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a b s t r a c t

Rough set theory is an important approach to granular computing. Type-1 fuzzy set theory

permits the gradual assessment of the memberships of elements in a set. Hybridization of

these assessments results in a fuzzy rough set theory. Type-2 fuzzy sets possess many advan-

tages over type-1 fuzzy sets because their membership functions are themselves fuzzy, which

makes it possible to model and minimize the effects of uncertainty in type-1 fuzzy logic sys-

tems. Existing definitions of type-2 fuzzy rough sets are based on vertical-slice or α-plane

representations of type-2 fuzzy sets, and the granular structure of type-2 fuzzy rough sets has

not been discussed. In this paper, a definition of type-2 fuzzy rough sets based on a wavy-slice

representation of type-2 fuzzy sets is given. Then the concepts of granular type-2 fuzzy sets

are proposed, and their properties are investigated. Finally, granular type-2 fuzzy sets are used

to describe the granular structures of the lower and upper approximations of a type-2 fuzzy

set, and an example of attribute reduction is given.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Since the theory of type-1 fuzzy sets was proposed by Zadeh in 1965 [21], it has been widely used in many areas of artificial

intelligence. However, according to Mendel [10], there exist at least four sources of uncertainty in type-1 fuzzy logic systems:

(1) the meanings of the words used in rule antecedents and consequents may be uncertain (the same word may mean different

things to different people ); (2) the consequents may have a histogram of values associated with them, especially when knowl-

edge is extracted from a group of experts, all of whom do not agree with each other; (3) the measurements that activate a type-1

fuzzy logic system may be noisy and therefore uncertain; and (4) the data used to tune the type-1 fuzzy logic system parameters

may also be noisy. All these uncertainties lead to uncertain fuzzy set membership functions.

Type-2 fuzzy sets were introduced by Zadeh [22] as an extension of the concept of type-1 fuzzy sets (ordinary fuzzy sets).

Type-2 fuzzy sets can be used to describe the four kinds of uncertainty listed above because the membership functions of type-2

fuzzy sets are themselves fuzzy. However, type-2 fuzzy sets are nowhere near as widely used as type-1 fuzzy sets.

The secondary membership functions for general type-2 fuzzy sets are too difficult to construct and too complex to compute,

and only a special kind of type-2 fuzzy set, the interval type-2 fuzzy set, is widely used because its secondary membership grades

are equal to one. In other words, the membership degree of every element in the universe is characterized by a sub-interval of

[0, 1], and any of the values in the sub-interval can be assigned as the membership degree, with each value having the same
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probability. However, in practice, the probabilities of the values in the sub-interval may follow another distribution, such as the

normal or triangular distribution [9].

In 1982, Pawlak proposed the theory of rough sets as a new mathematical tool for reasoning about data. Rough set theory has

been under development for thirty years and has been successfully used in various fields of artificial intelligence such as expert

systems, machine learning, pattern recognition, decision analysis, process control and knowledge discovery in databases [15].

Traditional rough set theory is based on an equivalence relation, which seems to be a very restrictive condition that may limit

the applications of the rough set model. For example, the values of attributes may be both symbolic and real-valued, in which

case they cannot be manipulated by traditional rough set theory. Two close values may differ only as a result of noise, but in

traditional rough set theory, they may be considered to be of different orders of magnitude. To overcome these shortcomings,

Dubois and Prade [4] combined fuzzy sets and rough sets by proposing definitions of rough fuzzy sets and fuzzy rough sets in

1990, after which many studies were carried out in the field of fuzzy rough sets. Shen and Jensen [18] proposed an approach that

integrates a fuzzy rule induction algorithm with a fuzzy rough method for feature selection. Jensen and Shen [5] provided an

interval-valued approach for fuzzy rough feature selection, which could handle missing values and uncertainties that could not

be modeled by a type-1 approach. Wu et al. [20] proposed an attribute reduction method within the interval type-2 fuzzy rough

set framework and presented the properties of interval type-2 fuzzy rough sets. To date, most research in fuzzy rough sets has

been restricted to ordinary (type-1) fuzzy environments and interval type-2 fuzzy environments [1,3,6,7,17,23–25,27,28].

The point-valued representation is usually the starting point for understanding or describing a general type-2 fuzzy set, but it

does not seem to be useful for much of anything else [13]. In addition, there are three other popular representations for a type-2

fuzzy set: the vertical-slice representation, the wavy-slice representation (which is also called the Mendel-John representation or

an embedded type-2 fuzzy set representation), and the α-plane representation. Based on vertical-slice representations of type-

2 fuzzy sets, Wang [19] investigated type-2 fuzzy rough sets on two finite universes of discourse using both constructive and

axiomatic approaches and discussed the topological properties of type-2 fuzzy rough sets. Using α-plane representation theory,

Zhao and Xiao [26] presented definitions of general type-2 fuzzy rough sets and studied some basic properties of upper and

lower approximation operators. In addition, they examined the connections between special general type-2 fuzzy relations and

general type-2 fuzzy rough upper and lower approximation operators and characterized various classes of general type-2 fuzzy

rough approximation operators using an axiomatic approach. Many properties were proposed in [19] and [26], but no discussion

of the granular structure of type-2 fuzzy rough sets was included.

According to Pedrycz, “Information granules are intuitively appealing constructs, which play a pivotal role in human cogni-

tive and decision-making activities. We perceive complex phenomena by organizing existing knowledge along with available

experimental evidence and structuring them in a form of some meaningful, semantically sound entities, which are central to all

ensuing processes of describing the world, reasoning about the environment, and supporting decision-making activities” [16].

In classical rough set theory, lower and upper approximations are defined as unions of certain sets, exhibiting a clear granular

structure over sets. Chen et al. [2] proposed the concept of granular fuzzy sets based on fuzzy similarity relations and described

the granular structures of the lower and upper approximations of a fuzzy set within the framework of granular computing. The

wavy-slice representation of a type-2 fuzzy set in terms of embedded type-2 fuzzy sets is most valuable in theoretical studies

because it quickly leads to the structure of the solution to a new problem. To discuss the granular structure of type-2 fuzzy rough

sets, a model for type-2 fuzzy rough sets is proposed here using the wavy-slice representation of a type-2 fuzzy set presented

by Mendel and John [12]. Here the conclusions of Chen et al. are extended by proposing the concept of granular type-2 fuzzy

sets and investigating their properties. Then these granular type-2 fuzzy sets are used to describe the granular structures of the

lower and upper approximations of a type-2 fuzzy set. Finally, an example of attribute reduction within a type-2 fuzzy rough

framework is presented.

The rest of this paper is organized as follows. Fundamental concepts and properties that will be used in this paper are reviewed

in Section 2. Section 3 introduces the definition of a type-2 fuzzy rough set based on the wavy-slice representation. In Section 4,

the granular structure of type-2 fuzzy rough sets is discussed using granular type-2 fuzzy sets. Conclusions are presented in

Section 5.

2. Preliminaries

This section will review some basic notions and properties related to type-2 fuzzy sets, rough sets, and fuzzy rough sets.

2.1. Type-2 fuzzy sets

Definition 1 [12]. Let X be a nonempty universe of discourse. A type-2 fuzzy set, Ã, is characterized by a type-2 membership

function μ
Ã
(x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u),μÃ(x, u))|x ∈ X, u ∈ Jx ⊆ [0, 1]},
in which 0 ≤ μ

Ã
(x, u) ≤ 1. Ã can also be expressed as

Ã =
∫

x∈X

∫
u∈Jx

μÃ(x, u)/(x, u), Jx ⊆ [0, 1], (1)

where ∫∫ denotes union over all admissible x and u. The class of all type-2 fuzzy sets of the universe X is denoted by F̃(X).
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Definition 2 [12]. At each value of x, say x = x′, μ
Ã
(x′, u) is called a vertical slice of μ

Ã
(x, u), i.e.,

μÃ(x = x′, u) ≡ μÃ(x′) ≡
∫

u∈Jx′
fx′(u)/u, Jx′ ⊆ [0, 1],

where fx′ = μ
Ã
(x′) and 0 ≤ fx′(u) ≤ 1. It is permissible to drop the prime notation on μ

Ã
(x′), and to refer to μ

Ã
(x) as a secondary

membership function; it is a type-1 fuzzy set, also referred to as a secondary set. The amplitude of a secondary membership

function is called a secondary grade.

A type-2 fuzzy set can be reinterpreted as the union of all secondary sets, i.e.,

Ã = {(x,μÃ(x))|x ∈ X},
or, as

Ã =
∫

x∈X

μÃ(x)/x =
∫

x∈X

[ ∫
u∈Jx

fx(u)/u

]
/x.

Definition 3 [12]. The domain of a secondary membership function is called the primary membership of x. In Definition 2, Jx′
is the primary membership of x′. Uncertainty in the primary membership of a type-2 fuzzy set Ã consists of a bounded region

called the footprint of uncertainty (FOU), which is the union of all primary memberships, i.e.,

FOU(Ã) =
⋃
x∈X

Jx.

In 2002, Mendel and John [12] presented a new representation for type-2 fuzzy sets to make these sets much easier to

understand and to work with. They assumed that X and Jx are both discrete (either by problem formulation, or by discretization

of continuous universes of discourse), that X has been discretized into N values, x1, . . . , xN, and that at each of these values, Jxi

has been discretized into Mi values. For simplicity, the definition of a discrete type-2 fuzzy set is first introduced.

Definition 4 [11]. A partially discrete type-2 fuzzy set is one whose primary variable is discrete (sampled), but whose secondary

membership functions are continuous, whereas a discrete type-2 fuzzy set is one whose primary variable and secondary mem-

bership functions are discrete (sampled).

A discrete type-2 fuzzy set Ã can be expressed as:

Ã =
∑
x∈X

μÃ(x)/x =
∑
x∈X

[∑
u∈Jx

fx(u)/u

]
/x =

N∑
i=1

[∑
u∈Jxi

fxi
(u)/u

]
/xi

=
[

M1∑
k=1

fx1
(u1k)/u1k

]
/x1 + · · · +

[
MN∑
k=1

fxN
(uNk)/uNk

]
/xN.

In this equation, + also denotes union. Note that x has been discretized into N values and that at each value xi, u has been

discretized into Mi values.

Definition 5 [12]. For a discrete type-2 fuzzy set Ã, an embedded type-2 set Ãe has N elements, where Ãe contains exactly

one element from Jx1
, Jx2

, . . . , JxN
, namely u1, u2, . . . , uN, each with its associated secondary grade, namely fx1

(u1), fx2
(u2), . . . ,

fxN
(uN), i.e.,

Ãe =
N∑

i=1

[ fxi
(ui)/ui]/xi, ui ∈ Jxi

⊆ [0, 1].

Set Ãe is embedded in Ã, and there are a total of
∏N

i=1 Mi Ãe.

Definition 6 [12]. For a discrete type-2 fuzzy set Ã, an embedded type-1 set Ae has N elements, one each from Jx1
, Jx2

, . . . , JxN
,

namely u1, u2, . . . , uN, i.e.,

Ae = ui/xi, ui ∈ Jxi
⊆ [0, 1].

Set Ae is the union of all the primary memberships of set Ãe, and there are a total of
∏N

i=1 Mi Ae.

Theorem 1 (Representation Theorem [12]). Let Ã
j
e denote the jth embedded type-2 set for a discrete type-2 fuzzy set Ã, i.e.,

Ã j
e ≡
{(

uj
i
, fxi

(
uj

i

))
, i = 1, . . . , N

}
where u

j
i

∈ {uik, k = 1, . . . , Mi}. Then Ã can be represented as the union of its embedded type-2 sets, i.e.,

Ã =
n∑

j=1

Ã j
e

where n =∏N M .
i=1 i
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The Representation Theorem provides a new representation for a type-2 fuzzy set in terms of so-called wavy slices.

Theorem 2 [12]. Consider two discrete type-2 fuzzy sets Ã and B̃, where

Ã =
∑
x∈X

μÃ(x)/x =
∑
x∈X

[∑
u∈Ju

x

fx(u)/u

]
/x, Ju

x ⊆ [0, 1]

and

B̃ =
∑
x∈X

μB̃(x)/x =
∑
x∈X

[∑
w∈Jw

x

gx(w)/w

]
/x, Jw

x ⊆ [0, 1].

Using the Representation Theorem, these can be expressed as:

Ã =
nA∑
j=1

Ã j
e =

nA∑
j=1

N∑
i=1

fxi
(uj

i
)/uj

i

xi

and

B̃ =
nB∑
j=1

B̃ j
e =

nB∑
j=1

N∑
i=1

gxi
(wj

i
)/wj

i

xi

.

The union of two type-2 fuzzy sets Ã and B̃ is given as:

Ã
⋃

B̃ =
nA∑
j=1

nB∑
i=1

{
[ fx1

(uj
1
) � gx1

(wi
1)/uj

1
∨ wi

1]/x1 + · · · + [ fxN
(uj

N
) � gxN

(wi
N)/uj

N
∨ wi

N]/xN

}
,

and the intersection of two type-2 fuzzy sets Ã and B̃ is given as:

Ã
⋂

B̃ =
nA∑
j=1

nB∑
i=1

{
[ fx1

(uj
1
) � gx1

(wi
1)/uj

1
∧ wi

1]/x1 + · · · + [ fxN
(uj

N
) � gxN

(wi
N)/uj

N
∧ wi

N]/xN

}
,

where � is a t-norm. In the following, � is taken as the largest t-norm, i.e., the minimum. The complement of the type-2 fuzzy set Ã is

given as:

(Ã)c =
nA∑
j=1

(
N∑

i=1

[ fxi
(uj

i
)/(1 − uj

i
)]/xi

)

or

(Ã)c =
N∑

i=1

(
Mi∑
j=1

[ fxi
(uj

i
)/(1 − uj

i
)]

)
/xi =

N∑
i=1

¬Ã(xi)/xi,

where ¬ denotes the so-called negation operation and

¬Ã(xi) =
Mi∑
j=1

[ fxi
(uj

i
)/(1 − uj

i
)]

is the negation of the secondary membership function Ã(xi).

Because the union and intersection of Ã and B̃ are still type-2 fuzzy sets, an expression for μ
Ã∪B̃

(x) and μ
Ã∩B̃

(x) can be obtained

as follows:

μÃ∪B̃(x) =
∑
u∈Ju

x

∑
w∈Jw

x

fx(u) � gx(w)/u ∨ w ≡ μÃ(x) 
 μB̃(x),

μÃ∩B̃(x) =
∑
u∈Ju

x

∑
w∈Jw

x

fx(u) � gx(w)/u ∧ w ≡ μÃ(x) � μB̃(x),

where � denotes the so-called join operation and � denotes the so-called meet operation. The notations μ
Ã
(x) 
 μB̃(x) and

μ
Ã
(x) � μB̃(x) are used here to indicate the join and meet operations between the secondary membership functions μ

Ã
(x) and

μB̃(x).

Definition 7. For two type-2 fuzzy sets Ã and B̃, Ã ⊆ B̃ if and only if Ã ∩ B̃ = Ã.
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For two discrete type-2 fuzzy sets Ã and B̃, if they have unique embedded type-2 sets, i.e.,

Ã =
N∑

i=1

fxi
(ui)/ui

xi

and B̃ =
N∑

i=1

gxi
(wi)/wi

xi

,

then Ã ⊆ B̃ if and only if ui ≤ wi and fxi
(ui) ≤ gxi

(wi) (∀i = 1, . . . , N).
For a family of discrete type-2 fuzzy sets with unique embedded type-2 sets

Ã(m) =
N∑

i=1

f (m)
xi

(u(m)
i

)/u(m)
i

xi

, m ∈ θ,

where θ is a finite index set, the union of these type-2 fuzzy sets is:

⋃
m∈θ

Ã(m) =
N∑

i=1

∧
m∈θ f (m)

xi
(u(m)

i
)/
∨

m∈θ u(m)
i

xi

,

and the intersection of these type-2 fuzzy sets is:

⋂
m∈θ

Ã(m) =
N∑

i=1

∧
m∈θ f (m)

xi
(u(m)

i
)/
∧

m∈θ u(m)
i

xi

.

Example 1. Consider three type-2 fuzzy sets on X = {x1, x2, x3, x4}:

Ã(1) = 1/0

x1

+ 0.8/0.3

x2

+ 1/0.6

x3

+ 0.5/0.2

x4

,

Ã(2) = 1/0.4

x1

+ 0.7/0.4

x2

+ 1/1

x3

+ 1/0.5

x4

,

Ã(3) = 0.5/1

x1

+ 1/0.8

x2

+ 0.9/0.3

x3

+ 0.5/0

x4

,

then

Ã(1) ∪ Ã(2) ∪ Ã(3) = 0.5/1

x1

+ 0.7/0.8

x2

+ 0.9/1

x3

+ 0.5/0.5

x4

,

Ã(1) ∩ Ã(2) ∩ Ã(3) = 0.5/0

x1

+ 0.7/0.3

x2

+ 0.9/0.3

x3

+ 0.5/0

x4

.

Definition 8 [8]. Let X and Y be two nonempty universes. A type-2 fuzzy set R̃ ∈ F̃(X × Y) is defined as a type-2 fuzzy relation

from X to Y. If X = Y, then R̃ is called a type-2 fuzzy relation on X.

Definition 9. Let X be a nonempty universe, and let R̃ be a type-2 fuzzy relation on X.

1. R̃ is reflexive if for any x ∈ X, R̃(x, x) = 1/1.

2. R̃ is symmetric if for any x, y ∈ X, R̃(x, y) = R̃(y, x).
3. R̃ is transitive if for any x, y ∈ X, R̃(x, y) ≥ 
z∈X(R̃(x, z) � R̃(z, y)).

A type-2 fuzzy relation R̃ on X is called a type-2 fuzzy similarity relation if R̃ is reflexive, symmetric, and transitive.

Example 2. Let X = {a, b, c}, then

R̃ = 1/1

(a, a)
+ 1/0.8

(a, b)
+ 1/0.8

(a, c)
+ 1/0.8

(b, a)
+ 1/1

(b, b)
+ 0.5/0.85

(b, c)
+ 1/0.8

(c, a)
+ 0.5/0.85

(c, b)
+ 1/1

(c, c)

is a type-2 fuzzy similarity relation.

Assume a discrete type-2 fuzzy relation R̃ from X to Y, where X = {x1, . . . , xn} and Y = {y1, . . . , ym}. The lth embedded type-2

relation R̃l
e can be expressed as:

R̃l
e = {(ul

i j, fxiy j
(ul

i j)), i = 1, . . . , n; j = 1, . . . , m}
where ul

i j
∈ {ui jk|k = 1, . . . , Mi j}. The uijk represent the members of the primary membership set for a given pair (xi, yj), and Mij

are the number of uijk in that vertical slice.

The Representation Theorem shows that a discrete type-2 fuzzy set is the union of its embedded type-2 sets, which is also

true for a discrete type-2 fuzzy relation:

R̃ =
nR∑

l=1

R̃l
e where nR ≡

n∏
i=1

m∏
j=1

Mi j

because a type-2 fuzzy relation is a type-2 fuzzy set in essence.
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In 1975, Zadeh proposed the Extension Principle for fuzzy sets [22], which is essentially a basic identity enabling the domain

of a mapping or a relation to be extended from points in U to fuzzy subsets in U. This paper reviews the statement of the Extension

Principle and presents a version following Mendel and John [12].

Let A1, A2, . . . , Ar be type-1 fuzzy sets in X1, X2, . . . , Xr, respectively. Then a type-1 fuzzy set B can be induced on Y from the r

type-1 fuzzy sets A1, A2, . . . , Ar through f, i.e., B = f (A1, A2, . . . , Ar), such that:

μB(y) =
{

sup(x1,...,xr)∈ f −1(y) min{μA1
(x1), . . . ,μAr

(xr)}, if f −1(y) �= ∅
0, if f −1(y) = ∅

where f −1(y) denotes the set of all points x1 ∈ X1, . . . , xr ∈ Xr such that f (x1, . . . , xr) = y.

2.2. Rough sets

Let X be a finite and nonempty universe, and let R ⊆ X × X be an equivalence relation on X, i.e., R is reflexive, symmetric, and

transitive. The pair (X, R) is called an approximation space. A mapping [ · ]R: X → 2X can be defined as: [x]R = {y ∈ X : (x, y) ∈ R}.

The subset [x]R is the equivalence class containing x. The family of all equivalence classes {[x]R: x ∈ X} is known as the quotient

set and is denoted by X/R. The quotient set X/R defines a partition of the universe X, namely a family of pairwise disjoint subsets

whose union is the universe. If two elements x and y in X belong to the same equivalence class, x and y are said to be indiscernible.

Under the equivalence relation, a coarsened view of the universe is obtained. Given an arbitrary set A ⊆ X, it may not be possible

to describe A precisely in (X, R), in which case A may be characterized by a pair of lower and upper approximations defined as

follows:

RA = ∪{[x]R : [x]R ⊆ A} = {x ∈ X : [x]R ⊆ A},
RA = ∪{[x]R : [x]R ∩ A �= ∅} = {x ∈ X : [x]R ∩ A �= ∅} = ∪{[x]R : x ∈ A}.

The lower and upper approximations have another equivalent description obtained by using the intersections of complements

of certain equivalence classes [2]. Suppose that R is an equivalence relation on X, then for A ⊆ X:

RA = ∩{([x]R)
c : x ∈ Ac}, RA = ∩{([x]R)

c : A ⊆ ([x]R)
c}.

2.3. Fuzzy rough sets

It is widely accepted that the concepts of fuzzy sets and rough sets are related but distinct and that both arise because of

uncertainty in knowledge or data. Fuzzy rough sets encapsulate these two concepts and are able to deal better with uncertainty.

Dubois and Prade [4] pioneered the concept of rough fuzzy sets and fuzzy rough sets. Here, the definition of fuzzy rough sets

proposed by Dubois and Prade is briefly introduced with some notations modified.

Definition 10. Let X be a nonempty universe, R be a fuzzy binary relation on X, and F(X) be the fuzzy power set of X. For any

A ∈ F(X), the fuzzy rough set of A is a pair (R∗(A), R∗(A)) such that for every x ∈ X:

R∗(A)(x) ≡ sup
y∈X

min{R(x, y),μA(y)}, (2)

R∗(A)(x) ≡ inf
y∈X

max{1 − R(x, y),μA(y)}. (3)

3. Type-2 fuzzy rough sets

Rough set theory is a mathematical approach to imperfect knowledge, whose methodology is concerned with the classifica-

tion and analysis of imprecise, uncertain, or incomplete information and knowledge. In this section, type-2 fuzzy rough sets will

be defined by combining rough sets and type-2 fuzzy sets.

Let Ã be a discrete type-2 fuzzy set on X and R̃ be a discrete type-2 fuzzy relation on X, where X = {x1, x2, . . . , xn}. By the

Representation Theorem, Ã and R̃ can be expressed as: Ã =∑nA
j=1

Ã
j
e and R̃ =∑nR

l=1
R̃l

e, where

Ã j
e =

N∑
i=1

[ fxi
(uj

i
)/uj

i
]/xi, xi ∈ X, uj

i
∈ Jxi

⊆ [0, 1] (4)

and

R̃l
e =

N∑
p,q=1

[g(xp,yq)(v
l
pq)/vl

pq]/(xp, yq), (xp, yq) ∈ X × X, vl
pq ∈ J(xp,yq) ⊆ [0, 1] (5)

are embedded type-2 sets.
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The upper and lower approximation operators can be defined as follows:

R̃(Ã) =
nR∑

l=1

nA∑
j=1

R̃l
e(Ã j

e), (6)

R̃(Ã) =
nR∑

l=1

nA∑
j=1

R̃l
e(Ã j

e). (7)

It is clear that to define the upper and lower approximation operators, it is necessary to evaluate R̃l
e(Ã

j
e) and R̃l

e(Ã
j
e)(∀ l, j).

Because a type-1 fuzzy set can be regarded as a special type-2 fuzzy set with all secondary grades equal to unity, it seems

sensible to use the definition of a (type-1) fuzzy rough set as a starting point for the discussion of type-2 fuzzy rough sets.

Recall that A
j
e and Rl

e are the embedded type-1 sets associated with Ã
j
e and R̃l

e, i.e.,

Aj
e =

N∑
i=1

uj
i
/xi, xi ∈ X, uj

i
∈ Jxi

⊆ [0, 1],

Rl
e =

N∑
p,q=1

vl
pq/(xp, yq), (xp, yq) ∈ X × X, vl

pq ∈ J(xp,yq) ⊆ [0, 1].

By (2) and (3),

Rl
e(Aj

e) =
N∑

i=1

{
N∨

m=1

[Rl
e(xi, ym) ∧ Aj

e(ym)]

}
/xi

=
N∑

i=1

[
N∨

m=1

(vl
im ∧ uj

m)

]
/xi,

Rl
e(Aj

e) =
N∑

i=1

{
N∧

m=1

[(1 − Rl
e(xi, ym)) ∨ Aj

e(ym)]

}
/xi

=
N∑

i=1

{
N∧

m=1

[(1 − vl
im) ∨ uj

m]

}
/xi,

and the above can be expressed as two type-2 fuzzy sets as follows:

Rl
e(Aj

e) =
N∑

i=1

{
1/

N∨
m=1

[Rl
e(xi, ym) ∧ Aj

e(ym)]

}
/xi

=
N∑

i=1

[
1/

N∨
m=1

(vl
im ∧ uj

m)

]
/xi,

Rl
e(Aj

e) =
N∑

i=1

{
1/

N∧
m=1

[(1 − Rl
e(xi, ym)) ∨ Aj

e(ym)]

}
/xi

=
N∑

i=1

{
1/

N∧
m=1

[(1 − vl
im) ∨ uj

m]

}
/xi.

In the type-2 case, the Extension Principle can be used to produce the secondary grades, leading to the formulation below:

R̃l
e(Ã j

e) =
N∑

i=1

{
N∧

m=1

[g(xi,ym)(vl
im) ∧ fxm

(uj
m)]/

N∨
m=1

(vl
im ∧ uj

m)

}
/xi, (8)

R̃l
e(Ã j

e) =
N∑

i=1

{
N∧

m=1

[g(xi,ym)(vl
im) ∧ fxm

(uj
m)]/

N∧
m=1

[(1 − vl
im) ∨ uj

m]

}
/xi. (9)

Then, R̃(Ã) and R̃(Ã) can be deduced from (6) and (7).

Definition 11. Let Ã be a discrete type-2 fuzzy set on X, and let R̃ be a discrete type-2 fuzzy relation on X, where X =
{x1, x2, . . . , xn}. If Ã =∑nA

j=1
Ã

j
e and R̃ =∑nR

l=1
R̃l

e, where

Ã j
e =

N∑
i=1

[ fxi
(uj

i
)/uj

i
]/xi

and
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R̃l
e =

N∑
p,q=1

[g(xp,yq)(v
l
pq)/vl

pq]/(xp, yq)

are the embedded type-2 sets, a type-2 fuzzy rough set is a pair (R̃(Ã), R̃(Ã)) such that

R̃(Ã) =
nR∑

l=1

nA∑
j=1

R̃l
e(Ã j

e),

R̃(Ã) =
nR∑

l=1

nA∑
j=1

R̃l
e(Ã j

e),

where

R̃l
e(Ã j

e) =
N∑

i=1

{
N∧

m=1

[g(xi,ym)(vl
im) ∧ fxm

(uj
m)]/

N∨
m=1

(vl
im ∧ uj

m)

}
/xi,

R̃l
e(Ã j

e) =
N∑

i=1

{
N∧

m=1

[g(xi,ym)(vl
im) ∧ fxm

(uj
m)]/

N∧
m=1

[(1 − vl
im) ∨ uj

m]

}
/xi.

The pair (X, R̃) is called a type-2 fuzzy approximation space. The mappings R̃ : F̃(X) → F̃(X) and R̃ : F̃(X) → F̃(X) are re-

ferred to as the lower type-2 fuzzy rough approximation operator and the upper type-2 fuzzy rough approximation operator

respectively.

If R̃ is a type-1 fuzzy set, that is, nR = 1 and R̃ =∑N
p,q=1 (1/vpq)/(xp, yq), then:

R̃(Ã) =
nA∑
j=1

R̃(Ã j
e) =

nA∑
j=1

N∑
i=1

{
N∧

m=1

fxm
(uj

m)/
N∨

m=1

(vim ∧ uj
m)

}
/xi,

R̃(Ã) =
nA∑
j=1

R̃(Ã j
e) =

nA∑
j=1

N∑
i=1

{
N∧

m=1

fxm
(uj

m)/
N∧

m=1

[(1 − vim) ∨ uj
m]

}
/xi.

Furthermore, if both R̃ and Ã are type-1 fuzzy sets, that is, nR = nA = 1 and R̃ =∑N
p,q=1 (1/vpq)/(xp, yq), Ã =∑N

i=1 (1/ui)/xi, it

follows that

R̃(Ã) =
N∑

i=1

{
1/

N∨
m=1

(vim ∧ um)

}
/xi,

R̃(Ã) =
N∑

i=1

{
1/

N∧
m=1

[(1 − vim) ∨ um]

}
/xi,

which is exactly in accordance with the definition of a fuzzy rough set.

Example 3. Fig. 1 depicts a type-2 fuzzy set defined on X = {x1, x2, x3}:

Ã = (0.8/0.4)/x1 + (1.0/0.8)/x1 + (0.6/0.8)/x2 + (0.5/0.4)/x3 + (0.3/0.8)/x3. (10)

Note that MA
1

= 2, MA
2

= 1, MA
3

= 2, and nA = MA
1

MA
2

MA
3

= 4. Hence, there are four embedded type-2 sets, namely

Ã1
e = (0.8/0.4)/x1 + (0.6/0.8)/x2 + (0.5/0.4)/x3,

Ã2
e = (1.0/0.8)/x1 + (0.6/0.8)/x2 + (0.5/0.4)/x3,

Ã3
e = (0.8/0.4)/x1 + (0.6/0.8)/x2 + (0.3/0.8)/x3,

Ã4
e = (1.0/0.8)/x1 + (0.6/0.8)/x2 + (0.3/0.8)/x3, (11)

and Ã =∑4
j=1 Ã

j
e.

Consider a type-2 fuzzy relation (Fig. 2) on X:

R̃ = (0.5/0.8)/(x1, x1) + (0.6/0.4)/(x1, x2) + (1.0/0.8)/(x1, x2) + (1.0/0.4)/(x1, x3) + (0.2/0.8)/(x2, x1)

+ (0.9/0.8)/(x2, x2) + (0.6/0.4)/(x2, x3) + (0.1/0.8)/(x2, x3) + (0.3/0.8)/(x3, x1)

+ (0.8/0.4)/(x3, x2) + (1.0/0.4)/(x3, x3) + (0.5/0.8)/(x3, x3). (12)

There are nR = 8 embedded type-2 sets as follows:

R̃1
e = (0.5/0.8)/(x1, x1) + (0.6/0.4)/(x1, x2) + (1.0/0.4)/(x1, x3) + (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2)

+ (0.6/0.4)/(x2, x3) + (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (1.0/0.4)/(x3, x3),
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Fig. 1. The type-2 fuzzy set Ã used in Example 3.

Fig. 2. The type-2 fuzzy relation R̃ used in Example 3.
R̃2
e = (0.5/0.8)/(x1, x1) + (1.0/0.8)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.6/0.4)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (1.0/0.4)/(x3, x3),

R̃3
e = (0.5/0.8)/(x1, x1) + (0.6/0.4)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.1/0.8)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (1.0/0.4)/(x3, x3),

R̃4
e = (0.5/0.8)/(x1, x1) + (1.0/0.8)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.1/0.8)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (1.0/0.4)/(x3, x3),

R̃5
e = (0.5/0.8)/(x1, x1) + (0.6/0.4)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.6/0.4)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (0.5/0.8)/(x3, x3),

R̃6
e = (0.5/0.8)/(x1, x1) + (1.0/0.8)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.6/0.4)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (0.5/0.8)/(x3, x3),

R̃7
e = (0.5/0.8)/(x1, x1) + (0.6/0.4)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.1/0.8)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (0.5/0.8)/(x3, x3),
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R̃8
e = (0.5/0.8)/(x1, x1) + (1.0/0.8)/(x1, x2) + (1.0/0.4)/(x1, x3)

+ (0.2/0.8)/(x2, x1) + (0.9/0.8)/(x2, x2) + (0.1/0.8)/(x2, x3)

+ (0.3/0.8)/(x3, x1) + (0.8/0.4)/(x3, x2) + (0.5/0.8)/(x3, x3).

Now R̃ =∑8
l=1 R̃l

e remains to be considered.

R̃l
e(Ã

j
e) for j = 1, 2, 3, 4 and l = 1, . . . , 8 can be computed by (8), leading to:

R̃(Ã) =
8∑

l=1

4∑
j=1

R̃l
e(Ã j

e)

= (0.5/0.4)/x1 + (0.5/0.8)/x1 + (0.2/0.8)/x2 + (0.3/0.4)/x3 + (0.3/0.8)/x3.

Similarly, computing R̃l
e(Ã

j
e) for j = 1, 2, 3, 4 and l = 1, . . . , 8 using (9) leads to:

R̃(Ã) =
8∑

l=1

4∑
j=1

R̃l
e(Ã j

e)

= (0.5/0.4)/x1 + (0.5/0.6)/x1 + (0.3/0.8)/x1 + (0.2/0.4)/x2 + (0.2/0.6)/x2 + (0.2/0.8)/x2

+ (0.3/0.4)/x3 + (0.3/0.6)/x3 + (0.3/0.8)/x3.

4. Granular structure of type-2 fuzzy rough sets

Rough set theory is an important approach to granular computing, but in the fuzzy framework, the granular structure of fuzzy

rough sets is not as clear as that of classical rough sets. In 2011, Chen et al. [2] proposed the concept of granular fuzzy sets based

on fuzzy similarity relations and described the granular structures of the lower and upper approximations of a fuzzy set. Inspired

by [2], in this section, two kinds of granular type-2 fuzzy sets will be defined, and the granular structure of type-2 fuzzy rough

sets will be discussed.

Let X be a nonempty universe. A type-2 fuzzy point, denoted by x
μ
λ

, is a type-2 fuzzy set defined on X: for any y ∈ X,

x
μ
λ
(y) =

{
μ/λ, if y = x
1/0, if y �= x

,

where μ/λ (resp., 1/0) means that at y = x (resp., y �= x), when its primary variable is λ (resp., 0), the associated secondary grade

is equal to μ (resp., 1), and at all other values, the secondary grades are equal to 0.

For simplicity, R̃α will be used instead of R̃
j
e to denote the embedded type-2 set described below.

Definition 12. Suppose that R̃ is a type-2 fuzzy relation on X, R̃α is an embedded type-2 set of R̃, and Rα is the corresponding

embedded type-1 set. For a type-2 fuzzy point x
μ
λ

, two granular type-2 fuzzy sets [x
μ
λ

]∧
R̃α

and [x
μ
λ

]∨
R̃α

are defined as follows: for

any y ∈ X,

[x
μ
λ

]∧
R̃α

(y) = R̃α((x, y), Rα(x, y)) ∧ μ

Rα(x, y) ∧ λ

and

[x
μ
λ

]∨
R̃α

(y) = R̃α((x, y), Rα(x, y)) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)
.

For simplicity, R∗
α(x, y) is used to denote R̃α((x, y), Rα(x, y)). Then the above equations can be rewritten as:

[x
μ
λ

]∧
R̃α

(y) = R∗
α(x, y) ∧ μ

Rα(x, y) ∧ λ

and

[x
μ
λ

]∨
R̃α

(y) = R∗
α(x, y) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)
.

In other words, Rα(x, y) is the element chosen from the primary membership of (x, y) by Rα , and R∗
α(x, y) is the associated

secondary grade of Rα(x, y).

[x]∧
R̃α

and [x]∨
R̃α

will be used to denote [x1
1
]∧
R̃α

and [x1
1
]∨
R̃α

respectively.

Two type-2 fuzzy sets [x
μ
λ

]∧
R̃

and [x
μ
λ

]∨
R̃

can be defined as follows: for any y ∈ X,

[x
μ
λ

]∧
R̃
(y) =

∑
α

[x
μ
λ

]∧
R̃α

(y), [x
μ
λ

]∨
R̃
(y) =

∑
α

[x
μ
λ

]∨
R̃α

(y).
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Let M∧
R̃α

= {[x
μ
λ

]∧
R̃α

|x ∈ X;λ ∈ [0, 1],μ ∈ (0, 1]}, M∨
R̃α

= {[x
μ
λ

]∨
R̃α

|x ∈ X;λ ∈ [0, 1],μ ∈ (0, 1]}; M∧
R̃

= {[x
μ
λ

]∧
R̃
|x ∈ X;λ ∈ [0, 1],

μ ∈ (0, 1]}, M∨
R̃

= {[x
μ
λ

]∨
R̃
|x ∈ X;λ ∈ [0, 1],μ ∈ (0, 1]}.

Clearly,

[x]∧
R̃
(y) =

∑
α

[x]∧
R̃α

(y) =
∑
α

R∗
α(x, y)

Rα(x, y)
= R̃(x, y)

and

[x]∨
R̃
(y) =

∑
α

[x]∨
R̃α

(y) =
∑
α

R∗
α(x, y)

1 − Rα(x, y)
= R̃c(x, y).

Example 4. Consider the type-2 fuzzy relation defined in Example 3 with notations verified: X = {a, b, c},
R̃ = (0.5/0.8)/(a, a) + (0.6/0.4)/(a, b) + (1.0/0.8)/(a, b) + (1.0/0.4)/(a, c) + (0.2/0.8)/(b, a) + (0.9/0.8)/(b, b)

+ (0.6/0.4)/(b, c) + (0.1/0.8)/(b, c) + (0.3/0.8)/(c, a) + (0.8/0.4)/(c, b) + (1.0/0.4)/(c, c) + (0.5/0.8)/(c, c).

(13)

R̃1 = (0.5/0.8)/(a, a) + (0.6/0.4)/(a, b) + (1.0/0.4)/(a, c) + (0.2/0.8)/(b, a) + (0.9/0.8)/(b, b + (0.6/0.4)/(b, c)

+ (0.3/0.8)/(c, a) + (0.8/0.4)/(c, b) + (1.0/0.4)/(c, c) (14)

is an embedded type-2 set of R̃. Take a type-2 fuzzy point a0.5
1

. It follows that:

[a0.5
1 ]

∧
R̃1

= (R∗
1(a, a) ∧ 0.5)/R1(a, a)

a
+ (R∗

1(a, b) ∧ 0.5)/R1(a, b)

b
+ (R∗

1(a, c) ∧ 0.5)/R1(a, c)

c

= 0.5/0.8

a
+ 0.5/0.4

b
+ 0.5/0.4

c

and

[a0.5
1 ]

∨
R̃1

= (R∗
1(a, a) ∧ 0.5)/(1 − R1(a, a))

a
+ (R∗

1(a, b) ∧ 0.5)/(1 − R1(a, b))

b
+ (R∗

1(a, c) ∧ 0.5)/(1 − R1(a, c))

c

= 0.5/0.2

a
+ 0.5/0.6

b
+ 0.5/0.6

c
.

Similarly,

[a0.5
1 ]

∧
R̃2

= 0.5/0.8

a
+ 0.5/0.8

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃2

= 0.5/0.2

a
+ 0.5/0.2

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃3

= 0.5/0.8

a
+ 0.5/0.4

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃3

= 0.5/0.2

a
+ 0.5/0.6

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃4

= 0.5/0.8

a
+ 0.5/0.8

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃4

= 0.5/0.2

a
+ 0.5/0.2

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃5

= 0.5/0.8

a
+ 0.5/0.4

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃5

= 0.5/0.2

a
+ 0.5/0.6

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃6

= 0.5/0.8

a
+ 0.5/0.8

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃6

= 0.5/0.2

a
+ 0.5/0.2

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃7

= 0.5/0.8

a
+ 0.5/0.4

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃7

= 0.5/0.2

a
+ 0.5/0.6

b
+ 0.5/0.6

c
,

[a0.5
1 ]

∧
R̃8

= 0.5/0.8

a
+ 0.5/0.8

b
+ 0.5/0.4

c
, [a0.5

1 ]∨
R̃8

= 0.5/0.2

a
+ 0.5/0.2

b
+ 0.5/0.6

c
.

Thus,

[a0.5
1 ]

∧
R̃ =

8∑
α=1

[a0.5
1 ]∧

R̃α
= 0.5/0.8

a
+ 0.5/0.4 + 0.5/0.8

b
+ 0.5/0.4

c
,

[a0.5
1 ]

∨
R̃ =

8∑
α=1

[a0.5
1 ]∨

R̃α
= 0.5/0.2

a
+ 0.5/0.6 + 0.5/0.2

b
+ 0.5/0.6

c
.

Next, the properties of granular type-2 fuzzy sets will be discussed.

Theorem 3. Suppose that R̃ is a type-2 fuzzy relation on X and that R̃α is an embedded type-2 set of R̃. For x ∈ X, λ1, λ2 ∈ [0, 1], μ1,

μ2 ∈ (0, 1],

(1) [x
μ1

λ1
]∧
R̃α

∪ [x
μ2

λ2
]∧
R̃α

= [x
μ1∧μ2

λ1∨λ2
]∧
R̃α

;
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(2) [x
μ1

λ1
]∧
R̃α

∩ [x
μ2

λ2
]∧
R̃α

= [x
μ1∧μ2

λ1∧λ2
]∧
R̃α

;
(3) [x

μ1

λ1
]∨
R̃α

∪ [x
μ2

λ2
]∨
R̃α

= [x
μ1∧μ2

λ1∧λ2
]∨
R̃α

;
(4) [x

μ1

λ1
]∨
R̃α

∩ [x
μ2

λ2
]∨
R̃α

= [x
μ1∧μ2

λ1∨λ2
]∨
R̃α

.

Proof. (1) For any y ∈ X,[
x
μ1

λ1

]∧

R̃α

(y) 

[

x
μ2

λ2

]∧

R̃α

(y) = R∗
α(x, y) ∧ μ1

Rα(x, y) ∧ λ1


 R∗
α(x, y) ∧ μ2

Rα(x, y) ∧ λ2

= (R∗
α(x, y) ∧ μ1) ∧ (R∗

α(x, y) ∧ μ2)

(Rα(x, y) ∧ λ1) ∨ (Rα(x, y) ∧ λ2)

= R∗
α(x, y) ∧ (μ1 ∧ μ2)

Rα(x, y) ∧ (λ1 ∨ λ2)
=
[

x
μ1∧μ2

λ1∨λ2

]∧

R̃α

(y).

(2) For any y ∈ X,[
x
μ1

λ1

]∧

R̃α

(y) �
[

x
μ2

λ2

]∧

R̃α

(y) = R∗
α(x, y) ∧ μ1

Rα(x, y) ∧ λ1

� R∗
α(x, y) ∧ μ2

Rα(x, y) ∧ λ2

= (R∗
α(x, y) ∧ μ1) ∧ (R∗

α(x, y) ∧ μ2)

(Rα(x, y) ∧ λ1) ∧ (Rα(x, y) ∧ λ2)

= R∗
α(x, y) ∧ (μ1 ∧ μ2)

Rα(x, y) ∧ (λ1 ∧ λ2)
=
[

x
μ1∧μ2

λ1∧λ2

]∧

R̃α

(y).

(3) For any y ∈ X,[
x
μ1

λ1

]∨

R̃α

(y) 

[

x
μ2

λ2

]∨

R̃α

(y) = R∗
α(x, y) ∧ μ1

(1 − Rα(x, y)) ∨ (1 − λ1)

 R∗

α(x, y) ∧ μ2

(1 − Rα(x, y)) ∨ (1 − λ2)

= (R∗
α(x, y) ∧ μ1) ∧ (R∗

α(x, y) ∧ μ2)

[(1 − Rα(x, y)) ∨ (1 − λ1)] ∨ [(1 − Rα(x, y)) ∨ (1 − λ2)]

= R∗
α(x, y) ∧ (μ1 ∧ μ2)

(1 − Rα(x, y)) ∨ [1 − (λ1 ∧ λ2)]
=
[

x
μ1∧μ2

λ1∧λ2

]∨

R̃α

(y).

(4) For any y ∈ X,[
x
μ1

λ1

]∨

R̃α

(y) �
[

x
μ2

λ2

]∨

R̃α

(y) = R∗
α(x, y) ∧ μ1

(1 − Rα(x, y)) ∨ (1 − λ1)
� R∗

α(x, y) ∧ μ2

(1 − Rα(x, y)) ∨ (1 − λ2)

= (R∗
α(x, y) ∧ μ1) ∧ (R∗

α(x, y) ∧ μ2)

[(1 − Rα(x, y)) ∨ (1 − λ1)] ∧ [(1 − Rα(x, y)) ∨ (1 − λ2)]

= R∗
α(x, y) ∧ (μ1 ∧ μ2)

(1 − Rα(x, y)) ∨ [1 − (λ1 ∨ λ2)]
=
[

x
μ1∧μ2

λ1∨λ2

]∨

R̃α

(y).

�

Theorem 4. Suppose that R̃(1) and R̃(2) are type-2 fuzzy relations on X and that R̃α and R̃β are embedded type-2 sets of R̃(1) and R̃(2)

respectively. It follows that:

(1) [x
μ
λ

]∧
R̃α∩R̃β

= [x
μ
λ

]∧
R̃α

∩ [x
μ
λ

]∧
R̃β

;
(2) [x

μ
λ

]∧
R̃α∪R̃β

= [x
μ
λ

]∧
R̃α

∪ [x
μ
λ

]∧
R̃β

;
(3) [x

μ
λ

]∨
R̃α∩R̃β

= [x
μ
λ

]∨
R̃α

∪ [x
μ
λ

]∨
R̃β

;
(4) [x

μ
λ

]∨
R̃α∪R̃β

= [x
μ
λ

]∨
R̃α

∩ [x
μ
λ

]∨
R̃β

.

Proof. For any y ∈ X,

[x
μ
λ

]∧
R̃α∩R̃β

(y) =
[R∗

α(x, y) ∧ R∗
β
(x, y)] ∧ μ

[Rα(x, y) ∧ Rβ(x, y)] ∧ λ

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[Rα(x, y) ∧ λ] ∧ [Rβ(x, y) ∧ λ]

= [x
μ
λ

]∧
R̃α

(y) � [x
μ
λ

]∧
R̃β

(y).

[x
μ
λ

]∧
R̃α∪R̃β

(y) =
[R∗

α(x, y) ∧ R∗
β
(x, y)] ∧ μ

[Rα(x, y) ∨ Rβ(x, y)] ∧ λ

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[Rα(x, y) ∧ λ] ∨ [Rβ(x, y) ∧ λ]

= [x
μ

]∧
˜ (y) 
 [x

μ
]∧

˜ (y).

λ Rα λ Rβ
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[x
μ
λ

]∨
R̃α∩R̃β

(y) =
[R∗

α(x, y) ∧ R∗
β
(x, y)] ∧ μ

[1 − Rα(x, y) ∧ Rβ(x, y)] ∨ (1 − λ)

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[(1 − Rα(x, y)) ∨ (1 − Rβ(x, y))] ∨ (1 − λ)]

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[(1 − Rα(x, y)) ∨ (1 − λ)] ∨ [(1 − Rβ(x, y)) ∨ (1 − λ)]

= [x
μ
λ

]∨
R̃α

(y) 
 [x
μ
λ

]∨
R̃β

(y).

[x
μ
λ

]∨
R̃α∪R̃β

(y) =
[R∗

α(x, y) ∧ R∗
β
(x, y)] ∧ μ

[1 − Rα(x, y) ∨ Rβ(x, y)] ∨ (1 − λ)

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[(1 − Rα(x, y)) ∧ (1 − Rβ(x, y))] ∨ (1 − λ)]

=
[R∗

α(x, y) ∧ μ] ∧ [R∗
β
(x, y) ∧ μ]

[(1 − Rα(x, y)) ∨ (1 − λ)] ∧ [(1 − Rβ(x, y)) ∨ (1 − λ)]

= [x
μ
λ

]∨
R̃α

(y) � [x
μ
λ

]∨
R̃β

(y).

�

Theorem 5. Elements in M∧
R̃α

and M∨
R̃α

have the following properties:

(1) For every x ∈ X and μ ∈ (0, 1], λ′ < λ implies that [x
μ
λ′ ]∧R̃α

⊆ [x
μ
λ

]∧
R̃α

and [x
μ
λ′ ]∨R̃α

⊇ [x
μ
λ

]∨
R̃α

;

(2) For every x ∈ X and λ ∈ [0, 1], μ ∈ (0, 1], ([x
μ
λ

]∧
R̃α

)c = [x
μ
λ

]∨
R̃α

, ([x
μ
λ

]∨
R̃α

)c = [x
μ
λ

]∧
R̃α

.

Proof. (1) The conclusions are obvious.

(2) For every x ∈ X, λ ∈ [0, 1], μ ∈ (0, 1] ,

([x
μ
λ

]∧
Rα

)c(y) = R̃α(x, y) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)
= [x

μ
λ

]∨
Rα

(y),

([x
μ
λ

]∨
Rα

)c(y) = R̃α(x, y) ∧ μ

Rα(x, y) ∧ λ
= [x

μ
λ

]∧
R̃α

(y).

�

Theorem 6. Let X be a nonempty universe, and let R̃ be a type-2 fuzzy relation on X. Then the following statements are equivalent:

(1) R̃ is reflexive;

(2) For any x ∈ X, λ ∈ [0, 1], μ ∈ (0, 1], [x
μ
λ

]∧
R̃
(x) = μ/λ;

(3) For any x ∈ X, λ ∈ [0, 1], μ ∈ (0, 1], [x
μ
λ

]∨
R̃
(x) = μ/(1 − λ).

Proof. (1) ⇒ (3): Because for every x ∈ X, R̃(x, x) = 1/1, then for any embedded type-2 set R̃α, R̃α(x, x) = 1/1. Hence,

[x
μ
λ

]∨
R̃
(x) =

∑
α

[x
μ
λ

]∨
R̃α

(x) =
∑
α

R̃α(x, x) ∧ μ

(1 − Rα(x, x)) ∨ (1 − λ)
= μ/(1 − λ).

(3) ⇒ (2):

[x
μ
λ

]∧
R̃
(x) =

∑
α

[x
μ
λ

]∧
R̃α

(x) =
∑
α

R̃α(x, x) ∧ μ

Rα(x, x) ∧ λ
= ¬[x

μ
λ

]∨
R̃
(x) = μ/λ.

(2) ⇒ (1): Let x ∈ X, if there exists R̃α such that Rα(x, x) = λ′ < 1 and R̃α(x, x) > 0. Suppose that λ > λ′; then, [x
μ
λ

]∧
R̃α

(x) =
R̃α(x,x)∧μ
Rα(x,x)∧λ

�= μ
λ

, which contradicts assertion (2). Therefore, for any x ∈ X and for any λ < 1, R̃((x, x), λ) = 0. Moreover, if there

exists an x ∈ X, such that R̃(x, x) = μ′/1 with μ′ < 1, then for μ > μ′, [x
μ
λ

]∧
R̃
(x) =∑α[x

μ
λ

]∧
R̃α

(x) =∑α
R̃α(x,x)∧μ
Rα(x,x)∧λ

= μ′/λ �= μ/λ,

which is also a contradiction. In conclusion, R̃(x, x) = 1/1. �

Theorem 7. Let X be a nonempty universe, and let R̃ be a type-2 fuzzy relation on X. Then the following statements are equivalent:

(1) R̃ is symmetric;

(2) For any x, y ∈ X, [x]∧
R̃
(y) = [y]∧

R̃
(x);

(3) For any x, y ∈ X, [x]∨
˜
(y) = [y]∨

˜
(x).
R R
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Proof. R̃ is symmetric if and only if R̃(x, y) = R̃(y, x), which is equivalent to R̃c(x, y) = R̃c(y, x), and therefore the above theorem

holds. �

Theorem 8. Let X be a nonempty universe, and let R̃ be a type-2 fuzzy relation on X. Then the following statements are equivalent:

(1) R̃ is transitive;

(2) For any x, y ∈ X, [x]∧
R̃
(y) ≥ 
z∈X([x]∧

R̃
(z) � [z]∧

R̃
(y));

(3) For any x, y ∈ X, ([x]∨
R̃
)c(y) ≥ 
z∈X(([x]∨

R̃
)c(z) � ([z]∨

R̃
)c(y)).

Proof. These conclusions follow from the facts that [x]∧
R̃
(y) = R̃(x, y) and ([x]∨

R̃
)c = [x]∧

R̃
. �

Different from the property of fuzzy T-transitive relation proven by Chen et al. ([2], Proposition 3.1.5), the last property cannot

be replaced by [x]∨
R̃
(y) ≤ �z∈X([x]∨

R̃
(z) 
 [z]∨

R̃
(y)).

Example 5. Consider the type-2 fuzzy similarity relation R̃ defined in Example 2, [a]∨
R̃
(b) = R̃c(a, b) = 1/0.2, and

�z∈X([a]∨
R̃
(z) 
 [z]∨

R̃
(b)) = �z∈X(R̃c(a, z) 
 R̃c(z, b)) = 0.5/0.2.

It is clear that [a]∨
R̃
(b) � �z∈X([a]∨

R̃
(z) 
 [z]∨

R̃
(b)).

Theorem 9. Let X be a nonempty universe, and let R̃ be a type-2 fuzzy relation on X. Then the following statements are equivalent:

(1) R̃ is a type-2 fuzzy similarity relation;

(2) For any x, y ∈ X, λ ∈ [0, 1], μ ∈ (0, 1], [x
μ
λ

]∧
R̃
(x) = μ/λ, [x]∧

R̃
(y) = [y]∧

R̃
(x), [x]∧

R̃
(y) ≥ 
z∈X([x]∧

R̃
(z) � [z]∧

R̃
(y));

(3) For any x, y ∈ X, λ ∈ [0, 1], μ ∈ (0, 1], [x
μ
λ

]∨
R̃
(x) = μ/(1 − λ), [x]∨

R̃
(y) = [y]∨

R̃
(x), ([x]∨

R̃
)c(y) ≥ 
z∈X(([x]∨

R̃
)c(z) � ([z]∨

R̃
)c(y)).

Proof. Combining Theorem 6, Theorem 7 and Theorem 8, we have the theorem. �

Different from the property of fuzzy similarity relation proven by Chen et al. ([2], Theorem 3.1.6), the inequalities in (2) and

(3) cannot be replaced by equalities because type-2 fuzzy sets do not satisfy absorption laws [14].

Example 6. Consider the type-2 fuzzy similarity relation R̃ given in Example 2, [a]∧
R̃
(b) = ([a]∨

R̃
)c(b) = R̃(a, b) = 1/0.8,

and 
z∈X([a]∧
R̃
(z) � [z]∧

R̃
(b)) = 
z∈X(([a]∨

R̃
)c(z) � ([z]∨

R̃
)c(b)) = 
z∈X(R̃(a, z) � R̃(z, b)) = 0.5/0.8. Clearly, [a]∧

R̃
(b) �= 
z∈X([a]∧

R̃
(z) �

[z]∧
R̃
(b)) and ([a]∨

R̃
)c(b) �= 
z∈X(([a]∨

R̃
)c(z) � ([z]∨

R̃
)c(b)).

Suppose that R̃ is a type-2 fuzzy relation on U. Define two mappings

�∧
R̃

: {x
μ
λ

: x ∈ X, λ ∈ [0, 1],μ ∈ (0, 1]} → M∧
R̃

and

�∨
R̃

: {x
μ
λ

: x ∈ X, λ ∈ [0, 1],μ ∈ (0, 1]} → M∨
R̃

as follows: for any x
μ
λ

,

�∧
R̃
(x

μ
λ
) = [x

μ
λ

]∧
R̃

and �∨
R̃
(x

μ
λ
) = [x

μ
λ

]∨
R̃
.

Theorem 10. Suppose that �∧, �∨ : {x
μ
λ

: x ∈ X, λ ∈ [0, 1],μ ∈ (0, 1]} → F̃(X) are two mappings. Then there exists a type-2 fuzzy

relation R̃ such that �∧ = �∧
R̃

and �∨ = �∨
R̃

if and only if �∧ and �∨ satisfy the following axioms: For any x, y ∈ X, λ ∈[0, 1], μ ∈
(0, 1],

(1) �∧(x
μ
λ
)(y) = �∧(x1

1
)(y) � μ/λ, �∨(x

μ
λ
)(y) = �∨(x1

1
)(y) 
 μ/(1 − λ).

(2) (�∧(x
μ
λ
))c = �∨(x

μ
λ
), (�∨(x

μ
λ
))c = �∧(x

μ
λ
).

Proof. Necessity. For the first axiom:

�∧(x1
1)(y) � μ

λ
= �∧

R̃
(x1

1)(y) � μ

λ
= [x1

1]∧
R̃
(y) � μ

λ

=
∑
α

R∗
α(x, y)

Rα(x, y)
� μ

λ
=
∑
α

R∗
α(x, y) ∧ μ

Rα(x, y) ∧ λ

= [x
μ
λ

]∧
R̃
(y) = �∧

R̃
(x

μ
λ
)(y) = �∧(x

μ
λ
)(y);

�∨(x1
1)(y) 
 μ

1 − λ
= �∨

R̃
(x1

1)(y) 
 μ

1 − λ
= [x1

1]∨
R̃
(y) 
 μ

1 − λ

=
∑
α

R∗
α(x, y)

1 − Rα(x, y)

 μ

1 − λ
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=
∑
α

R∗
α(x, y) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)

= [x
μ
λ

]∨
R̃
(y) = �∨

R̃
(x

μ
λ
)(y) = �∨(x

μ
λ
)(y).

For the second axiom:

(�∧(x
μ
λ
))c(y) = (�∧

R̃
(x

μ
λ
))c(y) = ([x

μ
λ

]∧
R̃
)c(y)

= ¬
(∑

α

R∗
α(x, y) ∧ μ

Rα(x, y) ∧ λ

)

=
∑
α

R∗
α(x, y) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)

= [x
μ
λ

]∨
R̃
(y) = �∨

R̃
(x

μ
λ
)(y) = �∨(x

μ
λ
)(y);

(�∨(x
μ
λ
))c(y) = (�∨

R̃
(x

μ
λ
))c(y) = ([x

μ
λ

]∨
R̃
)c(y)

= ¬
(∑

α

R∗
α(x, y) ∧ μ

(1 − Rα(x, y)) ∨ (1 − λ)

)

=
∑
α

R∗
α(x, y) ∧ μ

Rα(x, y) ∧ λ

= [x
μ
λ

]∧
R̃
(y) = �∧

R̃
(x

μ
λ
)(y) = �∧(x

μ
λ
)(y).

Sufficiency. Suppose that �∧ and �∨ satisfy axioms (1) and (2). Define two type-2 fuzzy relations on X as R̃(x, y) = �∧(x1
1
)(y)

and P̃(x, y) = ¬(�∨(x1
1
)(y)). It follows that:

�∧(x
μ
λ
)(y) = �∧(x1

1)(y) � μ

λ
= R̃(x, y) � μ

λ

=
∑
α

R∗
α(x, y)

Rα(x, y)
� μ

λ

=
∑
α

R∗
α(x, y) ∧ μ

Rα(x, y) ∧ λ

= [x
μ
λ

]∧
R̃
(y) = �∧

R̃
(x

μ
λ
)(y);

�∨(x
μ
λ
)(y) = �∨(x1

1)(y) 
 μ

1 − λ
= ¬P̃(x, y) 
 μ

1 − λ

=
∑
α

P∗
α(x, y)

1 − Pα(x, y)

 μ

1 − λ

=
∑
α

P∗
α(x, y) ∧ μ

(1 − Pα(x, y)) ∨ (1 − λ)

= [x
μ
λ

]∨
P̃
(y) = �∨

P̃
(x

μ
λ
)(y).

Hence, �∧ = �∧
R̃

and �∨ = �∨
P̃

. Next, it will be proven that R̃ = P̃. Actually, R̃(x, y) = �∧(x1
1)(y) = (�∨(x1

1))
c(y) =

¬(�∨(x1
1)(y)) = P̃(x, y). So R̃ = P̃. �

Theorem 11. Suppose that �∧, �∨ : {x
μ
λ

: x ∈ X, λ ∈ [0, 1],μ ∈ (0, 1]} → F̃(X) are two mappings satisfying the axioms in the above

theorem. Then there exists a type-2 fuzzy similarity relation R̃ such that �∧ = �∧
R̃

and �∨ = �∨
R̃

if and only if �∧ and �∨ satisfy the

following axioms: For any x, y ∈ X, λ ∈ [0, 1], μ ∈ (0, 1],

(1) �∧(x
μ
λ
)(x) = μ

λ
, �∧(x1

1)(y) = �∧(y1
1)(x), �∧(x1

1)(y) ≥ 
z∈X(�∧(x1
1)(z) � �∧(z1

1)(y));

(2) �∨(x
μ
λ
)(x) = μ

1−λ
, �∨(x1

1
)(y) = �∨(y1

1
)(x), (�∨(x1

1
))c(y) ≥ 
z∈X [(�∨(x1

1
))c(z) � (�∨(z1

1
))c(y)].

Proof. Sufficiency. Let R̃(x, y) = �∧(x1
1)(y), then �∧ = �∧

R and �∨ = �∨
R . If �∧ satisfies axiom (1) or �∨ satisfies axiom (2), it is

obvious that R̃ is a type-2 fuzzy similarity relation. Necessity is obvious. �

Next, the granular structures of the lower and upper approximations of a type-2 fuzzy set will be described.

Theorem 12. Let R̃ be a discrete type-2 fuzzy relation on X, and let Ã be a discrete type-2 fuzzy set on X, where X is a nonempty

universe. If these can be represented by the Representation Theorem as R̃ =∑nR
α=1

R̃α and Ã =∑nA

β=1
Ãβ , then
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R̃α(Ãβ) =
⋃
x∈X

[
x

Ãβ (x)

Aβ (x)

]∧

R̃α

and

R̃α(Ãβ) =
⋂
x∈X

[
x

Ãc
β
(x)

Ac
β
(x)

]∨

R̃α

.

Consequently, the upper and lower approximations of Ã can be represented as

R̃(Ã) =
nR∑

α=1

nA∑
β=1

R̃α(Ãβ) =
nR∑

α=1

nA∑
β=1

⋃
x∈X

[
x

Ãβ (x)

Aβ (x)

]∧

R̃α

,

R̃(Ã) =
nR∑

α=1

nA∑
β=1

R̃α(Ãβ) =
nR∑

α=1

nA∑
β=1

⋂
x∈X

[
x

Ãc
β
(x)

Ac
β
(x)

]∨

R̃α

.

Proof.⋃
x∈X

[
x

Ãβ (x)

Aβ (x)

]∧

R̃α

(y) =
⋃
x∈X

R∗
α(x, y) ∧ Ãβ(x)

Rα(x, y) ∧ Aβ(x)

=
∧

x∈X (R∗
α(x, y) ∧ Ãβ(x))∨

x∈X (Rα(x, y) ∧ Aβ(x))
= R̃α(Ãβ)(y),

⋂
x∈X

[
x

Ãc
β
(x)

Ac
β
(x)

]∨

R̃α

(y) =
⋂
x∈X

R∗
α(x, y) ∧ Ãc

β
(x)

(1 − Rα(x, y)) ∨ (1 − Ac
β
(x))

=
∧

x∈X (R∗
α(x, y) ∧ Ãβ(x))∧

x∈X [(1 − Rα(x, y)) ∨ Aβ(x)]
= R̃α(Ãβ)(y),

where Aβ is the embedded type-1 set associated with Ãβ and Ãβ(x) is the simplified form of Ãβ(x, Aβ(x)). �

In classical rough set theory, the upper approximation of A related to the equivalence relation R can be explained as the union

of the minimal basic granules to which every element in A belongs, where the collection of all equivalence classes is the basic

granular set [2], that is, R(A) = ∪{[x]R|x ∈ A}. The lower approximation of A is RA = ∩{([x]R)
c|x ∈ Ac}. Considering

⋃nR
α=1

M∧
R̃α

and⋃nR
α=1

M∨
R̃α

as the basic granular set, then the above theorem shows the corresponding results in the type-2 fuzzy frame.

To compare the model presented here with that proposed by Zhao and Xiao [26], let us consider the example in [26] with

some notations modified.

Example 7. Let X = {x1, x2, x3}. Ã ∈ F̃(X) and R̃ ∈ F̃(X × X) are given as follows:

μ
Ã
(x1) = trim f (0.18, 0.36, 0.54);

μ
Ã
(x2) = trapm f (0.38, 0.52, 0.74, 0.86);

μ
Ã
(x3) = trim f (0.39, 0.61, 0.72);

μR̃(x1, x1) = μR̃(x2, x2) = μR̃(x3, x3) = 1/1;
μR̃(x1, x2) = μR̃(x2, x1) = trapm f (0.2, 0.3, 0.37, 0.45);
μR̃(x1, x3) = μR̃(x3, x1) = trim f (0.1, 0.23, 0.39);
μR̃(x2, x3) = μR̃(x3, x2) = trim f (0.8, 0.95, 1),

where trapmf( ·, ·, ·, ·) denotes a trapezoidal function, the first and fourth parameters of () denote the bottom left and right

endpoints respectively, and the second and third parameters of () denote the top left and right endpoints respectively. Further-

more, trimf( ·, ·, ·) denotes a triangular function, the first and third parameters of () denote the bottom left and right endpoints

respectively, and the second parameter of () denotes the apex.

Because the model presented here is defined for discrete type-2 fuzzy sets and relations, the secondary membership functions

of A and R can be discretized. For purposes of comparison, embedded type-2 sets were chosen as follows:

Ã1
e = 0.5/0.27

x1

+ 0.5/0.45

x2

+ 0.5/0.5

x3

,

Ã2
e = 0.5/0.45

x1

+ 0.5/0.8

x2

+ 0.5/0.66

x3

,

R̃1
e = 0.5/1

(x1, x1)
+ 0.5/0.25

(x1, x2)
+ 0.5/0.17

(x1, x3)
+ 0.5/0.25

(x2, x1)
+ 0.5/1

(x2, x2)
+ 0.5/0.88

(x2, x3)
+ 0.5/0.17

(x3, x1)
+ 0.5/0.88

(x3, x2)
+ 0.5/1

(x3, x3)
,

R̃2
e = 0.5/1

(x , x )
+ 0.5/0.41

(x , x )
+ 0.5/0.31

(x , x )
+ 0.5/0.41

(x , x )
+ 0.5/1

(x , x )
+ 0.5/0.97

(x , x )
+ 0.5/0.31

(x , x )
+ 0.5/0.97

(x , x )
+ 0.5/1

(x , x )
.

1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3
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The corresponding embedded type-1 sets of Ã1
e and Ã2

e are exactly SA
L
(x|0.5) and SA

U
(x|0.5) in [26], and the corresponding embed-

ded type-1 sets of R̃1
e and R̃2

e are exactly SR
L
((x, y)|0.5) and SR

U
((x, y)|0.5) in [26].

Assume that Ãβ = Ã1
e and R̃α = R̃1

e . It follows that:

R̃α(Ãβ) = ∪x∈X

[
x

Ãβ (x)

Aβ (x)

]∧

R̃α

= 0.5/0.27

x1

+ 0.5/0.25

x2

+ 0.5/0.17

x3

,

R̃α(Ãβ) = ∩x∈X

[
x

Ãc
β
(x)

Ac
β
(x)

]∨

R̃α

= 0.5/0.27

x1

+ 0.5/0.45

x2

+ 0.5/0.45

x3

.

Now assume that Ãβ = Ã2
e and R̃α = R̃1

e . Then,

R̃α(Ãβ) = 0.5/0.45

x1

+ 0.5/0.8

x2

+ 0.5/0.8

x3

,

R̃α(Ãβ) = 0.5/0.45

x1

+ 0.5/0.66

x2

+ 0.5/0.66

x3

.

Next, assume that Ãβ = Ã1
e and R̃α = R̃2

e . Then,

R̃α(Ãβ) = 0.5/0.41

x1

+ 0.5/0.5

x2

+ 0.5/0.5

x3

,

R̃α(Ãβ) = 0.5/0.27

x1

+ 0.5/0.45

x2

+ 0.5/0.45

x3

.

Assuming Ãβ = Ã2
e and R̃α = R̃2

e , then

R̃α(Ãβ) = 0.5/0.45

x1

+ 0.5/0.8

x2

+ 0.5/0.8

x3

,

R̃α(Ãβ) = 0.5/0.45

x1

+ 0.5/0.59

x2

+ 0.5/0.66

x3

.

In comparison with the results given in [26], it has been found here that the corresponding embedded type-1 set of R̃1
e (Ã1

e ) is

S
f (A)
L

(x|0.5), the corresponding embedded type-1 set of R̃1
e (Ã2

e ) is S
f (A)

U
(x|0.5), the corresponding embedded type-1 set of R̃2

e (Ã1
e )

is S
f (A)

L
(x|0.5), and the corresponding embedded type-1 set of R̃2

e (Ã2
e ) is S

f (A)
U

(x|0.5).
Similarly, other approximate results can be computed for other embedded type-2 sets and relations. It is clear that the model

presented here will result in the same upper and lower approximations of Ã as that proposed by Zhao and Xiao.

Example 8. As a type-2 fuzzy rough attribute reduction example, consider a type-2 fuzzy decision system (X, R ∪ D). Suppose

that X = {e1, e2, . . . , e6} is a set of finite objects , R = {R1, R2, R̃3} is a set of conditional attributes, and D = {Q} is a set of decision

attributes. R1, R2, Q are crisp equivalence relations, and R̃3 is a type-2 fuzzy relation. These are defined as follows:

R1(ei, e j) =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎠

R2(ei, e j) =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 0 1
1 1 1 1 0 1
1 1 1 1 0 1
1 1 1 1 0 1
0 0 0 0 1 0
1 1 1 1 0 1

⎞
⎟⎟⎟⎟⎠

R̃3(ei, e j) =

⎛
⎜⎜⎜⎜⎝

1/1 1/0.6 1/0.2 1/0.9 1/0.5 1/0.1
1/0.6 1/1 1/0.7 1/0.6 0.5/0.8 1/0.6
1/0.2 1/0.7 1/1 1/0.2 1/0.8 0.5/0.9
1/0.9 1/0.6 1/0.2 1/1 1/0.6 1/0.1 + 1/0.2
1/0.5 0.5/0.8 1/0.8 1/0.6 1/1 1/0.8
1/0.1 1/0.6 0.5/0.9 1/0.1 + 1/0.2 1/0.8 1/1

⎞
⎟⎟⎟⎟⎠

X/Q = {Y1,Y2} = {{e2, e3, e6}, {e1, e4, e5}}.
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Table 1

Example of rough attribute reduction.

a1 a2 a3 d

e1 yes yes normal No

e2 yes yes high yes

e3 yes yes very high Yes

e4 no yes normal no

e5 no no high No

e6 no yes very high yes
Because R1 and R2 are crisp equivalence relations and

X/R1 = {{e1, e2, e3}, {e4, e5, e6}},
X/R2 = {{e1, e2, e3, e4, e6}, {e5}},

it is clear that:

γ1(Q) = |R1(Y1) ∪ R1(Y2)|
|X| = 0,

γ2(Q) = |R2(Y1) ∪ R2(Y2)|
|X| = 1/6.

Suppose that R̃3 =∑α R̃α . Then for any y ∈ X and i = 1, 2,

R̃3(Yi)(y) =
∑
α

R̃α(Yi)(y)

=
∑
α

∧x∈X R∗
α(x, y)

∧x∈X [(1 − Rα(x, y)) ∨ Yi(x)]

=
∑
α

∧x∈X R∗
α(x, y)

∧x∈Yi
[(1 − Rα(x, y)) ∨ Yi(x)] ∧ {∧x/∈Yi

[(1 − Rα(x, y)) ∨ Yi(x)]}
=
∑
α

∧x∈X R∗
α(x, y)

∧x/∈Yi
(1 − Rα(x, y))

.

Hence,

R̃3(Y1) = 1/0.4

e1

+ 0.5/0

e2

+ 0.5/0

e3

+ 1/0.4

e4

+ 0.5/0.2

e5

+ 0.5/0

e6

,

R̃3(Y2) = 1/0

e1

+ 0.5/0.2

e2

+ 0.5/0.2

e3

+ 1/0

e4

+ 0.5/0

e5

+ 0.5/0.2

e6

,

and then

R̃3(Y1) ∪ R̃3(Y2) = 1/0.4

e1

+ 0.5/0.2

e2

+ 0.5/0.2

e3

+ 1/0.4

e4

+ 0.5/0.2

e5

+ 0.5/0.2

e6

.

Hence,

γ3(Q) = |R̃3(Y1) ∪ R̃3(Y2)|
|X| =

∑6
i=1 CR̃3(Y1)∪R̃3(Y2)

(ei)

|X| = 1.2/6,

where CR̃3(Y1)∪R̃3(Y2)(ei) is the cardinality of R̃3(Y1) ∪ R̃3(Y2)](ei), which is defined as the product of the primary membership and

its associated secondary grade.

Note that attribute R̃3 causes the greatest increase in type-2 fuzzy rough dependency degree. Hence, this attribute is chosen

and added to the potential reduction set. The process iterates, yielding γ13 = 2.85/6, γ23 = 2.45/6.

Because a larger increase of type-2 fuzzy rough dependency degree is produced by adding R1 to the reduction candidate set,

the new reduction candidate set becomes {R1, R̃3}.

Finally, adding R̃2 to the potential reduction set gives γ123(Q) = 4.3/6.

For the corresponding case of traditional rough attribute reduction depicted in Table 1, both {a1, a3} and {a2, a3} are reduc-

tions, {a3} is the core, and γ ′{a1,a3}(Q) = γ ′{a2,a3}(Q) = 1. Compared with the corresponding rough attribute reduction, type-2

fuzzy rough attribute reduction generates different dependency degrees for {a1, a3} and {a2, a3}, but still affirms the importance

of {a }.
3
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5. Conclusions

In this paper, a general definition of type-2 fuzzy rough sets has been developed based on a wavy-slice representation (the

Representation Theorem). Based on an arbitrary general type-2 fuzzy relation, a pair of upper and lower type-2 fuzzy rough

approximation operators has also been derived. The granular structure of type-2 fuzzy rough sets has also been discussed, and it

has been proven that the approximation operators in the type-2 fuzzy rough set model developed in this paper can be defined

using the proposed basic information granules. Finally, attribute reduction within a type-2 fuzzy rough framework is discussed

using a simple example.

So far, type-2 fuzzy sets can be represented by a vertical-slice representation, a wavy-slice representation, or an α-plane

representations. Zhao and Xiao proposed a definition of type-2 fuzzy rough sets based on the α-plane representation method

[26], and Wang investigated type-2 fuzzy rough sets on two finite universes of discourse based on extended t-norms with respect

to type-2 fuzzy relations with convex normal fuzzy truth values using a vertical-slice representation of type-2 fuzzy sets [19].

These models simplify the computation of type-2 fuzzy rough sets but do not mention the granular structure of these sets because

the concept of a type-2 fuzzy point is not clear in the α-plane or in the vertical-slice representations of type-2 fuzzy sets. This

paper presents a new model for type-2 fuzzy rough sets based on wavy slices (the Representation Theorem). The proposed model

decomposes type-2 fuzzy sets into ensembles of embedded type-2 sets, and the definition of fuzzy points is easy to extend to a

type-2 fuzzy framework. Hence, the granular structure of type-2 fuzzy rough sets is creatively discussed, and it is shown that the

upper and lower approximation operators can be defined as unions and intersections of certain granules. The proposed model

illuminates the innate granular structure of type-2 fuzzy rough sets and proposes a set of basic granules in the framework of

type-2 fuzzy rough sets.

As mentioned by Mendel in [11], the Representation Theorem is very useful for deriving theoretical results, but is not rec-

ommended for computational purposes because it would require explicit enumeration of the nA embedded type-2 sets and nA

can be astronomical. For the same reason, the definition of type-2 fuzzy rough sets presented here is useful only for deriving

theoretical results, the examples presented in this paper are simple, and the stated conclusions are all based on discrete type-2

fuzzy sets. Corresponding results for general type-2 fuzzy sets will be discussed in future work by the authors. Future work by

the authors will consider the structure of attribute reduction in terms of granular type-2 fuzzy sets and various approaches to

knowledge discovery in complex fuzzy information systems.
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