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Based on the complement behavior of information gain, a new definition of information entropy is proposed along
with its justification in rough set theory. Some properties of this definition imply those of Shannon’s entropy. Based
on the new information entropy, conditional entropy and mutual information are then introduced and applied to
knowledge bases. The new information entropy is proved to also be a fuzzy entropy.
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INTRODUCTION

The entropy of a system as defined by Shannon (1948) gives a measure of uncertainty about
its actual structure. It has been a useful mechanism for characterizing the information content
in various modes and applications in many diverse fields. Several authors (Diintsch and
Gediga, 1998; Beaubouef ef al., 1998; Wierman, 1999; Liang and Xu, 2000; Liang et al.,
2000) have used Shannon’s concept and its variants to measure uncertainty in rough set
theory. But Shannon’s entropy is not a fuzzy entropy, and cannot measure the fuzziness in
rough set theory.

This paper introduces a new definition for information entropy in rough set theory. Unlike
the logarithmic behavior of Shannon’s entropy, the gain function considered here possesses
the complement nature. Some important properties of this definition are also derived. Based
on the new concept, conditional entropy and mutual information are then introduced and
applied to knowledge bases. The new measure of information is also proved to be a fuzzy
entropy, and can be used to measure the fuzziness of rough set and rough classification.

MEASURE OF UNCERTAINTY IN ROUGH SET THEORY

Rough set theory (Pawlak, 1991) has become well established as a mechanism
for uncertainty management in a wide variety of applications related to Artificial
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Intelligence (Dubois and Prade, 1990; Slowinski, 1992; Pawlak et al., 1995; Lingras and
Yao, 1998).
Let

K = (U,R)

be an approximation space, where U is a non-empty, finite set called the universe; R is a
partition of U, or an equivalence relation on U.

An approximation space K = (U, R) can be regarded as a knowledge base about U.

Let

R={Ri,Rz,...,Ru}. (1
Of particular interest is the discrete partition,
RW) = {{x)lx € U}, )
and the indiscrete partition,
RW) = {U}, 3)

or just R and R if there is no confusion as to the domain set involved.
Given a partition R, and a subset X C U, we can define a lower approximation of X in U
and a upper approximation of X in U by the following:

RX = U{R; E RIR; C X}, “4)
and
RX = U{R; ERIR; N X # ). (5)

The R-positive region of X is POSz(X) = RX, the R-negative region of X is NEGg(X) =
U — RX, and the boundary or R-borderline region of X is BNz(X) = RX — RX. X is called
R-definable if and only if RX = RX. Otherwise, RX # RX and X is rough with respect to R.

DEerFINITION 1 (WIERMAN, 1999) Let K = (U,R) be an approximation space, and R
a partition of U. A measure of uncertainty in rough set theory is defined by

“S Ry |R;|
R) = — “og, —4
G(R) ; TR (6)

where G : R — [0, 00) is a function from R, the set of all partitions of non-empty finite sets, to
the non-negative real number, and |U| is the cardinality of U. This granularity measure, G,
measures the uncertainty associated with the prediction of outcomes where elements of each
partition set R; are indistinguishable.

If p=Pi1,p2,-..,pn) is a finite probability distribution, then its Shannon entropy
(Shannon, 1948; Klir and Wierman, 1998) is given by

S(p) =~ _pilogap;. (7
=1

Let
|R;| |R:|

= =
Z IRl
=

Pi
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and it turns out that p = (py, pa, ..., pm) is a probability distribution on R. Hence
G(R) = S(p). (3)
The Hartley measure (Hartley, 1928) of uncertainty for finite set X is
H(X) = log:|X]|. ©)

The relationship between the granularity measure and the Hartley measure is as follows
(Wierman, 1999):

|Ri]

—H(R; 10
U] (Ri). 10)

G(R) = H(U) — Z

We introduce a new definition for information entropy in rough set theory as follows.

DerFINITION 2 Let K = (U,R) be an approximation space, and R be a partition of U.
Information entropy for rough set theory is defined by

SRR = IR ( IRi|>
ER) = 1 - (11)
Z U] U Z: |U| |U|
where RS is the complement of R;, i.e. RS = U — R;; |R;|/|U| represents the probability of
equivalence class R; within the universe U; |R{|/|U| denotes the probability of the
complement of R; within the universe U.
Now we define a partial order on all partition sets of U. Let P and Q be partitions of a finite

set U, and we define the partition Q is coarser than the partition P (or the partition P is finer
than the partition Q), P = Q, between partitions by

If P = Qand P # Q, then we say that Q is strictly coarser than P (or P is strictly finer than Q)
and write P < Q.

PROPOSITION 1 (CARDINALITY) If P and Q are partitions of U with |P| = |Q| and there
exists a one-to-one, onto function & : P — Q such that

|h(P)| = Py,
then
E(P) = E(Q).

Proposition 1 states that the uncertainty is invariant with respect to different partitions of U
that are size-isomorphic.
We first prove the following lemma in order to derive other propositions later.

LemMa 1 Let p be a finite probability distribution in U. Let E(p) =), p(x)X
(1 —=px)=1-3 cyp*x). Then

(1) 0=Ep) =1-1/n(U|=n),
() E@)=1- 1/niff p(x) = 1/n(x € U).
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Proof Let
HON) = p*@+ A > p) 1
xevu x€U
Since
H\M) =) px)—1=0
xelU

H, M) =2px)+A=0 (x€U)

we know that p(x) = 1/n(x € U). So the minimum value 1/nof > Upz(x) can be achieved
only under the restriction ) | ,p(x) = 1 when p(x) = 1/n(x € U). O

PROPOSITION 2 (MONOTONICITY) If X and Y are finite sets and |X| < |Y], then

ER(X)) < E(R(Y)).

Proof Let p(x) = |{x}|/|)f| = 1/IX|(x € X), and p(y) = [{y}I/1Y] =1/|Y|(y € Y). From
Lemma 1, we have that E(R(X)) =1 — 1/|X| and E(R(Y)) = 1 — 1/]Y]. Since |X| < |Y], it
follows that 1 — 1/]X| < 1 — 1/|Y|, i.e. E(R(X)) < E(R(Y)). O

PrOPOSITION 3 (ROUGHNESS MONOTONICITY) Let P and Q be two partitions of finite set U.
If P < Q, then E(Q) < E(P).

Proof Let P={P,P5,....,Py,}, and Q = {Q1,(0>,...,0,}. Since P < Q, we have that
m > n and there exists a partition C = {Cy, C»,...,C,} of {1,2,...,m) such that

=JpPj=1.2,...n

i€C;
Hence
2
~ (ol 10il 1 & 2 1 &
EQ) = ( l——F]=1——3 o)I"=1—— P;
,:Zl Ul Ul |U|2,:Zl ! |U|2,:Zl LeJc
2
1 n
SRR O Py
lUI” = \iee
From m > n it follows that there exists Cj, € C such that |C; | > 1. Therefore
ZlPl > PP
tEC zEC
and

2
ZlPil = Z|Pi|2-

i€Cj, j#jo i€Cj, j#jo
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Thus
1 m
EQ) <1-—=>"|PI* = EP).
0] iy
From Proposition 3, it is clear that the information entropy E increases monotonically as the

granularity of information becomes smaller through finer partitions. g

CorOLLARY 1 Let P and Q be two partitions of finite set U. If P = Q and E(P) = E(Q),
then P = Q.
From Lemma 1 and Proposition 3, one can obtain immediately the following propositions.

PROPOSITION 4 (MAaxiMUM) The maximum of the information entropy E for any finite set
Uis 1 — (1/|U]). This value is achieved only by the discrete partition R(U).

PrOPOSITION 5 (MINIMUM) ~ The minimum of the information entropy E for any finite set U
is 0. This value is achieved only by the indiscrete partition R(U).

INFORMATION MEASURE BETWEEN KNOWLEDGE BASES

Let U be the universal set, and K; = (U, P) and K, = (U, Q) be two knowledge bases about
l]: where P = {P17P2a . "aPm}a and Q = {Qla QZa . "aQn}'

DEFINITION 3 Conditional entropy E(Q|P) of Q about P is defined by

N P 107 — Pl
s = 33 G
i=l j=

DEerFINITION 4 Mutual information E(Q; P) of Q and P is defined by

m LﬂP |QCmPc|
E(Q;P) = ZZ|Q|U|| T (14)

i=1 j=1

PROPOSITION 6 Let U be the universal set, and K; = (U,P) and K, = (U, Q) be two
knowledge bases about U, then

E(Q; P) = E(Q) — E(QIP). as)

Proof Since Qf = (Q7 N Pi) U (05 — P;), we have that

0110 ¢ IQlﬂPII
EQ)= Z|u| 0] =y el [

i=1 j=1

_ZZ 10: N P 1(Q5 N PV (QF — P

= E(Q; P)+ E(Q|P).

i=1 j=

Hence

E(Q; P) = E(Q) — E(QIP). O
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ProrosiTION 7 Let U be the universal set, K| = (U, P) and K, = (U, Q) be two knowledge
bases about U, and D be a decision on U (i.e. a partition of U). If P < Q, then E(D; P) =
E(D; Q).

Proof Let
P:{PlaP27"'7Pm}a Q:{Q17Q25"'7Qn}a

and
D = {dlad27-~'adr}~

Since P < Q, we have that m > n and there exists a partition C = {Cy,C»,...,C,} of

{1,2,...,m} such that
=UPk, i=1,2,...n

kEC
Hence
. ld; N Q) |d‘ N QC - ld; N Q| (U — (di U Q)
Hb0= Z”Z [ Z”Z U] U]
d;i N UJPi| |U — (d,« U UPk> ’
B z’: n kEC; kEC;
=1 j=1 Ul Ul
CZW:‘ N Pk|> U - (di U UPk>
A e kEC;
- Ul lul

j=1

Il
R
~.

I

I\

o~ |di NP |U = (d; U P - d; N Pilld; N P,
$~ 1 0 AU = @ U P ZZ' AP

2.2 ] ] 2.2 ol Ul

Example 1 Reverse relation of Proposition 7 cannot be established in general.
Let U={1,2,3,4,5,6,7,8,9,10}. Assume that

P={{1,5},{2,3,4,6,7},{8,9,10}}

0={{1,3,4},{2,5,6},{7,8,9,10}},
and

D = {{1,3,5,8,9},{2,4,6,7,10} }.
It is easily computed that

ED;P)=0.38, E(D;Q)=0.34,
ie.

E(D; P) > E(D; Q).

However, we have that P € Q.
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ProposITION 8 Let U be the universal set, and K; = (U,P) and K, = (U, Q) be two
knowledge bases about U. Then P = Q if and only if E(Q|P) = 0.

Proof

i) Suppose that P = Q. From P = Q, it follows that Q; N P; = Jor P; C Q; for VP; € P
and VQ; € Q. Thus, |Q; N P;||P; — Q;| = 0 for VP; € P and VQ,; € Q. Hence, we
have that

EQIP) = ZE?%%NQ Zzy%wMPwlza

=1 j= =1 j=

ii) Suppose that E(Q|P) = 0. We want to prove that P < Q. Assume that P « Q. Then
there exists a P, € P such that

Py L Qi, VYO €OQ.

Let {Q; € 0|0, N Py # T} = {0y, Qiy, - .-, Qi }, where K > 1. Then
|0, NPl >0 and [P, —Q;l >0, [I=1,2,....K.

Hence
IQOPHQ IQﬂPHP Qi
EQIP) = ZZ ZZ
220 Ul 22 [l U]
10: NPl 1P = Ol _ {5105 NPl 1P — 0
> = > 0.
Z ol Ul ; ol 10l
This yields a contradiction. Therefore, P = Q. |

MEASURE OF FUZZY INFORMATION OF ROUGH SET AND ROUGH
CLASSIFICATION

Let U be the universal set, F(U) the class of all fuzzy sets of U, ws(x) the membership
function of A € F(U), ¢(U) the class of all crisp sets of U, [1/2], the fuzzy set of U for which
M1y21, (0 = 1/2,Vx € U, and F a sub-class of F(U) with (1) (U) C F,(2)[1/2]y € F, (3)
A/ BEF=AUBEF, A° € F, where A¢ € F(U) is the complement of A € F(U), i.e.
pac(x) =1 = pa(x), Vx € U.

The entropy of a fuzzy set is a measure of fuzziness of the fuzzy set. De Luca and Termini
(1972) introduced the axiomatic construction of entropy of fuzzy sets and referred to
Shannon’s probability entropy. Liu (1992) systematically gave the axiomatic definitions of
entropy, distance measure and similarity measure of fuzzy sets and discuss some basic
relations between these measures.

DEerINITION 5 (L1U, 1992) A real function e : F — [0, 4+00) is called an entropy on F'if e has
the following properties:

(1) e(D)=0,VD € ¢U);
(2) e([1/2]y) = maxsere(A);
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(3) VA,B (S F, if IJ«B(X) = [.LA()C) when /.LA(.X) = 1/27 or /-LB(x) = /»LA(-X) when /-LA(x) <= 1/27
then e(A) = e(B);,
(4) e(A°) =e(A),VAEF.

Let U = {x1,x3,...,X,}, and define
EA) = ZMA(xi)(l — palx), VAEF. (16)
i=1

Then E is an entropy on F.
In fact, we have the following:

(1) For VD € ¢(U), we have up(x) = 1 or 0 for Vx € U. Hence, E(D) = 0.

(2) From 0= pa(x) =1, it follows that maxser(ma()(l — ua(x))) = pa,(x) X
(1 = pa,(x)) = 1/4, where Ay € F and u,,(x) = 1/2 for Vx € U. Hence, E([1/2]y) =
maxaerE(A).

(3) Let A,B € F be two arbitrary fuzzy sets. Let f(u(x)) = w(x)(1 — w(x)), where 0 =
pmx) =1l,andx € U.

It can be easily proved that f(u(x)) is strictly increasing on u(x) € [0, 1/2]; f(ju(x)) is
strictly decreasing on u(x) € [1/2,1].

Assume that up(x) = pa(x) when ua(x) = 1/2 or pup(x) = pa(x) when pa(x) = 1/2.
From the property of f(u(x)), it follows that f(us(x)) = f(up(x)). Thus,
S () = YL fus(xn), Le. E(A) = E(B).

(4) Let A€ F. Since pac(x) =1 — pa(x), it follows that wa(x)(1 — pa(x)) = wac(x) X
(1 = pac(x)). Therefore, E(A€) = E(A).

Summarizing above, we obtain that E is an entropy on F.
We remark that

S@A) = =) pats)logy pa(xi), VA EF
i=1
is not a fuzzy entropy.
DEFINITION 6 (L1u, 1992) Let e be an entropy on F. If, for VA € F,
e(A) =e(AND)+e(AND°), VDe ¢U) 17)

then we call e a o-entropy on F.
ProOPOSITION 9 The entropy E is a o-entropy on F(U).
Proof Let U = {x1,x3,...,x,}. For VA € F(U) and VD € ¢(U),

EAND)+EANDY) =" panp(i)(l = panp®) + Y panpe(i)(1 = panpe(x))
i=1 i=1

=3 (anp () + panpeGi)) = Y (anp())* + (anpe(x)))
i=1 i=1

n

=3 ) = Y (maC)? =Y a1 = pa(x)) = E(A),
i=1 i=1

i=1

Thus, E is a o-entropy on F(U).
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Let K = (U, R) be an approximation space, where R is an equivalence relation on U or a
partition of U. Let [x]z denote the equivalence class of the relation R containing the
element x. Then, for any non-null subset X of U, in terms of equivalence classes, the lower
and upper approximations of X in K can be expressed, respectively, by

RX = {x € Ulixlz C X}
and
RX = {x € Ul[x]g N X # J}.
For an element x € U, the degree of rough belongings (Pawlak, 1991) of x in X is given by

(x) _ |X N [X]R|
Hx I[x]]

where uy(x)(0 = ux(x) = 1) represents a vague concept.
This immediately induces a fuzzy set F§ of U given by F§ ={(x,ux(x)Ix e U}. O

(18)

DEeriNiTION 7 The measure of fuzziness of rough set X in an approximation space
K = (U,R) is defined by

n

E(FR) = px(e)(1 = px(x) (19)

i=1

where |U| = n.
ProrosiTION 10 The fuzziness of an exact set in an approximation space is 0.

Proof Let X be an exact set in an approximation space (U, R). Then RX = X = RX, and
Vx € X, ux(x) = (IX N [xIg])/(I[x]z]) = ([x]g])/(|[x]g]) = 1. For each x € U — X, [x]g N
X =(. Hence, for each x € U— X, ux(x) =0. Thus, for each x € U, ux(x)X
(1 — pux(x) =0, ie. E(F§) =0. O

PropoSITION 11 A rough set and its complement have the same fuzziness.

Proof Let X be a rough set in an approximation space (U, R), and X ¢ its complement.
For Vx € U, we have that

IX N [xlgl | 1XC N [xlgl  |xDgl

X1l |[x]l |[x]
ie. pxe(x) =1 — ux(x). Thus, for Vx € U, ux(x)(1 — pux(x)) = px(x)(1 — pxe(x)), i.e.
E(FR) = E(FR).

Let C = {Cy,Cy,...,C,} be a classification of U, i.e. C be a partition of U. C; are called
class of C. Then

x (X) + pxe(x) =

EC = {EC17£C27 M wECI‘}
and
RC = {RC,,RCs,...,RC,)

are, respectively, called the lower and upper approximations of C in K.
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For an element x € U, the degree of rough classification of x in C is given by
IC; N [x]gl
IIxIzl

where uc(x)(0 = uc(x) = 1) represents a vague concept.
This immediately induces a fuzzy set F& of U given by F& = {(x, uc(x)lx € U}. O

Me(x) = x € (; (20)

DEerINITION 8  The measure of fuzziness of rough classification C = {Cy, C»,...,C,} in an
approximation space K = (U, R) is defined by

E(FE) = pe()( = pelx)). 1)
i=1

ProrosITION 12 The fuzziness of an exact classification in an approximation space is 0.

Proof Let C={C;,C,,...,C,} be an exact classification in an approximation space
(U,R),i.e. RC; =RC;,i=1,2,...,r. Then, for Vx € U, there exists uniquely C; € C such
that x € C;, and uex) = (C; N [x]g))/([x]r]) = ([xIg])/([x]g]) = 1.  Therefore,
E(F®)=0. O

CONCLUSIONS

A new definition of information entropy based on the complement behavior of information
gain has been proposed along with its justification in rough set theory. Based on this concept,
conditional entropy and mutual information have been introduced. In particular, the new
information entropy can measure both uncertainty and fuzziness in rough set theory. Now we
are studying information measures in generalized rough set model (Slowinski and
Vanderpooten, 2000) for data mining applications, which will be reported in another paper.
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