
The k-modes type clustering plus between-cluster information
for categorical data

Liang Bai, Jiye Liang n

Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, School of Computer and Information Technology,
Shanxi University, Taiyuan, 030006 Shanxi, China

a r t i c l e i n f o

Article history:
Received 24 May 2013
Received in revised form
7 September 2013
Accepted 12 November 2013
Communicated by Zhi Yong Liu
Available online 11 January 2014

Keywords:
Cluster analysis
Categorical data
The k-modes type algorithms
Optimization objective function
The between-cluster information

a b s t r a c t

The k-modes algorithm and its modified versions are widely used to cluster categorical data. However, in
the iterative process of these algorithms, the updating formulae, such as the partition matrix, cluster centers
and attribute weights, are computed based on within-cluster information only. The between-cluster
information is not considered, which maybe result in the clustering results with weak separation among
different clusters. Therefore, in this paper, we propose a new term which is used to reflect the separation.
Furthermore, the new optimization objective functions are developed by adding the proposed term to the
objective functions of several existing k-modes algorithms. Under the optimization framework, the
corresponding updating formulae and convergence of the iterative process is strictly derived. The above
improvements are used to enhance the effectiveness of these existing k-modes algorithms whilst keeping
them simple. The experimental studies on real data sets from the UCI (University of California Irvine)
Machine Learning Repository illustrate that these improved algorithms outperform their original counter-
parts in clustering categorical data sets and are also scalable to large data sets for their linear time
complexity with respect to either the number of data objects, attributes or clusters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is an unsupervised classification technique that is used
to partition a set of unlabeled objects and ensure the objects which
have high similarity into the same clusters. To tackle this problem,
various types of clustering algorithms have been developed in the
literature (e.g., [1–8] and references therein), which has extensive
applications in various domains, including information retrieval, image
processing and biological engineering. Since there are a number of
categorical data produced in our real lives, recently increasing atten-
tion has been paid to clustering categorical data [9–13].

However, the lack of intuitive geometric properties for categorical
data imposes several difficulties on clustering them [14,15]. For
example, since the domains of categorical attributes are unordered,
the distance functions for numerical values fail to capture resem-
blance between categorical values. Furthermore, for numerical data,
the representative of a cluster is often defined as the mean of objects
in the cluster. However, it is infeasible to compute the mean for
categorical values. These imply that the techniques used in clustering
numerical data are not applicable to categorical data. Therefore, it is
widely recognized that designing clustering techniques to directly
tackle this kind of data is very important for many applications. So

far, several clustering algorithms have been reported [15–24] to solve
the problem. Among them, the k-modes algorithm [19,20] and its
several modified versions [25–28] are well known for their efficiency.

The k-modes type clustering algorithms often begin with an
initial set of cluster centers and use the alternating minimization
method to solve a nonconvex optimization problem in finding
cluster solutions [1]. However, in the alternative process, the
update formulae of partition matrix and cluster centers are based
on the within-cluster information only, i.e., the within-cluster
compactness. The between-cluster information, i.e., the between-
cluster separation, is not considered, which may result in the
clustering results with weak between-cluster separation. In [29],
we proposed a fuzzy clustering algorithm with the between-
cluster information. The numerical experimental studies illu-
strated that when handling data sets with fuzzy boundaries
between clusters, the between-cluster information can effectively
help users to find out good clustering results. Therefore, we will
use the between-cluster information to improve the effectiveness
of the k-modes algorithm and its modified versions in this paper.
The major contributions are as follows:

� Unlike most existing k-modes type clustering algorithms, both
the within-cluster compactness and between-cluster separa-
tion are employed at the same time to develop the new
optimization objective functions, which are used to derive the
improved clustering algorithms.
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� The updating formulae of the proposed clustering algorithms
are derived, and the convergence of the proposed algorithms
under the optimization framework is proved.

� The performance and scalability of the proposed clustering
algorithms is investigated by using real data sets from UCI.

The rest of this paper is organized as follows. A detailed review of
the k-modes type algorithms is presented in Section 2. In Section 3,
the new k-modes type algorithms are presented and analyzed.
Section 4 illustrates the performance and scalability of the proposed
algorithms. Finally, a concluding remark is given in Section 5.

2. The k-modes algorithm and its modified versions

2.1. Categorical data

As we know, the structural data are stored in a table, where each
row (tuple) represents facts about an object. A data table is also called
an information system in rough set theory [30–32]. Data in the real
world usually contain categorical attributes [12]. More formally, a
categorical data table is defined as a quadruple IS¼ ðU;A;V ; f Þ, where:

� U ¼ fx1; x2;…; xng is a nonempty set of n data points, called
a universe;

� A¼ fa1; a2;…; amg is a nonempty set of m categorical attributes;
� V is the union of attribute domains, i.e., V ¼⋃m

j ¼ 1Vaj , where
Vaj ¼ fað1Þj ; að2Þj ;…; aðnjÞ

j g is the value domain of categorical attri-
bute aj and is finite and unordered, e.g., for any 1rprqrnj,
either aðpÞj ¼ aðqÞj or aðpÞj aaðqÞj . Here, nj is the number of cate-
gories of attribute aj for 1r jrm;

� f : R� A-V is an information function such that f ðxi; ajÞAVaj
for 1r irn and 1r jrm, where R¼ Va1 � Va2 �⋯� Vam and
UDR.

2.2. The k-modes clustering algorithm

The k-modes clustering algorithm is an extension of the k-means
algorithm [2] by using a simple matching dissimilarity measure for
categorical objects, modes instead of means for clusters, and a
frequency-based method to update modes in the clustering process
to minimize the clustering cost function. These extensions have
removed the numeric-only limitation of the k-means algorithm and
enable the k-means clustering process to be used to efficiently
cluster large categorical data sets from real world databases.

The objective function of the k-modes algorithm is defined as
follows [20]:

F0ðW ; ZÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wlid0ðzl; xiÞ ð1Þ

subject to

wliAf0;1g; 1r lrk;1r irn;

∑
k

l ¼ 1
wli ¼ 1; 1r irn;

0o ∑
n

i ¼ 1
wlion; 1r lrk;

8>>>>>><
>>>>>>:

ð2Þ

where kðrnÞ is a known number of clusters; W ¼ ½wli� is a k-by-n
f0;1g matrix, wli is a binary variable, and indicates whether object
xi belongs to the lth cluster, wli ¼ 1 if xi belongs to the lth cluster
and 0 otherwise; Z ¼ ½z1; z2;…; zk� and zl ¼ ½f ðzl; a1Þ; f ðzl; a2Þ;…;

f ðzl; amÞ� is the lth cluster center with categorical attributes a1,
a2, ..., am; d0ðzl; xiÞ is the simple matching dissimilarity measure
between object xi and the center zl of the lth cluster which is

described as

d0ðzl; xiÞ ¼ ∑
m

j ¼ 1
δaj0 ðzl; xiÞ; ð3Þ

where

δaj0 ðzl; xiÞ ¼
1; f ðzl; ajÞa f ðxi; ajÞ;
0; f ðzl; ajÞ ¼ f ðxi; ajÞ:

(
ð4Þ

Similar to the k-means algorithm, the k-modes algorithm uses
the alternating method to minimize the function F0 with the
constraints in (2). In each iteration, W and Z are updated by the
following formulae: When Z is given, W is updated by

ŵli ¼
1 if d0ðẑ l; xiÞrd0ðẑh; xiÞ;1rhrk;
0 otherwise

(
ð5Þ

for 1r irn, 1r lrk. When W is given, Z is updated by

f ðzl; ajÞ ¼ aðrÞj AVaj ð6Þ

where

jfxijf ðxi; ajÞ ¼ aðrÞj ;wli ¼ 1; xiAUgj
Z jfxijf ðxi; ajÞ ¼ aðtÞj ;wli ¼ 1; xiAUgj; 1rtrnj; ð7Þ

for 1r jrm. Here, Vaj ¼ fað1Þj ; að2Þj ;…; aðnjÞj g, nj is the number of
categories of attribute aj for 1r jrm.

2.3. Ng0s improved k-modes algorithm

Ng and He et al. [25,26] introduced a new dissimilarity measure
based on the relative attribute frequencies of the cluster modes.
Using the new dissimilarity measure to the k-modes algorithm can
improve the accuracy of the clustering results and strengthen the
within-cluster similarity. The new dissimilarity measure d1ðzl; xiÞ is
defined as follows:

d1ðzl; xiÞ ¼ ∑
m

j ¼ 1
δaj1 ðzl; xiÞ; ð8Þ

where

δaj1 ðzl; xiÞ ¼
1; f ðzl; ajÞa f ðxi; ajÞ;

1�jcljrj
jclj

; f ðzl; ajÞ ¼ f ðxi; ajÞ

8><
>: ð9Þ

where jclj ¼ jfxijwli ¼ 1; xiAUgj and jcljrj ¼ jfxijf ðxi; ajÞ ¼ aðrÞj ;wli ¼ 1;
xiAUgj. According to the definition of δaj1 , the dominant level of the
mode category is considered in the calculation of the dissimilarity
measure. This modification allows the algorithm to recognize a
cluster with weak intra-similarity and, therefore, assign less
similar objects to such a cluster so that the generated clusters
have strong intra-similarities. Correspondingly, the k-modes
objective function with the new dissimilarity measure is written as

F1ðW ; ZÞ ¼ ∑
n

i ¼ 1
∑
k

l ¼ 1
wlid1ðzl; xiÞ ð10Þ

subject to the same conditions as in (2). The updating formulae of
the modified k-modes algorithm [26] are the same as the k-modes
algorithm.

2.4. The weighted k-modes algorithm

To effectively handle high-dimensional categorical data sets,
Huang [28] proposed the weighted k-modes clustering algorithm.
The algorithm can automatically compute variable weights in
the k-modes clustering process. It extends the standard k-modes
algorithm with one additional step to compute variable weights
at each iteration of the clustering process. The variable weight
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is inversely proportional to the sum of the within-cluster varian-
ces of the variable. As such, noise variables can be identified and
their effects on the clustering result are significantly reduced. The
weighted k-modes objective function [28] is written as

F2ðW ; Z;ΛÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
∑
m

j ¼ 1
wlid2ðzl; xiÞ ð11Þ

subject to the conditions in (2) and

λjA ½0;1�; ∑
m

j ¼ 1
λj ¼ 1; 1r jrm; ð12Þ

where

d2ðzl; xiÞ ¼ ∑
m

j ¼ 1
δaj2 ðzl; xiÞ ¼ ∑

m

j ¼ 1
λβj δ

aj
0 ðzl; xiÞ ð13Þ

is the weighted dissimilarity measure, Λ¼ ½λj� is a vector, λj is
the weight for the jth attribute, which is used to identify the
importance of the attribute in clustering, and βA ð1; þ1Þ is a
parameter for controlling attribute weight λj.

Similar to solving (1), the objective function (11) can be locally
minimized by iteratively updating W, Z and V. Here, the updating
formulae ofW and Z are the same as the k-modes algorithm. When
W and Z are given, V is updated by [28]

λ̂j ¼

0 if Dj ¼ 0;
1

∑m
h ¼ 1;Dh a0

Dj

Dh

� �1=ðβ�1Þ if Dja0

8>>>><
>>>>:

ð14Þ

for 1r jrm, where

Dj ¼ ∑
n

i ¼ 1
∑
k

l ¼ 1
ŵliδ

aj
0 ðẑ l; xiÞ: ð15Þ

2.5. The lack of between-cluster information

Although the above modified algorithms can effectively improve
the accuracy of the clustering results of the k-modes algorithm, it is
noted that the k-modes algorithm and its modified versions face the
local minimum problem. That is, the clustering results guarantee
local minimum solutions only. Its performance heavily depends on
the initial cluster centers. Furthermore, according to (5), (6), (7) and
(13), we remark that the update formulae of W and Z are only based
on the within-cluster information. However, good cluster criteria
should have high within-cluster similarity and low between-cluster
similarity. These algorithms ignore the between-cluster information,
which often results in weak separation between clusters.

Let us demonstrate the importance of the between-cluster
information from the following two respects. The one is to compute
W when Z is fixed. The other is to compute Z when W is fixed.

According to Fig. 1, we see that dgðxi; z1Þ is equal to dgðxi; zn1Þ
(g ¼ 0;1;2). If the dissimilarity between the object and the cluster
centers is only taken into account to compute W, z1 has no more
representability to xi than zn1. However, the separation between zn1
and other cluster centers is weak, compared to that between z1
and other cluster centers. In order to obtain a clustering result
with low between-cluster similarity, we should take advantage of
the between-cluster information to enhance the representability
of z1 and reduce that of zn1, which makes more objects prone to
belong to z1 than zn1.

When computing Z, the representability of each categorical
value in a cluster is evaluated only based on its frequency in the
cluster. This will lead to high importance when the value occurs
frequently in this cluster. However, the representability of the
categorical value in this cluster is likely to be overestimated
because other clusters also contain this value with high frequency.

For example, Fig. 2 shows an attribute distribution in the three
clusters. The categorical value C is the most frequent value in
Cluster 1. However, the categorical value C also occurs frequently
in other clusters. In contrast, although the categorical value D is less
frequent than the categorical value C in Cluster 1, the categorical value
Dmostly occurs in Cluster 1. Therefore, the categorical value D should
have more representability in Cluster 1 than the categorical value C.
This means that when we evaluate the importance of a categorical
value in a cluster, we should not only consider the within-cluster
information, i.e., the frequency in the cluster, but also consider the
between-cluster information, i.e., its distribution between clusters.

According to the above analysis, we see that adding the
between-cluster information to the iterative process can help us
to obtain better W and Z. Therefore, in the next section, we will
propose a novel clustering technique for clustering categorical
data, where the within-cluster and between-cluster information
will be simultaneously employed to derive updating formulae.

3. Plus the between-cluster information

In this section, we will first give a definition of the between-
cluster similarity term which is used to evaluate the between-
cluster separation. Furthermore, we will respectively modify the
k-modes objective functions (1), (10) and (11) by adding the
between-cluster similarity term to them. Finally, we will develop
the new k-modes type clustering algorithms based on these
modified objective functions to obtain updating formulae.

Fig. 1. An illustrative example about the effect of the between-cluster information
on W

Fig. 2. An illustrative example about the effect of the between-cluster information
on Z.
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3.1. The between-cluster similarity term

The between-cluster similarity term is defined as

BgðW ; ZÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wliSgðzlÞ ð16Þ

where SgðzlÞ denotes the similarity between the lth cluster repre-
sented by zl and other clusters, ∑n

i ¼ 1wli is a weight of SgðzlÞ, which
is the number of objects in the lth cluster, gAf0;1;2g is used to
denote the different k-modes algorithms.

To compute zl independent of zh ð1rha lrk), we employ the
mean of the similarity between zl and all the objects in the data set
to evaluate the separation between clusters, instead of the mean of
the similarity between zl and other cluster centers. That is,

SgðzlÞ ¼
1
n

∑
n

i ¼ 1
sgðzl; xiÞ: ð17Þ

where sgðzl; xiÞ is a similarity measure between zl and xi. In the
following subsections, we will provide the different definitions of
sg according to the different k-modes algorithms.

Next, we will explain whether the mean of the similarity
between zl and all the objects in the data set can be used to
evaluate the separation between clusters. Given a set U of objects,
if there is a data point vAR which can minimize the mean of the
similarity between it and all the objects in U, i.e., minvð1=jUjÞ
∑xi AUsgðv; xiÞ, the data point will be used as the representative
point of U to reflect the global features of U. The larger the SgðzlÞ is,
the closer the zl is to the representative point of U, and the more
global features of U zl reflects. However, a cluster tends to exist in
local space. When SgðzlÞ is very large, zl reflects not only some
features of the lth cluster but also some features of other clusters.
In this case, zl may be a boundary point among clusters, which has
weak representability in the lth cluster. If it is selected as a
representative point of the lth cluster, the separation between
the lth cluster and other clusters will be weak. Therefore, we can
use (17) to evaluate the between-cluster separation.

3.2. Huang0s k-modes plus the between-cluster similarity term

We modify the objective function (1) by adding the between-
cluster similarity term to it so that we can simultaneously
minimize the within-cluster dispersion and enhance the
between-cluster separation. The new objective function is written
as follows:

Fn0 ðW ; Z; γÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wlid0ðzl; xiÞþγ ∑

k

l ¼ 1
∑
n

i ¼ 1
wliS0ðzlÞ; ð18Þ

subject to the same conditions as in (2), where the parameter γ is
to maintain a balance between the effect of the within-cluster
information and that of the between-cluster information on the
minimization process of (18). Here, the similarity measure s0 is
defined as

s0ðzl; xhÞ ¼ ∑
m

j ¼ 1
ϕaj

0 ðzl; xhÞ; ð19Þ

where

ϕaj
0 ðzl; xhÞ ¼ 1�δaj0 ðzl; xhÞ: ð20Þ

When the initial set Z of cluster centers and γ are given, a key
issue is how to derive rigorously the updating formulae of W and Z
and guarantee that a local minimal solution of Fn0 ðW ; Z; γÞ can be
obtained in a finite number of iterations. The matrices W and Z are
calculated according to the following two theorems:

Theorem 1. Let Ẑ and γ be fixed and consider the problem:

min
W

Fn0 ðW ; Ẑ ; γÞ subject to ð2Þ:

The minimizer Ŵ is given by

ŵli ¼

1 if d0ðẑ l; xiÞþγ
1
n

∑
n

p ¼ 1
s0ðzl; xpÞ

rd0ðẑh; xiÞþγ
1
n

∑
n

p ¼ 1
s0ðzh; xpÞ;

1rhrk;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

Proof. For a given Z, all the inner sums of the quantity

∑
k

l ¼ 1
∑
n

i ¼ 1
wlid0ðzl; xiÞþγ ∑

k

l ¼ 1
∑
n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
s0ðzl; xpÞ

¼ ∑
n

i ¼ 1
∑
k

l ¼ 1
wli d0ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
s0ðzl; xpÞ

" #
;

are independent. Minimizing the quantity is equivalent to mini-
mizing each inner sum. We write the ith inner sum (1r irn) as

φi ¼ ∑
k

l ¼ 1
wli d0ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
s0ðzl; xpÞ

" #
:

When whi ¼ 1, we have wti ¼ 0;1rtrk; tah and

φi ¼ d0ðzh; xiÞþγ
1
n

∑
n

p ¼ 1
s0ðzl; xpÞ:

It is clear that φi is minimized iff d0ðzh; xiÞþγð1=nÞ∑n
p ¼ 1s0ðzh; xpÞ

is minimal for 1rhrk. The result follows. □

Theorem 2. Let Ŵ and γ be fixed and consider the problem:

min
Z

Fn0 ðŴ ; Z; γÞ subject to ð2Þ:

The minimizer Ẑ is given by

f ðẑ l; ajÞ ¼ aðrÞj AVaj

which satisfies

jcljrj
jclj

�γ
jcjr j
n

Z
jcljqj
jclj

�γ
jcjqj
n

; 1rqrnj;

for 1r jrm, where jcljrj ¼ jfxijf ðxi; ajÞ ¼ aðrÞj ; ŵli ¼ 1gj, jclj ¼∑n
i ¼ 1ŵli

and jcjr j ¼ jfxpjf ðxp; ajÞ ¼ aðrÞj ; xpAUgj.

Proof. For a given W, all the inner sums of the quantity

∑
k

l ¼ 1
∑
n

i ¼ 1
wli d0ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
s0ðzl; xpÞ

" #

¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
∑
m

j ¼ 1
wli δ

aj
0 ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ
" #

;

are independent. Minimizing the quantity is equivalent to mini-
mizing each inner sum. We write the l; jth inner sum (1r lrk and
1r jrm) as

ψ l;j ¼ ∑
n

i ¼ 1
wli δ

aj
0 ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ
" #

:

When f ðzl; ajÞ ¼ aðqÞj , we have

ψ l;j ¼ ∑
n

i ¼ 1;f ðxi ;ajÞaaðqÞj

wliþγ ∑
n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ
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¼ ∑
n

i ¼ 1
wli� ∑

n

i ¼ 1;f ðxi ;ajÞ ¼ aðqÞj

wli

þγ ∑
n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ

¼ ∑
n

i ¼ 1
wli� ∑

n

i ¼ 1;f ðxi ;ajÞ ¼ aðqÞj

wli

0
@ �γ ∑

n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ
!

¼ ∑
n

i ¼ 1
wli�ðjfxijf ðxi; ajÞ ¼ aðqÞj ;wli ¼ 1gj

�γ
1
n

∑
n

i ¼ 1
wlijfxpjf ðxp; ajÞ ¼ aðqÞj ; xpAUgjÞ

¼ jclj�jclj
jcljqj
jclj

�γ
jcjqj
n

� �
:

When W is given, jclj is fixed. It is clear that ψ l;j is minimized iff

jcljqj
jclj

�γ
jcjqj
n

is maximal for 1rqrnj. The result follows. □

Combining Theorems 1 and 2 forms an iterative optimization
method to minimize the objective function (18) in which the
partition matrix W is computed according to Theorem 1 and the
set Z of cluster centers is updated according to Theorem 2 in each
iteration. The convergence of the proposed algorithm can be
obtained as in Theorem 3 below.

Theorem 3. For any given γðZ0Þ, the k-modes algorithm with the
between-cluster similarity term converges to a local minimal solution
in a finite number of iterations.

Proof. We first note that there are only a finite number (N¼∏m
j ¼ 1nj)

of possible cluster centers (modes). We then show that each possible
center appears at most once in the iterative process. Assume that
Zðt1Þ ¼ Zðt2Þ, where t1at2. We can compute the minimizers W ðt1Þ and
W ðt2Þ for Zðt1Þ and Zðt2Þ, respectively. Therefore, we have

Fn0 ðW ðt1Þ; Zðt1Þ; γÞ ¼ Fn0 ðW ðt1Þ; Zðt2Þ; γÞ ¼ Fn0 ðW ðt2Þ; Zðt2Þ; γÞ:
However, the sequence Fn0 ð�; �; γÞ generated by the iterative method is
strictly decreasing. Hence, the result follows. □

3.3. Ng0s improved k-modes plus the between-cluster similarity term

The objective function (10) is modified as follows:

Fn1 ðW ; Z; γÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wlidn1 ðzl; xiÞ

þγ ∑
k

l ¼ 1
∑
n

i ¼ 1
wliS1ðzlÞ; ð21Þ

subject to the same conditions as in (2). The dissimilarity measure
dn1 is defined as

dn1 ðzl; xiÞ ¼ ∑
m

j ¼ 1
δajn1 ðzl; xiÞ; ð22Þ

where

δajn1
ðzl; xiÞ ¼

1; f ðzl; ajÞa f ðxi; ajÞ;

1�
jcljrj
jclj

�γ
jcjr j
n

∑nj
q ¼ 1

jcljqj
jclj

�γjcjq jn

� � ; f ðzl; ajÞ ¼ f ðxi; ajÞ:

8>>>>><
>>>>>:

ð23Þ

Here, jcljrj=jclj�γjcjrj=n is used to reflect the dominant level of the
mode category. When jcljrj=jclj�γjcjr j=n¼∑nj

q ¼ 1ðjcljqj=jclj�γjcjqj=
nÞ, the mode category is 100% dominant and dn1 is the same as d0
in the original k-modes algorithm. When γ ¼ 0, dn1 becomes d1 in

Ng0s improved k-modes algorithm. The similarity measure s1 is
defined as

s1ðzl; xhÞ ¼ ∑
m

j ¼ 1
ϕaj

1 ðzl; xhÞ; ð24Þ

where

ϕaj
1 ðzl; xhÞ ¼ 1�δajn1

ðzl; xhÞ: ð25Þ

To obtain the local minimal value of the modified objective
function, we will provide Theorems 4 and 5 to iteratively updateW
and Z.

Theorem 4. Let Ẑ and γ be fixed and consider the problem:

min
W

Fn1 ðW ; Ẑ ; γÞ subject to ð2Þ:

The minimizer Ŵ is given by

ŵli ¼

1 if dn1 ðẑ l; xiÞþγ
1
n

∑
n

p ¼ 1
s1ðzl; xpÞ

rdn1 ðẑh; xiÞþγ
1
n

∑
n

p ¼ 1
s1ðzh; xpÞ;

1rhrk;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

Proof. Similar to Theorem 1. □

Theorem 5. Let Ŵ and γ be fixed and consider the problem:

min
Z

Fn1 ðŴ ; Z; γÞ subject to ð2Þ:

The minimizer Ẑ is given by

f ðẑ l; ajÞ ¼ aðrÞj AVaj

which satisfies

jcljrj
jclj

�γ
jcjr j
n

Z
jcljqj
jclj

�γ
jcjqj
n

; 1rqrnj;

for 1r jrm.

Proof. For a given W, all the inner sums of the quantity

∑
k

l ¼ 1
∑
n

i ¼ 1
wli dn1 ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
s1ðzl; xpÞ

" #

¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
∑
m

j ¼ 1
wli δ

aj
n1
ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

1 ðzl; xpÞ
" #

;

are independent. Minimizing the quantity is equivalent to mini-
mizing each inner sum. We write the l; jth inner sum (1r lrk and
1r jrm) as

ψ l;j ¼ ∑
n

i ¼ 1
wli δ

aj
n1
ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

1 ðzl; xpÞ
" #

:

When f ðzl; ajÞ ¼ aðrÞj , we have

ψ l;j ¼ jclj�jcljrjþjcljrj 1�
jcljrj
jclj

�γ
jcjr j
n

∑nj

q ¼ 1
jcljqj
jclj

�γ
jcjqj
n

� �
0
BB@

1
CCA

þγ ∑
n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj ðzl; xpÞ

¼ jclj�jcljrjþjcljrj 1�
jcljrj
jclj

�γ
jcjr j
n

∑nj

q ¼ 1
jcljqj
jclj

�γ
jcjqj
n

� �
0
BB@

1
CCA
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þγjclj
jcjrj
n

jcljrj
jclj

�γ
jcjrj
n

∑nj
q ¼ 1

jcljqj
jclj

�γ
jcjqj
n

� �

¼ jclj�jclj

jcljrj
jclj

�γ
jcjr j
n

� �2

∑nj

q ¼ 1
jcljqj
jclj

�γ
jcjqj
n

� �

¼ jclj�jclj

jcljrj
jclj

�γ
jcjrj
n

� �2

1�γ
:

When W is given, jclj is fixed. It is clear that ψ l;j is minimized iff

jcljrj
jclj

�γ
jcjrj
n

is maximal for 1rrrnj. The result follows. □

By comparing the results in Theorems 2 and 5, the cluster
centers Z are updated in the same manner even when we use
different dissimilarity measures in (3) and (22), respectively. Com-
bining Theorems 4 and 5 forms an iterative optimization method
to minimize the objective function (21) in which the partition
matrix W is computed according to Theorem 4 and the set Z of
cluster centers is updated according to Theorem 5 in each iteration.
The convergence of the proposed algorithm can be obtained as in
Theorem 6 below.

Theorem 6. For any given γðZ0Þ, Ng0s improved k-modes algorithm
with the between-cluster similarity term converges to a local minimal
solution in a finite number of iterations.

Proof. We first note that there are only a finite number (N¼
∏m

j ¼ 1nj) of possible cluster centers (modes). We then show that
each possible center appears at most once in the iterative process.
Assume that Zðt1Þ ¼ Zðt2Þ, where t1at2. We can compute the mini-
mizers W ðt1Þ and W ðt2Þ for Zðt1Þ and Zðt2Þ, respectively. Therefore,
we have

Fn1 ðW ðt1Þ; Zðt1Þ; γÞ ¼ Fn1 ðW ðt1Þ; Zðt2Þ; γÞ ¼ Fn1 ðW ðt2Þ; Zðt2Þ; γÞ:
However, the sequence Fn1 ð�; �; γÞ generated by the iterative
method is strictly decreasing. Hence, the result follows. □

3.4. The weighted k-modes plus the between-cluster similarity term

We modify the objective function (11) by adding the between-
cluster similarity term to it. The new objective function is written
as follows:

Fn2 ðW ; Z;Λ; γÞ ¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wlid2ðzl; xiÞþγ ∑

k

l ¼ 1
∑
n

i ¼ 1
wliS2ðzlÞ; ð26Þ

subject to the same conditions as in (2) and (12). The similarity
measure s2 is defined as

s2ðzl; xhÞ ¼ ∑
m

j ¼ 1
ϕaj

2 ðzl; xhÞ; ð27Þ

where

ϕaj
0 ðzl; zhÞ ¼ λβj �δaj2 ðzl; xhÞ: ð28Þ

When γ is given, a key issue is how to derive rigorously the
updating formulae of W, Z and Λ and guarantee that a local
minimal solution of Fn2 ðW ; Z;Λ; γÞ can be obtained in a finite
number of iterations. The matrices W, Z and Λ are calculated
according to the following three theorems:

Theorem 7. Let Ẑ , Λ̂ and γ be fixed and consider the problem:

min
W

Fn2 ðW ; Ẑ ; Λ̂; γÞ subject to ð2Þ:

The minimizer Ŵ is given by

ŵli ¼

1 if d2ðẑ l; xiÞþγ
1
n

∑
n

p ¼ 1
s2ðzl; xpÞ

rd2ðẑh; xiÞþγ
1
n

∑
n

p ¼ 1
s2ðzh; xpÞ;

1rhrk;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

Proof. Similar to Theorem 1. □

Theorem 8. Let Ŵ , Λ̂ and γ be fixed and consider the problem:

min
Z

Fn2 ðŴ ; Z; Λ̂; γÞ subject to ð2Þ:

The minimizer Ẑ is given by

f ðẑ l; ajÞ ¼ aðrÞj AVaj

which satisfies

jcljrj
jclj

�γ
jcjr j
n

Z
jcljqj
jclj

�γ
jcjqj
n

; 1rqrnj;

for 1r jrm.

Proof. For a given W and Λ, all the inner sums of the quantity

∑
k

l ¼ 1
∑
n

i ¼ 1
wli d2ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
s2ðzl; xpÞ

" #

¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
∑
m

j ¼ 1
wli δ

aj
2 ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

2 ðzl; xpÞ
" #

;

are independent. Minimizing the quantity is equivalent to mini-
mizing each inner sum. We write the l; jth inner sum (1r lrk and
1r jrm) as

ψ l;j ¼ ∑
n

i ¼ 1
wli δ

aj
2 ðzl; xiÞþγ

1
n

∑
n

p ¼ 1
ϕaj

2 ðzl; xpÞ
" #

:

When f ðzl; ajÞ ¼ aðtÞj , we have

ψ l;j ¼ ∑
n

i ¼ 1;f ðxi ;ajÞaaðtÞj

wliλ
β
j þγ ∑

n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj

2 ðzl; xpÞ

¼ ðjclj�jcljt jÞλβj þγjclj
jcljt j
n
λβj

¼ jcljλβj �jclj
jcljt j
jclj

�γ
jcjt j
n

� �
λβj :

When W and Λ are given, jclj and λj are fixed. It is clear that ψ l;j
is minimized iff

jcljt j
jclj

�γ
jcjt j
n

is maximal for 1rtrnj. The result follows. □

Theorem 8 tells us that the cluster centers Z are updated in the
same manner as the original k-modes algorithm even when
we use the new weighted dissimilarity measure. It implies that
computing the minimizer Ẑ is independent of Λ̂.
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Theorem 9. Let Ŵ , Ẑ and γ be fixed and β41, Fn2 ðŴ ; Ẑ ;Λ; γÞ
reaches a local minimum only if Λ satisfies the following conditions:

λ̂j ¼

0 if D0
j ¼ 0;

1

∑m
h ¼ 1;D0

h a0

D0
j

D0
h

" #1=ðβ�1Þ if D0
ja0

8>>>>><
>>>>>:

ð29Þ

for 1r jrm, where

D0
j ¼ ∑

k

l ¼ 1
jclj�jcljrl jþγjclj

jcjrl j
n

� �
; ð30Þ

jcljrl j ¼ jfxijf ðxi; ajÞ ¼ f ðzl; ajÞ;wli ¼ 1; xiAUgj,
jcjrl j ¼ jfxijf ðxi; ajÞ ¼ f ðzl; ajÞ; xiAUgj for 1r lrk.

Proof. We rewrite Fn1 as

Fn2 ðŴ ; Ẑ ;Λ; γÞ

¼ ∑
k

l ¼ 1
∑
n

i ¼ 1
wli ∑

m

j ¼ 1
λβj δ

aj
0 ðzl; xiÞ

þγ ∑
k

l ¼ 1
∑
n

i ¼ 1
wli ∑

m

j ¼ 1
λβj

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ

¼ ∑
m

j ¼ 1
λβj ∑

k

l ¼ 1
∑
n

i ¼ 1
wliδ

aj
0 ðzl; xiÞ

þγ ∑
m

j ¼ 1
λβj ∑

k

l ¼ 1
∑
n

i ¼ 1
wli

1
n

∑
n

p ¼ 1
ϕaj

0 ðzl; xpÞ

¼ ∑
m

j ¼ 1
λβj ∑

k

l ¼ 1
jclj�jcljrl j
� �

þγ ∑
m

j ¼ 1
λβj ∑

k

l ¼ 1
jclj

jcjrl j
n

¼ ∑
m

j ¼ 1
λβj ∑

k

l ¼ 1
jclj�jcljrl jþγjclj

jcjrl j
n

� �

¼ ∑
m

j ¼ 1;D0
j a0

λβj ∑
k

l ¼ 1
jclj�jcljrl jþγjclj

jcjrl j
n

� �

We know that jclj, jcljrl j and jcjrl j are constants for fixed Ŵ and Ẑ .
The Lagrangian multiplier technique is used to obtain the follow-
ing unconstrained minimization problem:

~P ðΛ;αÞ ¼ ∑
m

j ¼ 1;D0
j a0

λβj ∑
k

l ¼ 1
cl
�� ���jcljrl jþγjclj

jcjrl j
n

� �

�α ∑
m

j ¼ 1;D0
j a0

λj�1

0
@

1
A; ð31Þ

where α is the Lagrangian multiplier. If ðΛ̂; α̂Þ is a minimizer of
~P ðΛ;αÞ, the gradients in both sets of variables must vanish. Thus,

∂ ~P ðΛ;αÞ
∂λj

¼ β ∑
k

l ¼ 1
cl
�� ���jcljrl jþγjclj

jcjrl j
n

� �
λβ�1
j �α¼ 0; 1r jrm;

ð32Þ
and

∂ ~P ðΛ;αÞ
∂α

¼ ∑
m

j ¼ 1;D0
j a0

λj�1¼ 0: ð33Þ

From (32) and (33), we obtain

λ̂j ¼
1

∑m
h ¼ 1;D0

h a0

∑k
l ¼ 1 cl

�� ���jcljrl jþγjclj
jcjrl j
n

� �

∑k
l ¼ 1 cl

�� ���jclhrl jþγjclj
jchrl j
n

� �
2
664

3
775
1=ðβ�1Þ ð34Þ

where D0
ja0. This shows that (34) is the necessary conditions to

reach the minimum value of the objective function Fn2 when W
and Z are fixed. □

Theorem 10. For any given γðZ0Þ, the weighted k-modes algorithm
with the between-cluster similarity term converges to a local minimal
solution in a finite number of iterations.

Proof. We first note that there are only a finite number of possible
partitions W. We then show that each possible partition W

appears at most once by the algorithm. Assume that W ðt1Þ ¼W ðt2Þ,
where t1at2. We note that, given W ðtÞ, we can compute the

minimizer ZðtÞ which is independent of ΛðtÞ. For W ðt1Þ and W ðt2Þ, we
have the minimizers Zðt1Þ and Zðt2Þ, respectively. Using W ðt1Þ and

Zðt1Þ, and W ðt2Þ and Zðt2Þ, we can compute the minimizers Λðt1Þ and

Λðt2Þ, respectively, according to Theorem 9. Although Zðt1Þ may not

be equal to Zðt2Þ, jcðt1Þljr j=jcðt1Þl j�γjcðt1Þjr j=n¼ jcðt2Þljr j=jcðt2Þl j�γjcðt2Þjr j=n and

jcðt1Þl j ¼ jcðt2Þl j for 1r jrm, 1r lrk. It is clear that Λðt1Þ ¼Λðt2Þ.
Therefore, we obtain

Fn2 ðW ðt1Þ; Zðt1Þ;Λðt1Þ; γÞ ¼ Fn2 ðW ðt2Þ; Zðt2Þ;Λðt2Þ; γÞ:
However, the sequence Fn2 ð�; �; �; γÞ generated by the algorithm is
strictly decreasing. Hence, the result follows. □

3.5. The effect of the parameter γ

The parameter γ is used to maintain a balance between the
effect of the within-cluster information and that of the between-
cluster information. It has the following features in control of the
clustering process:

� When γ40, the between-cluster similarity term BgðW ; ZÞ will
play an important role in the minimization of Fng , gAf0;1;2g.
The clustering process will attempt to assign each object to a
cluster farther from the representative point of U to make the
between-cluster similarity term smaller. When the locations of
objects are fixed, in order to minimize the term, the clustering
process will move the cluster centers to some locations which
are farther from the representative point of U. However, the
value of γ should not be too large. The reason is that when γ is
very large so that the between-cluster similarity term dom-
inates the clustering process, the cluster centers are moved to
the locations of outliers in U. Therefore, we suggest γo1.

� When γ ¼ 0, the between-cluster similarity term will not play
any role in the clustering process. Fng will become the original
objective functions Fg. The clustering process turns to minimize
the within-cluster dispersion.

� When γo0, the clustering process will try to move the cluster
centers to the location of the representative point of U. This is
contradictory to the original idea of clustering. Therefore, γ
cannot be smaller than zero.

The above properties tell us that an appropriate γ can enhance
the performance of the k-modes type algorithms in clustering
categorical data. However, the appropriate setting of γ depends
on the domain knowledge of the data sets, it is difficult to direc-
tly choose a suitable value. Therefore, in the proposed clustering
algorithms, we will not select a fixed γ value but a sequence Γ
which includes several γ values. In clustering process, a larger γ
value is first used to obtain a clustering result (W, Z) or ðW ; Z;ΛÞ.
Furthermore, we gradually reduce the γ value and weaken the
effect of the between-cluster information in clustering the given
data set until the γ value is equal to 0 which makes minimizing
the new objective functions Fng is equivalent to minimizing the
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original objective functions Fg. This means that in the proposed
clustering algorithms, instead of directly minimizing the objective
functions Fg with the constraints in (2), we consider a scheme of
obtaining a solution of the problem at the limit of γ↓0 of

min Fng ðW ; Z; γÞ or Fng ðW ; Z;Λ; γÞ subject to ð2Þ:
The basic description of the scheme is as follows.

Step 1: Let Γ ¼ fγ1; γ2;…; γog be a sequence such that
14γ14γ24⋯4γo ¼ 0. Initialize Z1 and Λ1 and set e¼1.

Step 2: If gAf0;1g, use Ze as the initial values to compute
ðŴ e; Ẑ eÞ which is a local optimal solution of

min Fng ðW ; Z; γeÞ subject to ð2Þ;
and set FðeÞ ¼ Fng ðŴ e; Ẑ e; γeÞ; otherwise use Ze and Λe as
the initial values to compute ðŴ e; Ẑ e; Λ̂eÞ which is a local
optimal solution of

min Fng ðW ; Z;Λ; γeÞ subject to ð2Þ;
and set FðeÞ ¼ Fng ðŴ e; Ẑ e; Λ̂e; γeÞ.

Step 3: If e41 and FðeÞ ¼ Fðe�1Þ or eZo, then output ðŴ e; Ẑ eÞ
or ðŴ e; Ẑ e; Λ̂eÞ and stop; otherwise set Zeþ1 ¼ Ẑ e,
e¼ eþ1 and goto Step 2.

3.6. The computational complexity

The proposed clustering algorithms are scalable to the number of
objects, attributes or clusters. This is because the proposed algo-
rithms only add a new computational cost to the k-modes clustering
process to calculate the between-cluster term. The runtime com-
plexity can be analyzed as follows. We only consider the four major
computational steps:

� Computing the between-cluster similarity term: Before imple-
menting the proposed algorithms, we calculate and save the
frequency of each categorical value of each attribute in U,
which will be used to compute Bg. The step takes Oðn∑m

j ¼ 1njÞ
operations.

� Partitioning the objects: Given Z or Z and Λ, each object is
assigned to a cluster. This process simply computes the mem-
berships in Theorem 1 for each object in all k clusters. Thus, the
computational complexity for this step is O(mnk) operations.

� Updating the cluster centers: Given W or W and Λ, updating
cluster centers is finding the modes of the objects in the same
cluster. Thus, for k clusters, the computational complexity for
this step is O(mnk) operations.

� Calculating attribute weights: If g¼2, we need to calculate Λ
based on the given W and Z. In this step, we only go through
the whole data set once to update the attribute weights. The
computational complexity of this step is also O(mnk).

If one needs te iterations to obtain a local minimal solution of
Fng for each γe ðe¼ 1;2;…; oÞ, the total computational complexity
of the proposed algorithms is Oðn∑m

j ¼ 1njþmnk∑o
e ¼ 1teÞ. This

shows that the computational complexity increases linearly with
the number of objects, attributes or clusters.

4. Experimental analysis

The main aim of this section is to evaluate the clustering
performance and scalability of the proposed algorithms. We have
selected the ten categorical data sets from the UCI Machine
Learning Repository [33] which are widely used in other publis-
hed papers to test the clustering algorithms. In the data sets, if

the attribute value of an object is missing, then we denote the
attribute value by n.

4.1. Performance analysis

To evaluate the effectiveness of clustering algorithms, we will
first introduce three evaluation indices, i.e., accuracy (AC), preci-
sion (PE), and recall (RE) [34], which are defined as

AC ¼∑k
i ¼ 1ai
n

; PE¼
∑k

i ¼ 1
ai

aiþbi

� �
k

; RE¼
∑k

i ¼ 1
ai

aiþci

� �
k

;

where al is the number of objects that are correctly assigned to the
lth class ð1r lrkÞ, bl is the number of objects that are incorrectly
assigned to the lth class, cl is the number of objects that should be
in, but are not correctly assigned to the lth class.

Furthermore, we will use the proposed algorithms to improve
the k-modes algorithm [20], the weighted k-modes algorithm [28]
and Ng0s k-modes algorithm [26]. These improved algorithms
will be compared with those original algorithms. Due to the fact
that the performance of the k-modes type algorithms depends
on initial cluster centers, we randomly select 100 initial cluster
centers and carry out 100 runs of each algorithm on these data
sets. In each run, the same initial cluster centers are used in these
algorithms. Before implementing these improved algorithms, we
need to provide a sequence Γ ¼ fγ1; γ2;…; γog. We set γ1 ¼ 0:9,
γo ¼ 0 and γeþ1 ¼ γe�0:1, 1reoo.

We present the comparative results of clustering on the
following data sets.

Lung cancer data: The data set was used by Hong and Young
to illustrate the power of the optimal discriminant plane even in ill-
posed settings. This data has 32 instances described by 56 catego-
rical attributes. It contains three classes.

Soybean data: The data set has 47 records, each of which is
described by 35 attributes. Each record is labeled as one of the four
diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root
Rot, and Phytophthora Rot. Except for Phytophthora Rot which has
17 records, all other diseases have 10 records each.

Zoo data: Zoo data set contains 101 elements described by 17
Boolean-valued attributes and 1 type attribute. Data set with 101
elements belongs to seven classes.

Heart disease data: The data set generated at the Cleveland
Clinic has 303 instances with eight categorical and five numeric
features. It contains two classes: normal (164 data objects) and
heart patient (139 data objects). In the test, all numerical attri-
butes are removed from the data set.

Dermatology data: The data set describes clinical features and
histopathological features of erythemato-squamous diseases in der-
matology. It contains 366 elements and 33 categorical attributes. It
has six clusters: psoriasis (112 data objects), seborrheic dermatitis (61
data objects), lichen planus (72 data objects), pityriasis rosea (49 data
objects), chronic dermatitis (52 data objects) and pityriasis rubra
pilaris (20 data objects).

Credit approval data: The data set contains data from credit card
organization, where customers are divided into two classes. It is a
mixed data set with eight categorical and six numeric features. It
contains 690 data objects belonging to two classes: negative (383
data objects) and positive (307 data objects). In the test, we only
consider the categorical attributes on the data set.

Breast cancer data: The data set was obtained from the Uni-
versity Medical Center, Institute of Oncology, Ljubljana, Yugoslavia. It
consists of 699 data objects and 9 categorical attributes. It has two
clusters: Benign (458 data objects) and Malignant (241 data objects).

Letter recognition data: The data set contains character image
features of 26 capital letters in the English alphabet. We take data
objects with similar looking alphabets, E and F alphabets from this
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data set. There are 1543 data objects (768 E and 775 F) described
by 16 attributes which are integer valued and seen as categorical
attributes in the experiment.

Mushroom data: The data set includes descriptions of hypothe-
tical samples corresponding to 22 species of gilled mushrooms in
the Agaricus and Lepiota Family. It consists of 8124 data objects
and 22 categorical attributes. Each object belongs to one of the
two classes, edible (4208 objects) and poisonous (3916 objects).

Performance results: According to Tables 1–9, we see that the
performances of these improved algorithms on most data sets are
evidently better than the corresponding original algorithms for AC,
PE, and RE. Since the between-cluster terms are added, the cluster-
ing accuracies of the original algorithms are enhanced by around
4–5%. On the breast cancer data set, these experimental results
shown us that the between-cluster terms can help the original
algorithms to find the better clustering results and weaken the effect
of initial cluster centers. However, we also notice that some of the
original algorithms provide superior results to the improved ones for
PE in Tables 6 and 7. That could happen. The main reason is that as
the accuracy AC of a clustering is enhanced, the average of the
cluster purity PE does not necessarily increase. In some cases, while
the number of objects correctly classified (i.e., ∑k

i ¼ 1ai) of a cluster-
ing increases the number of objects incorrectly classified (bi) in some
of the clusters may be reduced. In these cases, it is not enough to
only consider PE to evaluate the clustering result. We do not deny PE.
Conversely, we believe that the larger the value of PE, the better
the clustering solution. We mean that other measures should be
simultaneously considered.

4.2. Scalability analysis

In the scalability analysis, we test the scalability of the original
k-modes algorithm plus the between-cluster term on the connect-4 and census data sets. The computational results are performed by

Table 1
Means of AC, PE, RE for 100 runs of algorithms on the lung cancer data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.5322 0.5803 0.5344 0.5631 0.5516 0.6003
PE 0.5886 0.6196 0.5967 0.5972 0.6181 0.6480
RE 0.5293 0.5800 0.5352 0.5646 0.5427 0.6069

Table 2
Means of AC, PE, RE for 100 runs of algorithms on the soybean data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.8553 0.9234 0.8613 0.9068 0.9396 0.9979
PE 0.9020 0.9462 0.8948 0.9291 0.9598 0.9983
RE 0.8407 0.9121 0.8471 0.8924 0.9291 0.9975

Table 3
Means of AC, PE, RE for 100 runs of algorithms on the zoo data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.8324 0.8509 0.8283 0.8552 0.8528 0.8900
PE 0.8433 0.8572 0.6528 0.8534 0.8374 0.8525
RE 0.6576 0.6646 0.8345 0.6947 0.7058 0.7525

Table 4
Means of AC, PE, RE for 100 runs of algorithms on the dermatology data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.6869 0.7718 0.6854 0.8195 0.7642 0.8211
PE 0.7633 0.8660 0.7692 0.8545 0.7756 0.8905
RE 0.5750 0.6709 0.5765 0.7704 0.6607 0.7668

Table 5
Means of AC, PE, RE for 100 runs of algorithms on the heart disease data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.7462 0.7882 0.7472 0.7728 0.7836 0.8053
PE 0.7573 0.7886 0.7566 0.7746 0.7839 0.8015
RE 0.7446 0.7869 0.7455 0.7767 0.7788 0.8056

Table 6
Means of AC, PE, RE for 100 runs of algorithms on the credit approval data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.7367 0.7647 0.7442 0.7578 0.7612 0.7942
PE 0.7617 0.7602 0.7403 0.7585 0.7574 0.7923
RE 0.7358 0.7656 0.7455 0.7517 0.7608 0.7952

Table 7
Means of AC, PE, RE for 100 runs of algorithms on the breast cancer data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.8482 0.9270 0.8530 0.8991 0.8645 0.8770
PE 0.8731 0.9343 0.8733 0.9119 0.9062 0.8770
RE 0.7893 0.9050 0.7968 0.8959 0.8066 0.8245

Table 8
Means of AC, PE, RE for 100 runs of algorithms on the letters data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.6910 0.7350 0.6836 0.7229 0.7299 0.7523
PE 0.7016 0.7496 0.6943 0.7339 0.7450 0.7684
RE 0.6911 0.7354 0.6838 0.7232 0.7304 0.7529

Table 9
Means of AC, PE, RE for 100 runs of algorithms on the mushroom data set.

Index Huang0s k-modes Weighted k-modes Ng0s k-modes

Original Improved Original Improved Original Improved

AC 0.7176 0.8190 0.7106 0.8006 0.7969 0.8366
PE 0.7453 0.8360 0.7414 0.8239 0.8079 0.8494
RE 0.7132 0.8149 0.7056 0.7956 0.7933 0.8330
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using a machine with an Intel Q9400 and 2 G RAM. The computa-
tional times of the proposed algorithm is plotted with respect to the
number of objects, attributes and clusters, while the other corre-
sponding parameters are fixed.

Connect-4 data: The data set contains all legal 8-ply positions in
the game of connect-4 in which neither player has won yet, and in
which the next move is not forced. This data set contains 67,557
instances and 42 categorical attributes. It has three class: win
(44,473), loss (16,635) and draw (6449). We take 50,000 records
from this data set to test the scalability of the algorithms. Fig. 3
(a) shows the computational times against the number of objects,
while the number of attributes is 42 and the number of clusters
is 3. Fig. 3(b) shows the computational times against the number
of attributes, while the number of clusters is 3 and the number of
objects is 30,000. Fig. 3(c) shows the computational times against
the number of clusters, while the number of attributes is 42 and
the number of objects is 30,000.

Census data: The census data has 2,458,284 records with 68
categorical attributes, about 352Mbytes in total. It was derived from
the USCensus1990raw data set which was obtained from the (U.S.
Department of Commerce) Census Bureau website using the
Data Extraction System. We take 100,000 records from this data set
to test the scalability of the algorithms. Fig. 4(a) shows the computa-
tional times against the number of objects, while the numbers of
attributes are 68 and the number of clusters is 3. Fig. 4(b) shows the
computational times against the number of attributes, while the
numbers of clusters are 3 and the number of objects is 50,000.
Fig. 4(c) shows the computational times against the number of
clusters, while the numbers of attributes are 68 and the number of
objects is 50,000.

Scalability results: According to Figs. 3 and 4, the improved
k-modes algorithm requires more computational times than the
original k-modes algorithm. It is an expected outcome since it requires
the more additional arithmetic operations of the between-cluster
information and the numbers of iterations than the original one. Since
the between-cluster term is added, the solution capability of the
original algorithm is boosted. Therefore, its numbers of iterations in
the solution process increase. From these figures, we see that its
computational times are around tenfold those of the original k-modes
algorithm. However, we also see that the proposed algorithm is
scalable, i.e., the computational times increase linearly with respect
to either the number of objects, attributes or clusters. Therefore, it can
cluster large categorical data efficiently.

5. Conclusions

In this paper, we have presented a novel clustering technique
for categorical data, which simultaneously minimizes the within-
cluster dispersion and enhances the between-cluster separation in
the clustering process. This technique is used to improve the
performance of the existing k-modes algorithms. Furthermore, we
rigorously derive the updating formulae and the convergence of
the improved algorithms under the optimization framework. The
time complexity of the proposed algorithms has been analyzed
which is linear with respect to either the number of data objects,
attributes or clusters. We have tested the proposed algorithms
using several real data sets from UCI. Experimental results have
shown that the improved algorithms are effective and scalable in
clustering categorical data sets.
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Fig. 3. Test on the connect-4 data: (a) Computational times for different numbers of objects. (b) Computational times for different numbers of attributes. (c) Computational
times for different numbers of clusters.
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Fig. 4. Test on the census data: (a) Computational times for different numbers of objects. (b) Computational times for different numbers of attributes. (c) Computational
times for different numbers of clusters.
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