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Feature selection for large-scale data sets has been conceived as a very important data preprocessing step
in the area of machine learning. Data sets in real databases usually take on hybrid forms, i.e., the
coexistence of categorical and numerical data. In this paper, based on the idea of decomposition and
fusion, an efficient feature selection approach for large-scale hybrid data sets is studied. According to this

classifiers as the evaluation function, experiments have been carried out on twelve UCI data sets. The
experimental results show that the proposed approach is effective and efficient.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of information technologies
including internet and databases, a very large number of data are
acquired in many areas or industries, such as text and bioinfor-
matics data. Both the size and the dimension of these data increase
at an unprecedented rate, which has resulted in large-scale data
with high dimension. Feature selection is an important technique
used in dimensional reduction [3,4,6,18,19,22]. It aims to improve
the accuracy and performance of classifiers through removing
redundant features and selecting informative features from the
data. Feature selection has been successfully used in many areas
and has attracted much attention in recent years [13,14,32,38]. The
rapid growth of data brings new challenges for traditional feature
selection, and exploring efficient feature selection approaches has
quickly become a key issue in machine learning [20,39,43,44,
47,54].

In the process of feature selection, feature evaluation criteria are
used to evaluate the quality of the candidate subsets. For a feature
subset, different evaluation criteria may give different results. Roughly
speaking, there are five kinds of evaluation criteria [8,23]. They are
distance measures, information measures, dependency measures,
consistency measures, and classification error rate measures. The first
four evaluation criteria are used to evaluate feature subsets according
to inherent characteristics of the data. The last one relies on a
putational Intelligence and
ion, China.
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classification algorithm to evaluate and select useful features [1,25].
Obviously, compared with the first four evaluation criteria, using the
last evaluation criteria can usually improve classification performance,
but is also time-consuming. Because of different evaluation criteria
being used in feature selection algorithms, existing feature selection
algorithms are divided into three categories: the filter model, the
wrapper model, and the hybrid model [3,18,25]. The “filter” algorithm
model relies on the aforementioned first four evaluation criteria to
select features. The “wrapper” algorithm model uses classification
algorithms to evaluate candidate features. The hybrid model com-
bines the advantages of “filter” and “wrapper” models by employing
different evaluation criteria in a feature selection algorithm. With the
development of feature selection and its deep research, the algo-
rithms which can be used to deal with labeled data are called
supervised feature selection algorithms [3]. The algorithms used to
deal with unlabeled data are called unsupervised feature selection
algorithms [5]. In addition, with the rise of big data, semi-supervised
feature selection algorithms are gradually introduced to handle the
small-labeled-sample problem inwhich unlabeled data is much more
than labeled data [2]. For given data sets, feature types include
numeric and nominal. To deal with nominal data, Wang [48] intro-
duced a feature selection algorithm based on mutual information. Hu
and Cercone [7] proposed another feature selection algorithm in
which dependency is employed to measure the relevance between
feature and class information. On this basis, consistency measure is
introduced to evaluate and select features [4]. To deal with numeric
data, discretization is a kind of common approach [8,24]. The domains
of features are firstly segmented into some intervals by using dis-
cretization. Then, one can use above algorithms to select useful fea-
tures. Hence, using different discretization approaches may lead to
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Fig. 1. Decomposition and fusion.
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different feature selection results. To overcome this limitation, dis-
tance measure is introduced to characterize the class separability.

In conclusion, many efficient feature selection approaches have
been developed, and are very helpful for selecting features and saving
computational time. However, most of them focus on dealing with
data with a single type of features, i.e., nominal or numeric features
[28,29,37,45,46,51]. In real databases, data sets usually take on hybrid
forms. Nominal and numeric features coexist in real-world applica-
tions such as analysis of medical case, financial data and biological
data. Therefore, research on feature selection for hybrid data has also
gradually become a significant issue in data mining [36,42,48]. Several
techniques used to select effective features from hybrid data sets were
developed by some researchers [8–11,21,41,55], which are introduced
as follows. By defining correlation between numeric features and
correlation between nominal features respectively, Hall [8] and Yu
and Liu [55] proposed the correlation-based feature selection algo-
rithms for hybrid data. Tang and Mao [41] introduced another novel
search algorithm. In this algorithm, based on nominal features, a
hybrid data set is firstly decomposed into a series of feature sub-
spaces. The class separability is measured according to numeric fea-
tures in each subspace, and then combining all measures to produce
an overall evaluation. Tang's algorithm give priority to classification
ability of nominal features obviously. To overcome this limitation,
based on the introduction of Parzen window, Kwak and Choi [21]
proposed a new feature selection algorithm based on mutual infor-
mation. In addition, as the fast development of rough set theory, some
researchers began to study rough feature selection algorithms for
hybrid data. Hu et al. [9] introduced a neighborhood rough set model,
and gave a forward search algorithm which can be used to select
feature subset from hybrid data. On the basis of fuzzy set theory, Hu
et al. [10,11] constructed fuzzy equivalence relation matrix, and pro-
posed an entropy-based feature selection algorithm for hybrid data.
According to above fuzzy equivalence relation, Wei et al. [49] intro-
duced another information entropy, and proposed an accelerated
feature selection algorithm which can find a feature subset from
hybrid data efficiently. Because the research is still in its infancy, some
existing effective feature selection algorithms are usually low in
computational efficiency, especially when dealing with large-scale
hybrid data sets.

In this paper, based on the idea of decomposition and fusion, an
efficient feature selection algorithm for large-scale hybrid data
sets is studied. For a large-scale data set, collecting a part of
records (or instances) from it can form a small data set, i.e., a
subset. According to the idea of sample estimation, one can esti-
mate on subsets the feature selection result of the original large-
scale one. On this basis, a technique of decomposition and fusion is
introduced to construct an efficient feature selection algorithm in
this paper. Here, “decomposition” here means decomposing a
large data set into a family of subsets which have the similar
distribution with the large one (see Fig. 1). Feature selection
results of multiple subsets can be considered as multiple esti-
mates. Then, “fusion” means fusing all the estimates obtained from
subsets together and generating a final feature subset of the large
data set. Obviously, the total time spent on selecting features for
subsets is much less than that for the original large-scale one, then
this algorithm yields in a much less amount of time a feature
subset. By employing two common classifiers (Naive Bayes clas-
sifier and decision tree classifier) as the evaluation function,
experiments have been carried out on seven UCI data sets. The
experimental results show that the proposed approach is effective
and efficient.

The rest of this paper is organized as follows: some preliminaries
are briefly reviewed in Section 2. In Section 3, by introducing an
approach for decomposing a given large-scale hybrid data set and
fusing all results, an efficient feature selection algorithm for large-
scale hybrid data sets is proposed. In Section 4, twelve UCI large-scale
data sets are employed to illustrate the effectiveness of the proposed
algorithm. Section 5 concludes the paper with some discussions.
2. Preliminary knowledge

Pawlak defined the concept of rough sets in 1982 [33–35], which
has been conceived as a powerful tool to deal with various types of
data [26,27,30,31,40,50,52,53]. In rough set theory, a finite and
nonempty set of instances U is called universe, and it is character-
ized with a set of attributes (features) A. Data table S¼ ðU;AÞ is
called an information system in the rough set model. An attribute
subset can induce an equivalence relation R on U and generates a
family of equivalence classes. Instances with same attribute values
are grouped into one equivalence class. A labeled data set is called a
decision table S¼ ðU;C [ DÞ, where D is called decision attribute
which denotes the column of class label and the rest of the features
are called conditional attribute set C. The classic rough set model is
only suitable for data with nominal values. To deal with numeric
data in real world applications, researchers introduced fuzzy set
into rough set and constructed fuzzy rough set model [9,12,13]. A
numeric attribute induces a fuzzy equivalence relation instead of
crisp equivalence relation. The fuzzy-rough set model is fitted for
the case where both the relation and the object subset to be
approximated are fuzzy. Some primary definitions of fuzzy rough
set model are introduced as follows.

Let X be a non-empty finite set, and R is a binary relation
defined on X, denoted by a relation matrix M(R):

MðRÞ ¼

r11 r12 ⋯ r1n
r21 r22 ⋯ r2n
⋮ ⋮
rn1 rn2 ⋯ rnn

0
BBB@

1
CCCA; ð1Þ

where rijA ½0;1� is the relation value of xi and xj(xi; xjAX). Fur-
thermore, R is a fuzzy equivalence relation if R satisfies the fol-
lowing conditions:

(1) Reflectivity: Rðx; xÞ ¼ 1, 8xAX;
(2) Symmetry: Rðx; yÞ ¼ Rðy; xÞ, 8x; yAX;
(3) Transitivity: Rðx; zÞZminyfRðx; yÞ;Rðy; zÞg, 8x; y; zAU.

The fuzzy equivalence class ½xi�R of xi induced by the relation R
is defined as

½xi�R ¼
ri1
x1

þri2
x2

þ⋯þrin
xn

;

where “þ” means the union. The cardinality ½xi�R is defined as
j ½xi�R j ¼

Pn
j ¼ 1 rij.

Definition 1. Let S¼ ðU;AÞ be a fuzzy information system and
B; PDA. Moreover, ½xi�B and ½xi�P are fuzzy equivalence classes
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containing xi generated by B and P, respectively. Then, the condi-
tional entropy of B relative to P is defined as

HðP jBÞ ¼ �1
n

Xn
i ¼ 1

log
j ½xi�P \ ½xi�B j

j ½xi�B j
:

Definition 2. Let S¼ ðU;C [ DÞ be a fuzzy decision table and BDC.
Then, the significance of aAC�B relative to D is defined as

SIGða;B;DÞ ¼HðDjBÞ�HðDjB [ fagÞ:

For a hybrid data table S¼ ðU;AÞ, A¼ A1 [ A2. The relation
matrix MðRÞ ¼ ðrijÞn�n (n¼ jU j ) is computed as: 2 mm 8aAA1

(numeric feature),

raij ¼
1�4jaðxiÞ�aðxjÞj ; jaðxiÞ�aðxjÞjr0:25;
0; otherwise:

(

8aAA2 (nominal feature),

raij ¼
1; aðxiÞ ¼ aðxjÞ;
0; otherwise:

(

Then, rAij ¼⋀aAAraij.

Definition 3. Let S¼ ðU;C [ DÞ be a fuzzy decision table and BDC.
Then, B is a reduct of C relative to D if B satisfies:

(1) HðDjBÞ ¼HðDjCÞ;
(2) 8aAB : HðDjB�aÞ4HðDjBÞ.
3. Efficient feature selection for large-scale hybrid data sets

As mentioned above, rapid growth of data results in storage of a
very large number of data, thus demanding more efficient approaches
in data mining. In this section, three key problems, i.e., decomposi-
tion, selecting informative features from subsets and fusion, are
introduced specifically. Then, an efficient feature selection algorithm
for large-scale hybrid data is proposed. Because of that a data set is
called a table in rough set theory, a subset of a given large-scale data
set is called a “sub-table” in the following sections. In addition, it
should be pointed out that we mainly study supervised feature
selection in this paper, thus discussing the three problems based on
labeled data sets in following subsections.

3.1. Decomposition of large-scale hybrid data sets

In the process of sample estimation, sample size needs
to be determined firstly. In statistics, a familiar approach (see
Definition 4) is using variance to determine the sample size for the
given data set.

Definition 4. Let S be a data table (the original large-scale data
table) and let the size of S be denoted by N. Then, the sample size
M0 is defined as [15,17]:

M0 ¼ Z2 � s

E2
: ð2Þ

Where s means variance on S, Z means Z-statistic under con-
fidence intervals, and E means margin error which can be adjusted
as requested. This approach is very common in statistics, which
has been widely used to estimate sample size in many instances
such as estimating the annual salary, average consumption and
average deposit.
To deal with hybrid data sets, here we propose an expansion of
the variance s. Let S¼ ðU;AÞ be a hybrid data table, aAA, xiAU and
xi ¼ ða1ðxiÞ; a2ðxiÞ;…; aj Aj ðxiÞÞ. Supposed that A¼ A1 [ A2, A1

includes numeric features and A2 includes nominal features, then
variance sh on U is defined as:

sh ¼
jA1 j s1þjA2 j s2

jAj ; ð3Þ

where s1 is the variance on numeric data [15], and s2 is the var-
iance on nominal data [16]. In addition, s1 and s2 are respectively
defined as

s1 ¼
1

jU j �1

Xj U j

i ¼ 1

Xj Aj
j ¼ 1

ajðxiÞ�ajðxÞ
0
@

1
A

2

and

s2 ¼
1
k

Xk
i ¼ 1

ðjXi j �X Þ2;

where ajðxÞ ¼
P j U j

i ¼ 1
ajðxiÞ

j U j , U=A2 ¼ fX1;X2;…;Xkg and X ¼
Pk

i ¼ 1
j Xi j

k .
Based on above introduction, Definition 5 shows the definition

of sample size in a hybrid data set.

Definition 5. Let S be a hybrid data table, the sample size M0 is
defined as:

M0 ¼ Z2 � sh
E2

: ð4Þ

In addition, if sample size M0 is larger than 5% of the overall size
N, the sample size M0 needs to be adjusted. In [17], the adjusted
formula is defined as follows:

M1 ¼
M0N
M0 þN

: ð5Þ

It can be seen from formula (2) that computing sh of a large-
scale hybrid data table is obviously time-consuming. Therefore,
two theorems are introduced as follows, which will be used in our
further development.

Theorem 1. Let S1 ¼ ðU1;AÞ and S2 ¼ ðU2;AÞ be two tables with
numeric data. The average and variance on U1 and U2 are x1, s11, x2

and s12. Then, the average x and variance s1 on U1 [ U2 are defined
as

x ¼ nx1þmx2

nþm
; s1 ¼

ðn�1Þs11þðm�1Þs12
nþm�1

þΔ1;

where Δ1 ¼ nmðx1 �x2Þ2
ðnþmÞðnþm�1Þ, n¼ jU1 j , and m¼ jU2 j .

Proof. The proof can be found in [15].□

Theorem 2. Let S1 ¼ ðU1;AÞ and S2 ¼ ðU2;AÞ be two tables with
nominal data, U1=A¼ fX11;X12;…;X1k1 g, and U2=A¼ fX21;X22;

…;X2k2 g. The variance on U1 and U2 are s21 and s22. Suppose that
ðU1 [ U2Þ=A¼ fX1;X2;…;Xl;X1lþ 1;X1lþ2; …;X1k1 ;X2lþ1;X2lþ2;…;

X2k2 g, where Xi ¼ X1i [ X2iði¼ 1;2;…; lÞ, then the variance s2 on U1 [
U2 is defined as

s2 ¼
k1s21þk2s22
k1þk2� l

þΔ2;

where Δ2 ¼ 1
k1 þk2 � l

n2
k1
þm2

k2
� ðnþmÞ2

k1 þk2 � lþ2
Pl

i ¼ 1 jX1i j � jX2i j
� �

,
n¼ jU1 j , and m¼ jU2 j .

Proof. Let X1, X2 and X be average on U1, U2 and U1 [ U2. Then,
one can get X1 ¼ n

k1
, X2 ¼ m

k2
and X ¼ nþm

k1 þk2 � l. Let k¼ k1þk2� l,
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variance s2 can be defined as:

s2 ¼
1
k

Xl
i ¼ 1

ðjXi j �X Þ2þ
Xk1

i ¼ lþ1

ðjX1i j �X Þ2þ
Xk2

i ¼ lþ1

ðjX2i j �X Þ2
 !

¼ 1
k

Xl
i ¼ 1

ðjX1i j þ jX2i j �X Þ2þ
Xk1

i ¼ lþ1

ðjX1i j �X Þ2þ
Xk2

i ¼ lþ1

ðjX2i j �X Þ2
 !

¼ 1
k

Xl
i ¼ 1

ðjX1i j �X Þ2þ
Xl
i ¼ 1

ðjX2i j �X Þ2þ
Xl
i ¼ 1

ð2jX1i JX2i j �X
2Þ

 

þ
Xk1

i ¼ lþ1

ðjX1i j �X Þ2þ
Xk2

i ¼ lþ1

ðjX2i j �X Þ2
!

¼ 1
k

Xk1
i ¼ 1

ðjX1i j �X Þ2þ
Xk2
i ¼ 1

ðjX2i j �X Þ2þ
Xl
i ¼ 1

ð2jX1i JX2i j �X
2Þ

 !

¼ 1
k

Xk1
i ¼ 1

ðjX1i j �X1þX1�X Þ2þ
Xk2
i ¼ 1

ðjX2i j �X2þX2�X Þ2
 

þ
Xl
i ¼ 1

ð2jX1i JX2i j �X
2Þ
!

¼ 1
k

Xk1
i ¼ 1

ðjX1i j �X1Þ2þk1ðX1�X Þ2þ
Xk2
i ¼ 1

ðjX2i j �X2Þ2þk1ðX2�X Þ2
 

þ
Xl
i ¼ 1

ð2jX1i JX2i j �X
2Þ
!

¼ 1
k

k1s21þk2s22þk1X
2
1�2k1X1Xþk1X

2
�

þk2X
2
2�2k2X2Xþk2X

2� lX
2þ

Xl
i ¼ 1

2jX1i JX2i j
!

¼ 1
k

k1s21þk2s22þk1X
2
1þk2X

2
2�2k1X1X�2k2X2XþX

2ðk1þk2� lÞ
�

þ
Xl
i ¼ 1

2jX1i JX2i j
!

¼ 1
k

k1s21þk2s22þk1X
2
1þk2X

2
2�2k1X1X

�

�2k2X2EþX ðnþmÞþ
Xl
i ¼ 1

2jX1i JX2i j
!

¼ 1
k

k1s21þk2s22þk1X
2
1þk2X

2
2�X ð2k1X1þ2k2X2�n�mÞ

�

þ
Xl
i ¼ 1

2jX1i JX2i j
!

¼ 1
k

k1s21þk2s22þk1X
2
1þk2X

2
2�X ðnþmÞþ

Xl
i ¼ 1

2jX1i JX2i j
 !

¼ k1s21þk2s22
k

þ1
k

n2

k1
þm2

k2
�ðnþmÞ2

k
þ2

Xl
i ¼ 1

jX1i JX2i j
 !

¼ k1s21þk2s22
k1þk2� l

þ 1
k1þk2� l

n2

k1
þm2

k2
� ðnþmÞ2
k1þk2� l

þ2
Xl
i ¼ 1

jX1i JX2i j
 !

:□

On the basis of Theorems 1 and 2, an algorithm for determining
variance sh of a large-scale hybrid data table is introduced as follows.

Algorithm 1. Determining variance sh of a large-scale hybrid data
table.
Inp
Ou
Ste

Ste

Ste
f

ut: A large-scale hybrid data table S¼ ðU;AÞ, A¼ A1 [ A2;
tput: Variance sh of S.
p 1: Divide S into several sub-tables, denoted by U1,

U2;…;Ut , where
Pt
i ¼ 1

jUi j ¼ jU j (the sizes of sub-tables can

range from several hundred to several thousand).
p 2: s1’0, s2’0. Compute the variance s11 of numeric data
and s21 of nominal data on U1, then s1’s11, s2’s21.
p 3: U0’U1.
orði¼ 2; irt; iþþÞ
Compute the variance s1i of numeric data and s2i of nominal
data on Ui;
ccording to Theorem 1, compute s1:
s1’
ðjU0 j �1Þs1þðjUi j �1Þs1i

jU0 j þ jUi j �1
þΔ1;
ccording to Theorem 2, compute s2:
s2’
k1s2þk2is2i
k1þk2i� l

þΔ2;
U0’U0 [ Ui.

p 4: sh’
j A1 j s1 þ j A2 j s2

j Aj , return sh and end.
Ste

For the data sets which are too large in scale to be handled, this
algorithm is helpful for solving the variance sh efficiently. Then, an
algorithm for determining sample size is introduced as follows.

Algorithm 2. Determining sample size of a large-scale hybrid data
table.
ut: A large-scale hybrid data table S¼ ðU;AÞ, A¼ A1 [ A2;
tput: Sample size M1.
p 1: Compute sh on U by using Algorithm 1.
p 2: Determine the margin error E of S according to
experience.

p 3: According to Definition 5, compute M0 ¼ Z2 � sh
E2

.

p 4: If M040:05jU j , then compute adjusted sample size

M1 ¼ M0�j U j
M0 þ j U j þ1;

lse M1’M0.
p 5: Return M1 and end.
Ste

For supervised feature selection, classes information and selected
features are closely related. Thus, to better estimate on sub-tables the
feature subset of the original table, classes information contained in
sub-tables should be closed to that contained in the original table as
far as possible. In the process of collecting sub-tables, we set the
numbers of classes in a sub-table equal to that of classes in the ori-
ginal table, and the ratio of sample number of each class of a sub-
table equal to that of the original table. Besides, there should be some
similarities among sub-tables, which make results on sub-tables close
to each other relatively and are more convenient for the fusion of
feature subset. Hence, in the selection process of sub-tables, we make
each sub-table contains some objects that are identical to those in
another one. For convenience, above discussion can be summarized as
following three strategies:

(1) Consistency: the number of classes in sub-tables are equal to
that of classes in the original table; and the ratio of sample
number of each class of a sub-table is equal to that of the
original table (see Fig. 2).

(2) Transitivity: each sub-table contains some objects that are
identical to those in another one (see Fig. 3).

(3) Ergodicity: all objects in the original large-scale table should
be selected into sub-tables as far as possible. In other words,
the process of selecting sub-tables is stopped until the number
of remaining objects is smaller than the size of sub-table.
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On the basis of above three strategies, the specific algorithm for
selecting sub-tables is introduced in Algorithm 3.

Algorithm 3. An algorithm for selecting sub-tables from a large-
scale hybrid data table.
Inp

Ou
Ste

Ste

Ste

Ste

{
U
}

Ste

G

w
{
S

}

j
}

Inp
Ou
Ste
Ste

Ste

Fig. 2. Consistency.

Fig. 3. Transitivity.
ut: A hybrid data table S¼ ðU;AÞ, and the set of classes (or
labels) C¼ fc1; c2;…; crg;
tput: n sub-tables Sj ¼ ðUj;AÞðj¼ 1;2;…;nÞ.
p 1: Compute the sample size M1 on U (according to Algo-
rithm 2).
p 2: Compute the sets of instances included in each class ci
on U, denoted by Ci, and the class proportions

pi ¼
jCi j
jU j ði¼ 1;2;…; rÞ.

p 3: Compute the numbers of instances included in each
class ci in sub-tables mi ¼ ½M1 � pi�ði¼ 1;2;…; rÞ (function ½��
is the rounding function).
p 4: Select first sub-table S1 on U, U1’∅: for (i¼1; irr;
iþþ)
Select mi objects from Ci randomly, which is denoted by X;
1’U1 [ X;

p 5: Select sub-table Sj repeatedly, j’2:
iven a threshold α ð0oαo1Þ;
hile(jU�⋃j�1

k ¼ 1Uk j4M1)

tep 5.1: Select αM1 objects from table Sj�1:
{
Compute the sets of instances included in each class ci on

Uj�1, denoted by C0
i,

Select αmi objects from C 0
i ði¼ 1;2;…; rÞ randomly, which is

denoted by X0;
Uj’Uj [ X0;

Step 5.2: U″ ¼ U�⋃j�1
k ¼ 1Uk, and select ð1�αÞM1 objects

from U″:
{
Compute the sets of instances included in each class ci on

U″, denoted by C″
i ,

Select ð1�αÞmi objects from C″
i ði¼ 1;2;…; rÞ randomly,

which is denoted by X″;
Uj’Uj [ X″;
}

’jþ1;

p 6: n’j�1 and end.
Ste

Here are some explanations about Algorithm 3. In Steps 2–3, the
algorithm aims to ensure classes information on sub-tables is close to
the large-scale one. Besides, because of that mi are integers, one can
get that

Pr
i ¼ 1 mi �M. In the process of selecting sub-tables in Step 5,

some objects are selected from the existing sub-tables, which ensure
there are certain similarities among selected sub-tables. In addition,
threshold α should not be too small to weaken the similarity, here we
propose an empirical value of α¼ 0:3–0:5.

3.2. Feature selection to sub-tables

On the basis of fuzzy rough set model, Hu et al. [10] defined the
information entropy based on fuzzy equivalence relation, rede-
fined the feature significance, and proposed a forward search
feature selection algorithm for hybrid data sets. To select features
from the collected samples, this algorithm is employed to find
feature subset in this paper. The specific algorithm steps are for-
mulated as follows.

Algorithm 4. An algorithm for calculating feature subset.
ut: A hybrid decision table S¼ ðU;C [ DÞ.
tput: A feature subset Red of S.
p 1: Red’∅.
p 2: Compute and select sequentially
SIGða0;Red;DÞ ¼maxfSIGðai;Red;DÞg; aiAC�Red.
p 3: If SIGða0;Red;DÞ40, then Red’Red [ a0, goto step 2;
lse goto step 4;
p 4: Return Red and end.

e

Ste

According to the definition of fuzzy equivalence matrix, its
complexity is OðjC JU j 2Þ. Hence, the complexity of Algorithm 4 is
OðjC j 2 jU j 2Þ.

3.3. Fusion of feature subsets

According to Algorithms 3 and 4, one can obtain a group of
estimates of feature selection to a given large-scale hybrid decision
table. This section introduces an approach for fusing together all
estimates and generating a valid feature subset. In Algorithm 4,
one feature with the highest significance is added to a pool at each
iteration, thus forming an ordered feature subset. According to the
sort, we assign a weight to each feature. Thus,

wi ¼
2ðn� iþ1Þ
nðnþ1Þ

denotes the weight of ith feature in an ordered feature subset with
n features, where

wi ¼
2ðn� iþ1Þ
nðnþ1Þ ¼ n� iþ1

nðnþ1Þ
2

:

Obviously, the more significant feature is assigned a bigger weight.
Then, the weighted frequency of each feature in estimates is counted,
and more frequent feature is considered as more significant. We
rank all features in estimates according to their weighted frequencies
and generate a final ordered feature subset. In addition, in the
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experiments, by using existing well-known classifiers or learning
algorithms, we can remove some not very important features from
the end of the ordered feature subset and retain the more significant
ones. The specific algorithm is formulated as follows.

Algorithm 5. An efficient feature selection algorithm for large-
scale hybrid decision tables (EFSH).
Inp
Ou
Ste

Ste
Ste

{
F

8
}

Ste

Table
Descr

1
2
3
4
5
6
7
8
9

Table
Comp

Dat

cred
ann
vow
ger
sick
hyp
wav
Ticd
thy

Table
Comp

Dat

cred
ann
vow
ger
sick
hyp
wav
Ticd
thy
ut: A hybrid large-scale decision table S¼ ðU;C [ DÞ;
tput: A feature subset R.
p 1: Select n sub-tables by using Algorithm 3 from S:
S1 ¼ ðU1;C [ DÞ, S2 ¼ ðU2;C [ DÞ, …, Sn ¼ ðUn;C [ DÞ.
p 2: R’∅, couwðaiÞ ¼ 0 (i¼ 1;2;…; jC j ).
p 3: For ðj¼ 1; jrn; jþþÞ

ind the feature subset redj ¼ fa01; a02;…; a0k0 g of Sj by using
Algorithm 4;

a0iAredj, couwða0iÞ’couwða0iÞþ2ðk0 � iþ1Þ
k0 ðk0 þ1Þ .

p 4: Sort couwðaiÞ from large to small, denoted by f
couwða″1Þ; couwða″2Þ;…; couwða″kÞg (kr jC j ).
p 5: return R¼ fa″1; a″2;…; a″kg and end.
Ste
1
iption of data sets.

Data sets Samples Features Classes

Total Numeric Nominal

credit 690 15 6 9 2
anneal 898 38 6 32 6
vowel 990 13 10 3 11
german 1000 20 7 13 2
sick 3772 29 7 22 2
hypothyroid 3772 29 6 23 4
waveform 5000 40 40 0 3
Ticdata 5822 85 0 85 2
thyroid 9172 29 7 22 2

2
arison of computational time.

a sets Computational time/s

A4 EFSH PIT (%)

it 24.03 10.26 57.30
eal 162.06 59.39 63.35
el 41.82 4.66 88.86
man 19.63 8.45 56.95

1516.71 310.06 79.56
othyroid 1446.28 148.09 89.76
eform 4231.96 411.24 90.28
ata 296.38 140.41 52.63
roid 15,279.83 1534.34 89.96

3
arison of selected features.

a sets A4

it 1,2,3,4,6,7,8,9,10,11,12,13,14,15
eal 1,3,4,5,7,8,9,13,31,33,34,35
el 1,3,6,7,9,11,12,13
man 3,4,5,6,7,9,11,12,16

1,3,4,6,8,24,29
othyroid 1,15,17,18,20,22
eform 2,7,11,12,13,15,16
ata 2,5,7,15,17,31,38,43,44,45,47,48,49,54,55,57,58,59,61,63,64,68,80,83
roid 1,2,3,4,6,7,23,24,25,26,28
Because the time complexity of Algorithm 4 is OðjC j 2 jU j 2Þ, the
time complexity of Algorithm 5 is OðjC j 2ðjU1 j 2þjU2 j 2þ
⋯þjUn j 2ÞÞ. Usually, jU j 2 is much larger than jU1 j 2þjU2 j 2þ
⋯þjUn j 2. Therefore, the computational time of algorithm EFSH is
much smaller than that of Algorithm 4.

It should be noted that this algorithm introduces a framework
that is dividing and fusing on a large-scale hybrid data set. Based
on this framework, by employing other feature selection algo-
rithms to select features on a sub-table, one can also construct
appropriate efficient algorithms.
4. Experimental analysis

The objective of following experiments is to show effectiveness
of algorithm EFSH. All the experiments were carried out on a
personal computer with Windows 7, Inter(R) Core (TM) i7-2600
CPU (2.66 GHz) and 4.00 GB memory. The software being used is
Microsoft Visual Studio 2010 and programming language is C#.
Note that, for selected sub-tables, most of the existing algorithms
for hybrid data can be employed to select features. We mainly
focus on in this paper how to select sub-tables and fuse the esti-
mates. Because in this paper (Section 4.1), Hu's algorithm (Algo-
rithm 4) is employed to do feature selection on sub-tables, here we
only compare the performance of the proposed algorithm EFSH
and Hu's algorithm.

Twelve UCI data sets are employed to illustrate feasibility and
efficiency of algorithm EFSH in this section. In Section 4.1, effi-
ciency of EFSH is illustrated mainly through comparing computa-
tional time of algorithm EFSH and Algorithm 4. In Section 4.2,
10-fold cross validation and four classical classification algorithms
are employed to evaluate algorithm EFSH and Algorithm 4. In
Section 4.3, to further illustrate efficiency, three very large-scale
data sets are employed to conduct the experiment. The specific
experiments of each part is introduced as follows.

4.1. Efficiency analysis

In this subsection, nine UCI data sets shown in Table 1 are
employed to test algorithm EFSH and Algorithm 4. The feature
selection results of the two algorithms are showed Tables 2 and 3.
Table 2 shows the comparison of computational time. Table 3
shows the selected features. In Table 2, “ Algorithm 4” is simplified
as A4 and “percentage improvement of computational time” is sim-
plified as PIT.

Experimental results in Table 2 show that computational time
of EFSH is much shorter than that of Algorithm 4. Because of that
the main idea of EFSH is decomposing a large-scale data set into a
family of small ones and doing feature selection on these small
data sets. Obviously, the total time spent on selecting features
from small data sets is much less than that for the original large-
scale one, EFSH yields in a much less amount of time a feature
subset. Results in Table 2 well validate this conclusion. In Table 2,
EFSH

1,2,3,4,6,7,8,9,10,11,12,13,14
1,3,4,5,7,8,9,31,33,34,35,36
4,5,6,7,8,9,11,12,13
3,4,5,6,7,9,11,12
1,2,3,4,25,29
1,16,18,19,20,22,26
1,2,3,7,10,11,12,15
2,3,5,7,8,15,17,18,19,30,31,39,43,44,45,47,48,49,52,54,55,57,59,61,62,64,68,80,83
1,2,3,4,6,8,20,23,24,25,26



Table 4
Classification accuracies of A4.

Data sets N NBC C4.5 JRip RF

credit 14 0.772470.2256 0.860870.1923 0.846370.2278 0.833370.2361
anneal 11 0.797370.0782 0.935470.0274 0.937670.0204 0.938770.0250
vowel 9 0.329270.1412 0.632370.0702 0.494970.1040 0.809070.0710
german 9 0.701070.3881 0.692070.4109 0.68970.4109 0.648070.3848
sick 7 0.952870.0711 0.983570.0231 0.937970.1047 0.927370.0899
hypothyroid 7 0.945670.0339 0.973470.0184 0.972970.0198 0.968970.0187
waveform 15 0.784670.1703 0.755070.1974 0.769070.2190 0.777470.1830
Ticdata 28 0.888570.1359 0.940270.1124 0.939770.1121 0.926670.1051
thyroid 11 0.932370.0212 0.937170.0560 0.932670.0581 0.929770.0528

Table 5
Classification accuracies of EFSH.

Data sets N NBC C4.5 JRip RF

credit 13 0.813070.1954 0.852270.2027 0.857970.2261 0.849270.2231
anneal 11 0.710970.0964 0.955570.0171 0.957770.0229 0.962170.0188
vowel 9 0.645670.0802 0.790070.0367 0.678970.0628 0.921170.0446
german 8 0.708070.3691 0.687070.4170 0.687070.4082 0.671070.3843
sick 6 0.948370.0801 0.985770.0273 0.937770.1153 0.924770.1042
hypothyroid 7 0.947770.0386 0.973870.0207 0.975370.0174 0.959270.0233
waveform 15 0.782870.1758 0.767470.1974 0.758070.2286 0.762470.1741
Ticdata 29 0.882970.1424 0.940270.1124 0.939770.1121 0.924170.1079
thyroid 11 0.935370.0612 0.937970.0559 0.936170.0565 0.930570.0523

Table 6
Description of data sets for high-efficiency.

Data sets Samples Features Classes

Total Numeric Nominal

1 census-income 299,285 40 7 33 2
2 kddcup 4,898,431 41 34 7 23

F. Wang, J. Liang / Neurocomputing 193 (2016) 33–41 39
compared with computational time of A4, EFSH saves more than
50% computational time of all of employed data sets. Particularly
for data sets hypothyroid, waveform and thyroid, EFSH saves nearly
90% computational time. Hence, algorithm EFSH can get a feature
subset in very short time when dealing with the relatively large-
scale data sets. Table 3 shows that most of the best features
selected by using EFSH and A4 are the same. In view of the fusing
mechanism used in EFSH, there are some difference in the feature
subsets of EFSH and A4 is unavoidable. This conclusion is well
validated in the experiments shown in Table 3. In short, results in
this subsection show that EFSH can find a very similar feature
subset with A4 in a much shorter time. Specifically, the accuracies
of feature selection results are compared in next subsection.

4.2. Effectiveness analysis

In this subsection, four classical classifiers are employed to
evaluate the feature selection results shown in Table 3. The four
classifiers are Naive Bayes classifier, C4.5 classifier, JRip classifier
and RandomForest classifier. Based on the classifiers, Table 4
shows classification accuracies of feature subsets selected by using
A4, and Table 5 shows classification accuracies of feature subsets
of EFSH. In Tables 4 and 5, “NaiveBayes” is simplified as NBC and
“RandomForest” is simplified as RF, “N” is the number of selected
features.

From the results in Tables 4 and 5, one can easily see that, for
each classifier and each data set, classification accuracies based on
the two algorithms are very close to each other. Specifically, for
Naive Bayes classifier (NBC), there are five data sets whose clas-
sification accuracies based on EFSH are higher than that based on
A4. For C4.5 classifier, there are six data sets based on EFSH get
higher accuracies. For JRip classifier and RandomForest classifier,
there are respectively six data sets and five data sets based on
EFSH get higher accuracies. For convenience, the values of higher
accuracies are bold in Tables 4 and 5. In summary, the perfor-
mance of the feature subsets found by the two algorithms are very
close to each other without obvious superiority and inferiority. In
other words, compared with A4, EFSH can find an effective feature
subset, whereas EFSH saves much more computational time. From
a combination of results in Sections 4.1 and 4.2, one can get that,
using the idea of decomposition and fusing to deal with large-scale
data sets is effective and feasible. By using the idea, algorithm
EFSH finds an effective feature subset on the condition of saving a
lot of computational time.

4.3. Efficiency analysis for very large-scale data sets

Experimental results in Sections 4.1 and 4.2 show that EFSH can
find an effective feature subset in a much shorter time. To further
demonstrate its efficiency, two UCI very larger-scale data sets
outlined in Table 6 are employed to conduct the experiments in
this subsection. By using some representative algorithms for
hybrid data and Algorithm 4, these two data sets are too large in
scale to get a feature subset within 150 h on a PC. In this section,
we try to carry out the proposed algorithm EFSH on them and find
an effective feature selection result. The experimental results are
shown in Table 7. In addition, because of that we did not get the
results by using existing feature selection algorithms for hybrid
data, Table 7 just shows the results of EFSH. Two classic classifiers
Naive Bayes classifier (NBC) and C4.5 are introduced to evaluate
the selected features in this subsection.

The experimental results shown in Table 7 indicate that, for the
two data sets, the new proposed algorithm EFSH can find their
feature subsets within just 4.38 h and 33.88 h on a PC, respec-
tively. Moreover, the accuracies of EFSH are same to, or even
higher than that of the raw data. As mentioned above,



Table 7
Classification accuracies of selected features.

Data sets Raw data EFSH

NBC C4.5 N NBC C4.5 Time/h

census-income 0.858370.1442 0.950770.0798 23 0.908370.0997 0.950670.0800 4.38
kddcup 0.994870.0005 0.999670.0001 21 0.995070.0005 0.999770.0000 33.88
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experiments in this subsection is just try to deal with the very
large-scale data sets which cannot be handled in an efficient way
by using other feature selection algorithms. Hence, this subsection
does not give more comparison with other algorithms. In sum-
mary, experiments in Table 7 well validate the efficiency of EFSH,
especially for large-scale data sets.
5. Conclusions

Feature selection is a significant dimensional reduction tech-
nique in machine learning. For large-scale hybrid data sets, by
decomposing large data sets and fusing results of sub-tables, an
efficient algorithm for selecting informative features has been
proposed in this paper. Experiments show that the algorithm is
effective and efficient, especially for large-scale data sets. Note that
the new algorithm not only saves much more computational time,
but also can deal with the large-scale data sets which are very
difficult to handle because of the high computational time. It is our
wish that this study provides new views and thoughts on
exploring efficient machine learning approaches for big data.
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