect and Kr-vs-kp, there are two decision classes. They are obviously complementary, and the rough set
generated by using the condition attributes to approximate them are identical in size and structure. Therefore, Pawlak’s
roughness measure and Beaubouef’s rough entropy values for the two decision classes should be equal. However, from Ta-
ble 2, Table 3, we observe that their values for the two decision classes are different when the condition attributes are same.
In the dataset Zoo, there are seven decision classes. Therefore, the rough sets derived from the seven decision classes are
different. Thus, the Pawlak’s roughness measure and Beaubouef’s rough entropy values for the seven decision classes are
not necessarily equal. Table 4 shows the results.

In Table 2, Pawlak’s roughness measure for Class 2 is invariant when the number of attributes decreases to 2 from 4. A
similar result is presented in Table 4. The similarity occurs because the boundary region and upper approximation of each
class are unchanged. Furthermore, as shown in Figs. 2-4, the value range of Beaubouef’s rough entropy is significantly wider
than that of the fuzzy entropies and is comparable with Pawlak’s roughness measure, which is caused by superfluously
including the granule change of the lower and upper approximations.
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5.2. The analysis of fuzzy entropies

From Table 2, we see the changes of the fuzzy entropies with the attributes from the dataset Spect. Thus, the fuzzy entro-

. .. . . . . D? 5
pies are divided into three types: (1) strictly increasing (e ', ecf, e, ext, ect, eqf,, ept,, exf, ek; e and eos); (2) non-

decreasing (efﬁﬂ efé” , efé”, eg;“”], €nf2s ef’]‘g and ef,’l;”); and (3) non-monotone (efj", efé” , ef;“q, el e, egﬁ and e’;fLB).

Furthermore, from Table 3, we obtain that all types of the fuzzy entropies are strictly increasing with the number of attri-
butes in the dataset Kr-vs-kp. Based on the results provided in Tables 2 and 3, it is clear that the first type of fuzzy entropy is
strictly increasing in the two datasets that are suitable for evaluating the roughness of a rough set. This conclusion comply
with Section 4. To illustrate this conclusion, we present in Figs. 2,3 a representative from each type of fuzzy entropy.

The experimental results on the dataset Zoo with seven decision classes are shown in Table 4 and Fig. 4. For brevity, only
three representative entropies are analyzed. Figs. 4a and b illustrate the changes of the roughness measures of the rough sets
derived from Classes 3 and 4, respectively. Fig. 4 shows that these fuzzy entropies change in accordance with the datasets
Spect and Kr-vs-kp.

6. Conclusion

In this paper, we have discussed limitations of the existing roughness measures and introduced a more effective rough-
ness measure of a rough set. Three methods have been proposed for determining whether fuzzy entropies can be measures
for evaluating the roughness of a rough set. The applications of these methods have led to the following conclusions:

(1) For g-entropyi, if its first partial derivative with respect to every independent variable is larger than zero and its sec-
ond-order partial derivative with respect to the same independent variable is less than zero, it can evaluate the roughness of
a rough set.

(2) For non-g-entropy, if its second partial derivative with respect to two different independent variables is equal to the
second partial derivative with respect to the same independent variables, or if its second-order partial derivative with re-
spect to two different independent variables is not zero, it cannot evaluate the roughness of a rough set.

It is our hope that this paper could provide some new ideas on evaluating the roughness of a rough set. Our further re-
search will focus on applications of the proposed methods in testing whether fuzziness measures can evaluate the roughness
in an incomplete rough set model [4], a fuzzy rough set model [11,12], a probability rough set model [55] and a neighbor-
hood rough set model [14,56]. The results of this paper for the integration of roughness and fuzziness measures can also be
utilized in image-processing [27,28,34], clustering [52] and feature selection [42,46].
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