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a b s t r a c t

The k-ary n-cube is one of the most popular interconnection networks for parallel and dis-
tributed systems. Strong matching preclusion that additionally permits more destructive
vertex faults in a graph is amore extensive formof the originalmatching preclusion that as-
sumes only edge faults. In this paper, we establish the strong matching preclusion number
and all minimum strong matching preclusion sets for k-ary n-cubes with n ≥ 2 and k ≥ 3.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Amatching of a graph is a set of pairwise nonadjacent edges. For a graph with n vertices, a matchingM is called perfect if
its size |M| =

n
2 for even n, or almost perfect if |M| =

n−1
2 for odd n. A graph ismatchable if it has either a perfectmatching or

an almost perfectmatching. Otherwise, it is called unmatchable. Throughout the paper, we only consider simple graphs, that
is, graphs with no parallel edges or loops. For graph-theoretical terminology and notation not defined here, we follow [3].
Let G = (V (G), E(G)) be a graph. A set F of edges in G is called a matching preclusion set (MP set for short) if G − F has
neither a perfect matching nor an almost perfect matching. The matching preclusion number of G (MP number for short),
denoted by mp(G), is defined to be the minimum size of all possible such sets of G. The minimum MP set of G is any MP set
whose size ismp(G). A matching preclusion set of a graph is trivial if all its edges are incident to a single vertex.

Since the problem of matching preclusion was first presented by Brigham et al. [6], several classes of graphs have
been studied to understand their matching preclusion properties [8–11,15,17,19]. An obvious application of the matching
preclusion problemwas addressed in [6]: when each node of interconnection networks is required to have a special partner
at any time, those that have larger matching preclusion numbers will be more robust in the event of link failures.

Another form of matching obstruction, which is in fact more offensive, is through vertex failures. As an extensive form of
matching preclusion, the problem of strong matching preclusion was proposed by Park and Ihm in [16]. A set F of vertices
and/or edges in a graphG is called a strongmatching preclusion set (SMP set for short) ifG−F has neither a perfectmatching
nor an almost perfect matching. The strong matching preclusion number (SMP number for short) of G, denoted by smp(G),
is defined to be the minimum size of all possible such sets of G. The minimum SMP set of G is any SMP set whose size is
smp(G). Note that the strong matching preclusion is more general than the problems discussed in [1,13], which considered
only vertex deletions.
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In particular, when G itself does not contain perfect matchings or almost perfect matchings, both smp(G) andmp(G) are
regarded as zero. These numbers are undefined for a trivial graph with only one vertex. Notice that an MP set of a graph is
a special SMP set of the graph.

Proposition 1.1 ([16]). For every nontrivial graph G, smp(G) ≤ mp(G).

However, the strong matching preclusion numbers did not decrease for such graphs as restricted hypercube-like graphs
and recursive circulants [16]. Following this work, the strong matching preclusion problem was studied for some classes of
graphs such as alternating group graphs, split-stars, and augmented cubes [4,12].

When a set F of vertices and/or edges is removed from a graph, the set is called a fault set. Let Fv and Fe be the fault vertex
set and the fault edge set, respectively. We have F = Fv ∪ Fe. For any vertex v ∈ V (G), let NG(v) be all neighboring vertices
adjacent to v, and let IG(v) be all edges incident to v. Clearly, a fault set that separates exactly one isolated vertex from the
remaining even graph forms a simple SMP set of the original graph.

Proposition 1.2 ([16]). Let G be a graph. Given a fault vertex set X(v) ⊆ NG(v) and a fault edge set Y (v) ⊆ IG(v), X(v) ∪ Y (v)
is an SMP set of G if (i) w ∈ X(v) if and only if (v, w) ∉ Y (v) for every w ∈ NG(v), and (ii) the number of vertices in
G − (X(v) ∪ Y (v)) is even.

The above proposition suggests an easy way of building SMP sets. Any SMP set constructed as specified in Proposition 1.2
is called trivial. If smp(G) = δ(G), then G is called maximally strong matched. If every minimum SMP set of G is trivial, then
G is called super strongmatched. It is easy to see that, for an arbitrary vertex of degree at least 1, there always exists a trivial
SMP set which isolates the vertex. This observation leads to the following fact.

Proposition 1.3 ([16]). For any graph G with no isolated vertices, smp(G) ≤ δ(G), where δ(G) is the minimum degree of G.

2. Definitions and terminology

The k-ary n-cube, denoted by Q k
n , as one of the most attractive interconnection networks for parallel and distributed sys-

tems, has drawn considerable research attention for its desirable properties [7,19,20], such as ease of implementation, low
latency, and high-bandwidth inter-processor communication [5]. Several parallel systems, such as iWarp [18], Cray T3D [14],
and Cray T3E [2], have been built based on the k-ary n-cube. The k-ary n-cube Q k

n (k ≥ 2 and n ≥ 1) is a graph consisting of
kn vertices, each of which has the form u = δ1δ2 . . . δn, where 0 ≤ δi ≤ k− 1 for 1 ≤ i ≤ n. Two vertices u = δ1δ2 . . . δn and
v = λ1λ2 . . . λn are adjacent if and only if there exists an integer j, 1 ≤ j ≤ n, such that δj = λj ± 1(mod k) and δi = λi, for
every i ∈ {1, 2, . . . , n} \ {j}. Such an edge (u, v) is called a j-dimensional edge. For clarity of presentation, we omit writing
‘‘(mod k)ïn similar expressions for the remainder of the paper. Note that each vertex has degree 2nwhen k ≥ 3, and degree
n when k = 2. Obviously, Q k

1 is a cycle of length k, and Q 2
n is an n-dimensional hypercube. We say that Q k

n is divided into
Q k
n [0],Q k

n [1], . . . ,Q k
n [k−1] (abbreviated asQ [0],Q [1], . . . ,Q [k−1], if there are no ambiguities) along dimension d for some

1 ≤ d ≤ n, where Q [p], for every 0 ≤ p ≤ k − 1, is a subgraph of Q k
n induced by {u = δ1δ2 . . . δd . . . δn ∈ V (Q k

n ) : δd = p}.
It is clear that each Q [p] is isomorphic to Q k

n−1 for 0 ≤ p ≤ k − 1. Let ui = δ1δ2 . . . δd−1iδd+1 . . . δn be an arbitrary ver-
tex of Q [i]. For j ∈ {0, 1, . . . , k − 1}\{i}, the vertex uj = δ1δ2 . . . δd−1jδd+1 . . . δn is called the corresponding vertex of ui
in Q [j].

A graph is bipartite if its vertex set can be partitioned into two subsets X and Y such that every edge has one end in X and
one end in Y . Denote by |G| the number of vertices in a graph G. A path is a simple graph whose vertices can be arranged in
a linear sequence in such a way that two vertices are adjacent if they are consecutive in the sequence, and are nonadjacent
otherwise. The length of a path is the number of its edges. The path is odd or even according to the parity of its length. Let G1
and G2 be two graphs. G1 ∪G2 is the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). A path or a cycle which
contains every vertex of a graph is called a Hamiltonian path or Hamiltonian cycle of the graph. A graph is Hamiltonian if it
has a Hamiltonian cycle. A graph G is Hamiltonian connected if, for two arbitrary vertices x and y in G, there is a Hamiltonian
path connecting x and y. Let F be a faulty set in a graph G which contains vertices and/or edges. Let k be a positive integer.
G is k-Hamiltonian if G − F is Hamiltonian for every F with |F | ≤ k. G is k-Hamiltonian connected if G − F is Hamiltonian
connected for every F with |F | ≤ k.

In this paper, we investigate the problem of strong matching preclusion for k-ary n-cubes. We shall establish the strong
matching preclusion number and all possible minimum strong matching preclusion sets for k-ary n-cubes with n ≥ 2 and
k ≥ 3.

3. Main results

We first study strong matching preclusion for Q k
1 . Recall that Q

k
1 is a cycle of length kwhen k ≥ 3. We have the following

result.

Theorem 3.1. Let k ≥ 3 be an integer. Then smp(Q k
1 ) = 2.
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Proof. By Proposition 1.3, smp(Q k
1 ) ≤ δ(Q k

1 ) = 2. Next, consider a fault set F with |F | = 1. If F consists of one edge,Q k
1 −F is

a path of length k−1. If F consists of one vertex,Q k
1 −F is a path of length k−2. Note that an odd path has a perfectmatching,

while an even path has an almost perfect matching. We have that Q k
1 − F is matchable, which means that smp(Q k

1 ) > 1.
Therefore, smp(Q k

1 ) = 2. �

By Theorem 3.1, Q k
1 is maximally strong matched, where k ≥ 3. However, Q k

1 is not super strong matched. For example,
let F = {(0, 5), (2, 3)} be the fault set in a Q 6

1 . It is easy to see that there is no perfect matching in Q 6
1 − F and that F is not a

trivial strong matching preclusion set.

Lemma 3.1 ([16]). For a connected m-regular bipartite graph G with m ≥ 3, smp(G) = 2. Furthermore, each of its minimum
SMP sets is a set of two vertices from the same partite set.

Theorem 3.2. Let k ≥ 4 be an even integer, and let n ≥ 2 be an integer. Then Q k
n is bipartite, and smp(Q k

n ) = 2. Furthermore,
each of its minimum SMP sets is a set of two vertices from the same partite set.

Proof. Let V1 = {δ1δ2 . . . δn : δ1δ2 . . . δn ∈ V (Q k
n ) and

n
i=1 δi = 0(mod 2)} and V2 = V (Q k

n )\V1. Without loss of generality,
let δ1δ2 . . . δn ∈ V1 and λ1λ2 . . . λn ∈ NQ k

n
(δ1δ2 . . . δn). By the definition of Q k

n , there exists some j ∈ {1, 2, . . . , n} such that
δj = λj ± 1(mod k) and δi = λi for i ∈ {1, 2, . . . , n}\{j}. Since k is even, δj and λj have different parities, which implies thatn

i=1 δi and
n

i=1 λi have different parities. So λ1λ2 . . . λn ∈ V2. It follows that two arbitrary vertices in V1 are nonadjacent.
Similarly, two arbitrary vertices inV2 are nonadjacent. Thus,Q k

n is bipartite. Note thatQ k
n is a connected2n-regular graphwith

2n > 3. By Lemma 3.1, smp(Q k
n ) = 2, and each of itsminimumSMP sets is a set of two vertices from the same partite set. �

Lemma 3.2 ([20]). Let n ≥ 2 be an integer, and let k ≥ 3 be an odd integer. Then Q k
n is (2n − 2)-Hamiltonian and is (2n − 3)-

Hamiltonian connected.

Theorem 3.3. Let n ≥ 2 be an integer, and let k ≥ 3 be an odd integer. Then smp(Q k
n ) = 2n.

Proof. Let F ⊆ V (Q k
n ) ∪ E(Q k

n ) with |F | ≤ 2n − 1. By Lemma 3.2, Q k
n is (2n − 2)-Hamiltonian. This implies that Q k

n − F
has a Hamiltonian path. Note that an odd path has a perfect matching, while an even path has an almost perfect matching.
Therefore, Q k

n − F is matchable, which means that smp(Q k
n ) > 2n − 1. Combining this with Proposition 1.3, 2n − 1 <

smp(Q k
n ) ≤ δ(Q k

n ) = 2n; that is, smp(Q k
n ) = 2n. �

In the following, we shall classify all minimum strong matching preclusion sets for k-ary n-cubes with n ≥ 2 and odd
k ≥ 3.We claim that all minimum strongmatching preclusion sets are trivial. Given the recursive structure of k-ary n-cubes,
the natural method is to use induction. The first step is to check the base case by case-by-case analysis. Then, combining
the basis of the induction with Hamiltonicity of faulty k-ary n-cubes, we will prove that Q k

n (n ≥ 2 and odd k ≥ 3) is super
strong matched by induction on n.

Theorem 3.4. Let k ≥ 3 be an odd integer. Then Q k
2 is super strong matched.

Proof. Q k
2 can be divided into Q [0],Q [1], . . . ,Q [k − 1] along dimension 1. For i ∈ {0, 1, . . . , k − 1}, since Q [i] is a cycle

of length k, for notational simplicity, denote Q [i] by Ci. Denote the set of 1-dimensional edges between Ci and Ci+1 byMi,i+1
for 0 ≤ i ≤ k−1. For any u0 ∈ V (C0), the vertices u0, u1, . . . , uk−1 and the 1-dimensional edges between them form a cycle
of length k, which is denoted by C(ui) for some i ∈ {0, 1, . . . , k − 1}. For any matching Mi in Ci, the matching Mj, which
satisfies that (xj, yj) ∈ Mj if and only if (xi, yi) ∈ Mi, is called the corresponding matching toMi.

By Theorem 3.3, smp(Q k
2 ) = 4. Let F = Fv ∪ Fe be a fault set in Q k

2 such that |F | = 4, where Fv and Fe are the fault vertex
set and the fault edge set, respectively. To prove our main result, it is enough to show that either Q k

2 − F is matchable or F is
a trivial strong matching preclusion set, where no fault edge in F is incident to any fault vertex in F . We consider five cases,
depending on the value of |Fv|. Without loss of generality, assume that |Fv ∩ V (C0)| ≥ |Fv ∩ V (Ci)| for i = 1, 2, . . . , k − 1.

Case 1. |Fv| = 4, which means that |Fe| = 0.
Let F ′

⊆ F with |F ′
| = 2. By Lemma 3.2, Q k

2 − F ′ has a Hamiltonian cycle C . Note that |C | = k2 − 2 is odd. C − (F\F ′)
is an even path or is divided into an even path and an odd path. So C − (F\F ′) can be partitioned into the set M of paths of
length 1 plus one single vertex. Now,M is an almost perfect matching in Q k

2 − F , which means that Q k
2 − F is matchable.

Case 2. |Fv| = 3 and |Fe| = 1. Now, there is exactly one fault edge e in Q k
2 .

Case 2.1. |Fv ∩ V (C0)| = 3.
Assume that C0 − Fv can be partitioned into the set M0 of paths of length 1. Let M = M0 ∪ M1,2 ∪ · · · ∪ Mk−2,k−1.

If e ∉ M , then M is a perfect matching in Q k
2 − F . If e ∈ M0, say e = (u0, v0), then M ∪ {(u0, u1), (v0, v1), (u2, v2)}\

{(u0, v0), (u1, u2), (v1, v2)} is a perfect matching in Q k
2 − F . If e ∈ M\M0, say e = (uj, uj+1), thenM ∪{(uj, vj), (uj+1, vj+1)}\

{(uj, uj+1), (vj, vj+1)} is a perfect matching in Q k
2 − F , where vj ∈ NCj(uj).

Assume that C0 − Fv can be partitioned into the set M0 of paths of length 1 plus two single vertices u0 and v0, both of
which are adjacent to one of the fault vertices, say z0. Note that |Fe| = 1. Without loss of generality, assume that (u0, u1)
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and (v0, vk−1) are not fault edges. Let M1 and Mk−1 be the perfect matchings of C1 − u1 and Ck−1 − vk−1, respectively. Let
M = M0 ∪ M1 ∪ Mk−1 ∪ M2,3 ∪ · · · ∪ Mk−3,k−2 ∪ {(u0, u1), (v0, vk−1)}. If e ∉ M , then M is a perfect matching in Q k

2 − F .
If e ∈ M\(M0 ∪ M1 ∪ Mk−1), say e = (sj, sj+1), then M ∪ {(sj, tj), (sj+1, tj+1)}\{(sj, sj+1), (tj, tj+1)} is a perfect matching in
Q k
2 − F , where tj ∈ NCj(sj). Next, suppose that e ∈ M0 ∪ M1 ∪ Mk−1. Let Fv\{z0} = {x0, y0}. Let Mz be the perfect matching

in C(z) − z for each z ∈ {x0, y0}. Let Mi be the corresponding matching to M0 for i = 1, 2, . . . , k − 1. Let Mt0 be the
matching saturating C(t0)−{t0, tk−1, t1} for each t0 ∈ {u0, v0, z0}. Note that C = (u0, u1, z1, v1, v0, vk−1, zk−1, uk−1, u0) is a
cycle which contains at most one fault edge. So there exists a perfect matchingM∗ containing no fault edges of C . LetM ′

=

(∪k−1
i=0 Mi)∪(∪t0∈{u0,v0,x0,y0,z0} Mt0)∪M∗. Clearly, there is no fault edge in (∪t0∈{u0,v0,x0,y0,z0} Mt0)∪M∗. If e ∉ ∪

k−1
i=0 Mi, thenM ′

is a perfect matching in Q k
2 − F . If e ∈ Mj ⊆ ∪

k−1
i=0 Mi, say e = (aj, bj), then M ′

∪ {(aj, aj+1), (bj, bj+1)}\{(aj, bj), (aj+1, bj+1)}

is a perfect matching in Q k
2 − F .

Case 2.2. |Fv ∩ V (C0)| = 2.
Let Fv ∩ V (C0) = {u0, v0}. Let xi ∈ V (Ci) be the fault vertex which is not in C0. C0 − {u0, v0} can be divided into an odd

path P0 and an even path P1. We consider two subcases.
Case 2.2.1. i ∈ {1, k − 1}. Without loss of generality, assume that i = 1.
Assume that |P1| = 1, say P1 = y0. First, consider that e = (y0, yk−1). If y0 = x0, then F is a trivial strong matching

preclusion set. If y0 ≠ x0, then C1 − {x1, y1} can be divided into an odd path P ′

0 and an even path P ′

1. Let z1 be a terminal
vertex of P ′

1. LetM1 andM2 be the perfectmatchings of C1−{x1, y1, z1} and C2−z2, respectively. LetM0 be a perfectmatching
of P0. Then M0 ∪ M1 ∪ M2 ∪ M3,4 ∪ · · · ∪ Mk−2,k−1 ∪ {(y0, y1), (z1, z2)} is a perfect matching in Q k

2 − F . Next, consider that
e ≠ (y0, yk−1). Suppose that k = 3. If y0 = x0, then the cycle (u1, u2, v2, v1, u1)has a perfectmatchingM∗ containing no fault
edges. Now,M∗

∪ {(y0, y2)} is a perfect matching in Q 3
2 − F . If y0 ≠ x0, say x0 = u0, then the cycle (y0, y1, v1, v2, u2, y2, y0)

has a perfect matching containing no fault edges, which is a perfect matching in Q 3
2 − F .

Assume that P1 = y0, e ≠ (y0, yk−1) and k ≥ 5 or |P1| ≥ 3. When |P1| ≥ 3, we have k ≥ 5, and there exists a terminal
vertex y0 of P1 such that e ≠ (y0, yk−1). Let M0,M1 and Mk−1 be the perfect matchings of C0 − {u0, v0, y0}, C1 − x1 and
Ck−1 − yk−1, respectively. Let M = M0 ∪ M1 ∪ Mk−1 ∪ M2,3 ∪ · · · ∪ Mk−3,k−2 ∪ {(y0, yk−1)}. If e ∉ M , then M is a perfect
matching in Q k

2 − F . If e ∈ Mj,j+1 ⊆ M , say e = (aj, aj+1), then M ∪ {(aj, bj), (aj+1, bj+1)}\{(aj, aj+1), (bj, bj+1)} is a perfect
matching in Q k

2 − F , where bj ∈ NCj(aj). If e ∈ M1 or e ∈ Mk−1, say e = (a1, b1) ∈ M1, thenM ∪ {(a1, a2), (b1, b2), (a3, b3)}\
{(a1, b1), (a2, a3), (b2, b3)} is a perfect matching in Q k

2 − F . Suppose that e ∈ M0. Let Vk−2 and Vk−3 be the corresponding
vertex sets to V (P1) in Ck−2 and Ck−3, respectively. LetMk−2 andMk−3 be the perfectmatchings of Ck−2−(Vk−2∪{uk−2, vk−2})
and Ck−3 − Vk−3, respectively. Then (Mk−1,0\{(u0, uk−1), (v0, vk−1)}) ∪ M1 ∪ Mk−2 ∪ Mk−3 ∪ M2,3 ∪ · · · ∪ Mk−5,k−4 ∪

{(uk−1, uk−2), (vk−1, vk−2)} ∪ (∪tk−2∈Vk−2{(tk−2, tk−3)}) is a perfect matching in Q k
2 − F .

Case 2.2.2. i ∉ {1, k − 1}. In this case, k ≥ 5. By symmetry, say that i is even.
Assume that |P1| = 1 (say P1 = y0) and e = (y0, y1). Now, C0 − {u0, v0, y0} can be partitioned into the set M0 of

paths of length 1. Let Mk−1 be the perfect matching of Ck−1 − yk−1. Let NCi(xi) = {ai, bi}. Let Mj be the matching saturating
Cj − {aj, bj, xj} for each j ∈ {i − 1, i, i + 1}. Then M0 ∪ Mk−1 ∪ Mi−1 ∪ Mi ∪ Mi+1 ∪ M1,2 ∪ · · · ∪ Mi−3,i−2 ∪ Mi+2,i+3 ∪ · · · ∪

Mk−3,k−2 ∪ {(y0, yk−1), (ai−1, ai), (ai+1, xi+1), (bi, bi+1), (xi−1, bi−1)} is a perfect matching in Q k
2 − F .

Assume that there exists a terminal vertex y0 of P1 such that e ≠ (y0, y1). Let M0,M1 and Mi be the perfect match-
ings of C0 − {u0, v0, y0}, C1 − y1 and Ci − xi, respectively. Let M = M0 ∪ M1 ∪ Mi ∪ M2,3 ∪ · · · ∪ Mi−2,i−1 ∪ Mi+1,i+2 ∪

· · · ∪ Mk−2,k−1 ∪ {(y0, y1)}. If e ∉ M , then M is a perfect matching in Q k
2 − F . If e ∈ Mj,j+1 ⊆ M , say e = (aj, aj+1),

then M ∪ {(aj, bj), (aj+1, bj+1)}\{(aj, aj+1), (bj, bj+1)} is a perfect matching in Q k
2 − F , where bj ∈ NCj(aj). If e ∈ M0, say

e = (a0, b0), then M ∪ {(a0, ak−1), (b0, bk−1), (ak−2, bk−2)}\{(a0, b0), (ak−1, ak−2), (bk−1, bk−2)} is a perfect matching in
Q k
2 − F . If e ∈ Mi, say e = (ai, bi), then M ∪ {(ai, ai+1), (bi, bi+1), (ai+2, bi+2)}\{(ai, bi), (ai+1, ai+2), (bi+1, bi+2)} is a per-

fect matching in Q k
2 − F . Next, suppose that e ∈ M1, say e = (a1, b1). If i ≠ 2, then M ∪ {(a1, a2), (b1, b2), (a3, b3)}\

{(a1, b1), (a2, a3), (b2, b3)} is a perfect matching in Q k
2 − F . If i = 2 and (a2, b2) ∈ M2, then M ∪ {(a1, a2), (b1, b2)}\

{(a1, b1), (a2, b2)} is a perfect matching in Q k
2 − F . If i = 2 and x2 ∈ {a2, b2}, then, without loss of generality, assume that

x2 = a2. Let d2 ∈ NC2(x2) such that d2 and b2 are distinct. Let Mk−1 be the perfect matching of Ck−1 − yk−1. Let M ′

j be the
perfect matching of Cj − {dj, aj, bj} for each j ∈ {1, 2, 3}. Then M0 ∪ M ′

1 ∪ M ′

2 ∪ M ′

3 ∪ Mk−1 ∪ M4,5 ∪ · · · ∪ Mk−3,k−2 ∪

{(y0, yk−1), (d1, a1), (b1, b2), (d2, d3), (a3, b3)} is a perfect matching in Q k
2 − F . If i = 2 and {(a2, c2), (b2, d2)} ⊆ M2, then

M ∪ {(a1, a2), (b1, b2), (c2, c3), (d2, d3), (a3, b3), (a4, c4), (b4, d4)}\{(a1, b1), (a2, c2), (b2, d2), (c3, c4), (a3, a4), (b3, b4),
(d3, d4)} is a perfect matching in Q k

2 − F .
Case 2.3. |Fv ∩ V (C0)| = 1.
Let Fv ∩ V (C0) = {z0}. Let xi ∈ V (Ci) and yj ∈ V (Cj) be the other two fault vertices, where 0 < i < j ≤ k − 1. If

x0 = y0 = z0, then, similar to the proof of Case 2.1, we can obtain a perfect matching in Q k
2 −F . If two of x0, y0, and z0 are the

same, then, similar to the proof of Case 2.2, F is a trivial strong matching preclusion set or we can obtain a perfect matching
in Q k

2 − F . Next, assume that x0, y0, and z0 are three distinct vertices in C0. Without loss of generality, assume that e is not a
1-dimensional edge.

Suppose that C0 − {x0, y0, z0} can be partitioned into the set M0 of paths of length 1. Let Mt be the corresponding
matching to M0 for t = 1, 2, . . . , k − 1. Let Mw be the matching saturating C(w) − w for each w ∈ {xi, yj, z0}. Let
M = (∪k−1

t=0 Mt)∪ (∪w∈{xi,yj,z0} Mw). Clearly, there is no fault edge in∪w∈{xi,yj,z0} Mw . If e ∉ M , thenM is a perfect matching in
Q k
2 −F . If e ∈ Mt ⊆ M , say e = (at , bt), thenM∪{(at , at+1), (bt , bt+1)}\{(at , bt), (at+1, bt+1)} is a perfectmatching inQ k

2 −F .
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Suppose that C0−{x0, y0, z0} can be partitioned into the setM0 of paths of length 1 plus two single vertices u0 and v0, both
ofwhich are adjacent to one of x0, y0 and z0, say x0. LetMt be the correspondingmatching toM0 for t = 1, 2, . . . , k−1. LetMw

be the matching saturating C(w)−w for each w ∈ {yj, z0}. LetMsi be the matching saturating C(si)−{si−1, si, si+1} for each
si ∈ {ui, vi, xi}. Note that C = (ui−1, ui, ui+1, xi+1, vi+1, vi, vi−1, xi−1, ui−1) is a cycle which contains at most one fault edge.
So there exists a perfectmatchingM∗ containing no fault edges of C . LetM ′

= (∪k−1
t=0 Mt)∪Myj ∪Mz0 ∪(∪si∈{ui,vi,xi} Mt0)∪M∗.

Clearly, there is no fault edge in Myj ∪ Mz0 ∪ (∪si∈{ui,vi,xi} Mt0) ∪ M∗. If e ∉ M ′, then M ′ is a perfect matching in Q k
2 − F . If

e ∈ Mt ⊆ M ′, say e = (at , bt), then M ′
∪ {(at , at+1), (bt , bt+1)}\{(at , bt), (at+1, bt+1)} is a perfect matching in Q k

2 − F .
Case 3. |Fv| = 2 and |Fe| = 2.
By Lemma 3.2, Q k

2 − Fv has a Hamiltonian cycle C . Note that |C | = k2 − 2 is odd. C − Fe can be partitioned into the set
M of paths of length 1 plus one single vertex. Now,M is an almost perfect matching in Q k

2 − F , which means that Q k
2 − F is

matchable.
Case 4. |Fv| = 1 and |Fe| = 3.
Let Fv ∩V (C0) = {x0}. Without loss of generality, assume that there is at most one fault 1-dimensional edge.We consider

four subcases.
Case 4.1. |Fe ∩ E(C0)| = 3.
Now, there is no fault 1-dimensional edge. LetM2 be the perfect matching in C2 −x2. Then (M0,1\{(x0, x1)})∪M2 ∪M3,4 ∪

· · · ∪ Mk−2,k−1 ∪ {(x1, x2)} is a perfect matching in Q k
2 − F .

Case 4.2. |Fe ∩ E(C0)| = 2.
Recall that no fault edge is incident to x0. We have k ≥ 5. Note that there is exactly one fault edge ewhich is not in C0. Let

M2 andMk−2 be the perfect matchings of C2 − x2 and Ck−2 − xk−2, respectively. Whether (M0,1\{(x0, x1)}) ∪ M2 ∪ {(x1, x2)}
or (Mk−1,0\{(x0, xk−1)})∪Mk−2 ∪ {(xk−1, xk−2)} contains no fault edges, say that (M0,1\{(x0, x1)})∪M2 ∪ {(x1, x2)} contains
no fault edges. Let M = (M0,1\{(x0, x1)}) ∪ M2 ∪ M3,4 ∪ · · · ∪ Mk−2,k−1 ∪ {(x1, x2)}. If e ∉ M , then M is a perfect matching
in Q k

2 − F . If e ∈ Mj,j+1 ⊆ M , say e = (aj, aj+1), then M ∪ {(aj, bj), (aj+1, bj+1)}\{(aj, aj+1), (bj, bj+1)} is a perfect matching
in Q k

2 − F , where bj ∈ NCj(aj).
Case 4.3. |Fe ∩ E(C0)| = 1.
LetM2 be the perfect matching in C2−x2. LetM = (M0,1\{(x0, x1)})∪M2∪M3,4∪· · ·∪Mk−2,k−1∪{(x1, x2)}. Assume that

there is no fault 1-dimensional edge.Without loss of generality, assume that |Fe ∩E(C1)| ≥ |Fe ∩E(Ck−1)|. If |Fe ∩E(C1)| = 2,
then M is a perfect matching in Q k

2 − F . Suppose that |Fe ∩ E(C1)| = 1. Let e be the other fault edge. If e ∉ M2, then M is a
perfect matching in Q k

2 − F . If e ∈ M2, say e = (a2, b2), thenM ∪{(a2, a3), (b2, b3), (a4, b4)}\{(a2, b2), (a3, a4), (b3, b4)} is a
perfect matching in Q k

2 − F when k ≥ 5, {(a0, a2), (b0, b2), (x1, x2), (a1, b1)} is a perfect matching in Q k
2 − F when k = 3 and

(a1, b1) is not the fault edge in C1, and {(x1, a1), (x2, b2), (a0, a2), (b0, b1)} is a perfect matching in Q k
2 − F when k = 3 and

(a1, b1) is the fault edge in C1. Next, suppose that |Fe ∩ E(C1)| = 0. Now, |Fe ∩ E(C1)| = |Fe ∩ E(Ck−1)| = 0, which implies
that k ≥ 5. If e ∉ M2, then M is a perfect matching in Q k

2 − F . If there are at most two fault edges (a2, b2) and (c2, d2) in
M2, thenM ∪ {(a2, a3), (b2, b3), (c2, c3), (d2, d3), (a4, b4), (c4, d4)}\{(a2, b2), (c2, d2), (a3, a4), (b3, b4), (c3, c4), (d3, d4)} is
a perfect matching in Q k

2 − F .
Assume that there is one fault 1-dimensional edge e1. Without loss of generality, assume that |Fe ∩ M0,1| = 0.

Let e2 be the other fault edge. If e1, e2 ∉ M , then M is a perfect matching in Q k
2 − F . Suppose that e1 ∉ M and

e2 ∈ M , say e2 = (a2, b2). Then {(a0, a2), (x1, x2), (b0, b2), (a1, b1)} is a perfect matching in Q k
2 − F when k = 3

and M ∪ {(a2, a3), (b2, b3), (a4, b4)}\{(a2, b2), (a3, a4), (b3, b4)} is a perfect matching in Q k
2 − F when k ≥ 5. Next,

consider that e1 ∈ M . Suppose that e1 = (x1, x2). If k = 3, without loss of generality, assume that e2 ∉ E(C1);
then {(x1, a1), (x2, b2), (a0, a2), (b0, b1)} or {(x1, b1), (x2, a2), (a0, a1), (b0, b2)} is a perfect matching in Q k

2 − F , where
{a0, b0} = V (C0)\{x0}. If k ≥ 5, then there exists a2 ∈ NC2(x2) such that (a2, b2) ∈ M2 and (a0, b0) is not the fault
edge. Let M ′

= M ∪ {(x1, a1), (x2, a2), (b1, b2), (a0, b0)}\{(a0, a1), (b0, b1), (x1, x2), (a2, b2)}. Consider that e2 ∉ M ′;
then M ′ is a perfect matching in Q k

2 − F . Consider that e2 ≠ (x1, a1) and e2 ∈ M ′, which implies that e2 ∈ M2, say
e2 = (c2, d2); then M ′

∪ {(c2, c3), (d2, d3), (c4, d4)}\{(c2, d2), (c3, c4), (d3, d4)} is a perfect matching in Q k
2 − F . Consider

that e2 = (x1, a1), and denote the perfect matchings of C1 − a1, C2 − a2 and Ck−2 − xk−2 byM1,M ′

2 andMk−2, respectively;
then (Mk−1,0\{(x0, xk−1)})∪M1 ∪M ′

2 ∪Mk−2 ∪M3,4 ∪· · ·∪Mk−4,k−3 ∪{(xk−1, xk−2), (a1, a2)} is a perfect matching in Q k
2 −F .

Next, suppose that e1 ≠ (x1, x2). Now, k ≥ 5. Without loss of generality, assume that e1 = (aj, aj+1) ∈ M . Then
there exists bj ∈ NCj(aj) such that (aj, bj) and (aj+1, bj+1) are not fault edges. LetM ′

= M ∪{(aj, bj), (aj+1, bj+1)}\{(aj, aj+1),

(bj, bj+1)}. If e2 ∉ M2, thenM ′ is a perfectmatching inQ k
2 −F . Consider that e2 = (u2, v2) ∈ M2. When {aj, bj}∩{u3, v3} = ∅,

we have that M ′
∪ {(u2, u3), (v2, v3), (u4, v4)}\{(u2, v2), (u3, u4), (v3, v4)} is a perfect matching in Q k

2 − F . When bj ∈

{u3, v3} and aj ∉ {u3, v3}, we have that M ∪ {(aj, cj), (aj+1, cj+1), (u2, u3), (v2, v3), (u4, v4)}\{(aj, aj+1), (cj, cj+1), (u2, v2),

(u3, u4), (v3, v4)} is a perfect matching in Q k
2 − F , where cj ∈ NCj(aj) and cj ≠ bj. When aj ∈ {u3, v3}, we have that

M ∪ {(u2, u3), (v2, v3), (u4, v4)}\{(u2, v2), (u3, u4), (v3, v4)} is a perfect matching in Q k
2 − F .

Case 4.4. |Fe ∩ E(C0)| = 0.
Note that |Fe| = 3 and that there is at most one fault 1-dimensional edge. We have 2 ≤

k−1
i=1 |Fe ∩ E(Ci)| ≤ 3. LetM0 be

the perfect matching in C0 − x0. LetM = M0 ∪M1,2 ∪ · · · ∪Mk−2,k−1. If
k−1

i=1 |Fe ∩ E(Ci)| = 3, thenM is a perfect matching
in Q k

2 − F .
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Next, assume that
k−1

i=1 |Fe ∩ E(Ci)| = 2. Suppose that k = 3. Let {a0, b0} = V (C0)\{x0}. Without loss of generality,
assume that |Fe ∩ E(C(b0))| = 0 and |Fe ∩ E(C1)| ≥ |Fe ∩ E(C2)|. If |Fe ∩ E(C1)| = 2, then it is easy to verify that either
Q k
2 − F has a perfect matching or F is a trivial strong matching preclusion set. If |Fe ∩ E(C1)| = |Fe ∩ E(C2)| = 1, then M ,

{(x1, a1), (x2, b2), (a0, a2), (b0, b1)}, {(x1, b1), (x2, a2), (a0, a1), (b0, b2)}, or {(x1, x2), (a1, b1), (a0, a2), (b0, b2)} is a perfect
matching in Q k

2 − F . Suppose that k ≥ 5. Let e = (aj, aj+1) be the fault 1-dimensional edge. If e ∉ M , then M is a per-
fect matching in Q k

2 − F . Consider that e ∈ M and there exists bj ∈ NCj(aj) such that (aj, bj) and (aj+1, bj+1) are not fault
edges, then M ∪ {(aj, bj), (aj+1, bj+1)}\{(aj, aj+1), (bj, bj+1)} is a perfect matching in Q k

2 − F . Consider that e ∈ M and that
there exists bj ∈ NCj(aj) such that (aj, bj) is not the fault edge and (aj+1, bj+1) is a fault edge; thenM ∪ {(aj, bj), (aj+1, aj+2),

(bj+1, bj+2), (aj+3, bj+3)}\{(aj, aj+1), (bj, bj+1), (aj+2, aj+3), (bj+2, bj+3)} is a perfectmatching inQ k
2 −F . Consider that e ∈ M

and (aj, bj) and (aj, dj) are fault edges, where {bj, dj} = NCj(aj). If j = 1 and a0 = x0, then F is a trivial strong match-
ing preclusion set. If j = 1 and a0 ≠ x0, say (a0, u0) ∈ M0, then M ∪ {(a0, a1), (u0, u1), (a2, u2)}\{(a0, u0), (a1, a2),
(u1, u2)} is a perfect matching in Q k

2 − F . If j ≠ 1, then M ∪ {(aj−2, bj−2), (aj−1, aj), (bj−1, bj), (aj+1, bj+1)}\{(aj−2, aj−1),

(bj−2, bj−1), (aj, aj+1), (bj, bj+1)} is a perfect matching in Q k
2 − F .

Case 5. |Fv| = 0, which means that |Fe| = 4.
Let F ′

⊆ F with |F ′
| = 2. By Lemma 3.2, Q k

2 − F ′ has a Hamiltonian cycle C . Note that |C | = k2 is odd. C − (F\F ′) is
divided into an even path and an odd path. So C − (F\F ′) can be partitioned into the set M of paths of length 1 plus one
single vertex. Now, M is an almost perfect matching in Q k

2 − F , which means that Q k
2 − F is matchable. �

Lemma 3.3. Suppose that a graph G has an almost perfect matching M that misses a vertex v which is not isolated. Then there
are at least dG(v) distinct almost perfect matchings other than M with distinct vertices missed other than v.

Proof. Since v is not isolated, there is another vertex u ∈ NG(v). Let (u, w) ∈ M . Then M ∪ {(u, v)}\{(u, w)} is an almost
perfect matching in Gwith w missed. According to the above discussion, the lemma is clearly true. �

For some d ∈ {1, 2, . . . , n}, a Q k
n can be divided into Q [0],Q [1], . . . ,Q [k−1] along dimension d. For 0 ≤ i, j ≤ k−1, we

use [i, j] to denote a set of integers: [i, j] = {l : i ≤ l ≤ j} if i ≤ j, and [i, j] = {l : i ≤ l ≤ k − 1 or 0 ≤ l ≤ j} if i > j. Q k
n [i, j]

(abbreviated as Q [i, j] if there is no ambiguity) denotes the subgraph of Q k
n which is induced by {u : u ∈ V (Q [l]), l ∈ [i, j]}.

Lemma 3.4 ([20]). Let i, j ∈ [0, k − 1], and let F ⊆ V (Q [i, j]) ∪ E(Q [i, j]) be a faulty set with |F | ≤ 2n − 2. For any l ∈ [i, j],
let Fl = F ∩ (V (Q [l]) ∪ E(Q [l])). If Q [l] − Fl is Hamiltonian connected for every l ∈ [i, j], then there exists a Hamiltonian path
connecting two arbitrary vertices ui ∈ V (Q [i] − Fi) and vj ∈ V (Q [j] − Fj) in Q [i, j] − F for every n ≥ 3 and odd k ≥ 3.

Before we prove the strong matching preclusion result for Q k
n with its fault set F , we define an approach to find a perfect

matching or an almost perfectmatching inQ k
n −F as follows:we find a fault-freematchingM saturating a subset V ⊆ V (Q k

n ).
If there exists a fault-free Hamiltonian path P in Q k

n − V , then we can extend the matching M to a perfect matching or an
almost perfect matching in Q k

n − F by adding a perfect matching or an almost perfect matching in P . This method will be
called completingM with P .

Theorem 3.5. Let k ≥ 3 be an odd integer, and let n ≥ 2 be an integer. Then Q k
n is super strong matched.

Proof. The statement is true if n = 2 by Theorem 3.4. Next, assume that n ≥ 3. We proceed by induction on n. Suppose
that Q k

n−1 is super strong matched. By Theorem 3.3, smp(Q k
n ) = 2n. Let F = Fv ∪ Fe be a fault set in Q k

n such that |F | = 2n,
where Fv and Fe are the fault vertex set and the fault edge set, respectively. To prove our main result, it is enough to show
that either Q k

n − F is matchable or F is a trivial strong matching preclusion set, where no fault edge in F is incident to any
fault vertex in F .

Claim 1. If |Fv| = 0 or |Fe| = 0, then Q k
n − F is matchable.

Assume that |Fv| = 0 or |Fe| = 0. Let F ′
⊆ F with |F ′

| = 2n − 2. By Lemma 3.2, Q k
n − F ′ has a Hamiltonian cycle C . Note

that C − (F\F ′) can be divided into an even path and an odd path. We have that C − (F\F ′) can be partitioned into the set
M of paths of length 1 plus one single vertex. Now,M is an almost perfect matching in Q k

n − F , which means that Q k
n − F is

matchable. The proof of Claim 1 is complete.
By Claim 1, if |Fv| = 0 or |Fe| = 0, then the conclusion is true. Next, we only consider the case that 1 ≤ |Fv| ≤ 2n−1 and

1 ≤ |Fe| ≤ 2n − 1. There exists d ∈ {1, 2, . . . , n} such that there is at least one fault d-dimensional edge. Q k
n can be divided

into Q [0],Q [1], . . . ,Q [k − 1] along dimension d. Let Fi = F ∩ (V (Q [i]) ∪ E(Q [i])) for i = 0, 1, . . . , k − 1. Without loss of
generality, assume that |F0| ≥ |Fi| for i = 1, 2, . . . , k − 1. We consider five cases, depending on the value of |F0|.

Case 1. |F0| = 2n − 1.
Note that 1 ≤ |Fv| ≤ 2n − 1. Let v0 ∈ F0 be a fault vertex. Let F ′

0 = F0\{v0}. Note that Q [0] is isomorphic to Q k
n−1 and

|F ′

0| = 2(n − 1). By the induction hypothesis, Q [0] − F ′

0 is matchable or F ′

0 is a trivial strong matching preclusion set in
Q [0]. Recall that there is exactly one fault d-dimensional edge. By Lemma 3.2, Q [l] − Fl is Hamiltonian connected for every
l ∈ [1, k − 1]. We consider two subcases.
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Case 1.1. |V (Q [0] − F ′

0)| is odd.
In this case, F ′

0 cannot be a trivial strong matching preclusion set in Q [0]. So Q [0] − F ′

0 has an almost perfect
matching M that misses w0. Let (u0, v0) ∈ M . Recall that there is exactly one fault d-dimensional edge. We have
that {(u0, u1), (w0, wk−1)} ∩ F = ∅ or {(u0, uk−1), (w0, w1)} ∩ F = ∅. Without loss of generality, assume that
{(u0, u1), (w0, wk−1)}∩ F = ∅. By Lemma 3.4, there exists a Hamiltonian path P0 connecting u1 andwk−1 in Q [1, k−1]− F .
Let P = P0 ∪ {(u0, u1), (w0, wk−1)}. Then completingM\{(u0, v0)} with P gives a perfect matching of Q k

n − F .
Case 1.2. |V (Q [0] − F ′

0)| is even.
Suppose that Q [0] − F ′

0 has a perfect matching M . Let (u0, v0) ∈ M . Recall that there is exactly one fault d-dimensional
edge. We have that either (u0, u1) or (u0, uk−1) is not a fault edge. Without loss of generality, assume that (u0, u1) is not a
fault edge. By Lemma 3.4, there exists a Hamiltonian path P0 connecting u1 and uk−1 inQ [1, k−1]−F . Let P = P0∪{(u0, u1)}.
Then completing M\{(u0, v0)} with P gives an almost perfect matching of Q k

n − F .
Suppose that F ′

0 is a trivial strong matching preclusion set in Q [0]. Then there exists v′

0 ∈ F ′

0 such that v′

0 is another fault
vertex. Let F ′′

0 = F0\{v′

0}. Now, F ′′

0 cannot be a trivial strong matching preclusion set in Q [0]. So Q [0] − F ′′

0 has a perfect
matching. Similar to the discussion in the above paragraph, we can obtain an almost perfect matching of Q k

n − F .
Case 2. |F0| = 2n − 2.
In this case, |Fl| ≤ 1 for every l ∈ [1, k− 1]. By Lemma 3.2, Q [l] − Fl is Hamiltonian connected for every l ∈ [1, k− 1]. By

the induction hypothesis, Q [0] − F0 is matchable or F0 is a trivial strong matching preclusion set in Q [0]. We consider two
subcases.

Case 2.1. Q [0] − F0 is matchable.
Assume thatQ [0]−F0 has a perfectmatchingM . Note that |F\F0| = 2 ≤ 2n−2. By Lemma 3.4, there exists a Hamiltonian

path P in Q [1, k − 1] − F . Then completingM with P gives a perfect matching or an almost perfect matching of Q k
n − F .

Assume that Q [0] − F0 has an almost perfect matching M that misses x0. Suppose that at least one of (x0, xk−1) and
(x0, x1) is not faulty. Without loss of generality, assume that (x0, x1) is not faulty, and so x1 is not a fault vertex in Q [1] − F1.
By Lemma 3.4, there exists a Hamiltonian path P0 connecting x1 and uk−1 inQ [1, k−1]−F , where uk−1 ∈ V (Q [k−1]−Fk−1).
Let P = P0∪{(x0, x1)}. Then completingM with P gives a perfect matching or an almost perfect matching ofQ k

n −F . Suppose
that both (x0, xk−1) and (x0, x1) are faulty. We first consider the case that x0 is not isolated in Q [0]− F0. By Lemma 3.3, there
exists an almost perfect matching in Q [0] − F0 that misses a vertex other than x0. Similar to the above discussion, we can
obtain a perfect matching or an almost perfect matching of Q k

n −F . Next, we consider the case that x0 is isolated in Q [0]−F0.
Since Q [0] − F0 has an almost perfect matching, we have that |V (Q [0] − F0)| is odd. If either F\F0 = {x1, (x0, xk−1)} or
F\F0 = {(x0, x1), xk−1} holds, then F is a trivial strong matching preclusion set. Otherwise, F\F0 = {(x0, x1), (x0, xk−1)}. By
Lemma 3.4, there exists a Hamiltonian path P in Q [1, k− 1] − F . Now, P is an odd path, and so P has a perfect matchingMp.
ThenM ∪ Mp gives an almost perfect matching of Q k

n − F .
Case 2.2. F0 is a trivial strong matching preclusion set in Q [0].
Let x0 be isolated in Q [0]−F0. Now, |V (Q [0]−F0)| is even, and there exists a fault vertex v0 ∈ F0. Let F ′

0 = F0 ∪{x0}\{v0}.
Then F ′

0 is not a trivial strongmatching preclusion set in Q [0]. By the induction hypothesis, Q [0]− F ′

0 has a perfect matching
M . Let (v0, u0) ∈ M .

Suppose that both (x0, xk−1) and (x0, x1) are faulty. If F\F0 = {(x0, x1), (x0, xk−1)}, then F is a trivial strong matching
preclusion set. Otherwise, either F\F0 = {x1, (x0, xk−1)} or F\F0 = {(x0, x1), xk−1} holds. By Lemma 3.4, there exists a
Hamiltonian path P0 connecting u1 and wk−1 in Q [1, k− 1] − F , where wk−1 ∈ V (Q [k− 1] − Fk−1). Let P = P0 ∪ {(u0, u1)}.
Then P is an odd path, and so P has a perfectmatchingMp. ThenM∪Mp\{(v0, u0)} gives an almost perfectmatching ofQ k

n −F .
Suppose that at least one of (x0, xk−1) and (x0, x1) is not faulty. Without loss of generality, assume that (x0, x1) is not

faulty, and so x1 is not a fault vertex in Q [1]− F1. We first consider the case that there exists exactly one fault vertex in F\F0.
By Lemma3.4, there exists aHamiltonian path P0 connecting x1 andwk−1 inQ [1, k−1]−F , wherewk−1 ∈ V (Q [k−1]−Fk−1).
Let P = P0 ∪ {(x0, x1)}. Then P is an odd path, and so P has a perfect matching Mp. Then M ∪ Mp\{(v0, u0)} gives an almost
perfect matching of Q k

n − F . Next, consider the case that F\F0 contains no fault vertices. Let u′

0 be adjacent to u0 in Q [0]− F0
such that u′

0 ≠ x0, and let (u′

0, v
′

0) ∈ M . Assume that (u0, uk−1) is not faulty. Let P0 be a Hamiltonian path connecting x1
and uk−1, and let P = P0 ∪ {(x0, x1), (u0, uk−1)}. Then completing M\{(u0, v0)} with P gives a perfect matching of Q k

n − F .
Assume that (u0, uk−1) is faulty and that (v′

0, v
′

k−1) is not faulty. Let P0 be a Hamiltonian path connecting x1 and v′

k−1, and
let P = P0 ∪ {(x0, x1), (v′

0, v
′

k−1)}. Then completing M ∪ {(u0, u′

0)}\{(u0, v0), (u′

0, v
′

0)} with P gives a perfect matching of
Q k
n − F . Assume that both (u0, uk−1) and (v′

0, v
′

k−1) are faulty. Let P0 be a Hamiltonian path connecting u1 and xk−1, and let
P = P0 ∪ {(u0, u1), (x0, xk−1)}. Then completingM\{(u0, v0)} with P gives a perfect matching of Q k

n − F .
Case 3. |F0| = 2n − 3.
By the induction hypothesis, Q [0] − F0 is matchable. We consider two subcases.
Case 3.1. Q [0] − F0 has a perfect matchingM .
Assume that |Fl| ≤ 1 for every l ∈ [1, k − 1]. By Lemma 3.2, Q [l] − Fl is Hamiltonian connected for every l ∈ [1, k − 1].

Note that |F\F0| = 3 ≤ 2n − 2. By Lemma 3.4, there exists a Hamiltonian path P in Q [1, k − 1] − F . Then completing M
with P gives a perfect matching or an almost perfect matching of Q k

n − F .
Assume that there exists some j ∈ [1, k − 1] such that |Fj| = 2. Note that |Fj| = 2 ≤ 2(n − 1) − 2. By Lemma 3.2,

Q [j] − Fj has a Hamiltonian cycle C and Q [l] − Fl is Hamiltonian connected for every l ∈ [1, k − 1]\{j}. Suppose that
j ∈ {1, k− 1}; without loss of generality, assume that j = 1. Recall that there is exactly one fault d-dimensional edge. There
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exists (u1, w1) ∈ E(C) such that (u1, u2) is not faulty. By Lemma 3.4, there exists a Hamiltonian path P0 connecting u2 and
zk−1 in Q [2, k − 1] − F , where zk−1 ∈ V (Q [k − 1] − Fk−1). Let P = P0 ∪ (C − {(u1, w1)}) ∪ {(u1, u2)}. Then completing M
with P gives a perfect matching or an almost perfect matching of Q k

n − F . Suppose that j ∉ {1, k − 1}. Let (uj, wj) ∈ E(C)
such that both (uj, uj−1) and (wj, wj+1) are not faulty. By Lemma 3.4, there exists a Hamiltonian path P1 connecting x1 and
uj−1 in Q [1, j − 1] − F , and there exists a Hamiltonian path P2 connecting wj+1 and yk−1 in Q [j + 1, k − 1] − F , where
x1 ∈ V (Q [1] − F1) and yk−1 ∈ V (Q [k − 1] − Fk−1). Let P = P1 ∪ P2 ∪ (C − {(uj, wj)}) ∪ {(uj, uj−1), (wj, wj+1)}. Then
completingM with P gives a perfect matching or an almost perfect matching of Q k

n − F .
Case 3.2. Q [0] − F0 has an almost perfect matchingM that misses v0.
Assume that |Fl| ≤ 1 for every l ∈ [1, k − 1]. By Lemma 3.2, Q [l] − Fl is Hamiltonian connected for every l ∈ [1, k − 1].

Suppose that at least one of (v0, vk−1) and (v0, v1) is not faulty. Without loss of generality, assume that (v0, v1) is not faulty,
and so v1 is not a fault vertex in Q [1] − F1. By Lemma 3.4, there exists a Hamiltonian path P0 connecting v1 and zk−1 in
Q [1, k − 1] − F , where zk−1 ∈ V (Q [k − 1] − Fk−1). Let P = P0 ∪ {(v0, v1)}. Then completing M with P gives a perfect
matching or an almost perfect matching of Q k

n − F . Suppose that both (v0, vk−1) and (v0, v1) are faulty. Note that v0 is not
isolated in Q [0] − F0. By Lemma 3.3, there exists an almost perfect matching M ′ in Q [0] − F0 that misses a vertex x0 other
than v0. Now, either (x0, xk−1) or (x0, x1) is not faulty. Similar to the above discussion, we can obtain a perfect matching or
an almost perfect matching of Q k

n − F .
Assume that there exists some j ∈ [1, k−1] such that |Fj| = 2. By Lemma3.2,Q [j]−Fj has aHamiltonian cycleC andQ [l]−

Fl is Hamiltonian connected for every l ∈ [1, k−1]\{j}. Suppose that j ∈ {1, k−1};without loss of generality, assume that j =

1. Consider the case that (v0, vk−1) is not faulty, and so vk−1 is not a fault vertex inQ [k−1]−Fk−1. There exists (u1, w1) ∈ E(C)
such that (u1, u2) is not faulty. By Lemma 3.4, there exists a Hamiltonian path P0 connecting u2 and vk−1 in Q [2, k− 1] − F .
Let P = P0∪(C−{(u1, w1)})∪{(u1, u2), (v0, vk−1)}. Then completingM with P gives a perfectmatching or an almost perfect
matching of Q k

n − F . Consider the case that (v0, vk−1) is faulty. By Lemma 3.3, there exists an almost perfect matchingM ′ in
Q [0]−F0 thatmisses a vertex x0 other than v0. Note that there is exactly one fault d-dimensional edge.Wehave that (x0, xk−1)
is not faulty. Similar to the above discussion, we can obtain a perfect matching or an almost perfect matching of Q k

n − F .
Next, suppose that j ∉ {1, k−1}. Either (v0, v1) or (v0, vk−1) is not faulty.Without loss of generality, assume that (v0, v1)

is not faulty, and so v1 is not a fault vertex in Q [1] − F1. Let (uj, wj) ∈ E(C) such that both (uj, uj−1) and (wj, wj+1) are not
faulty. By Lemma 3.4, there exists a Hamiltonian path P1 connecting v1 and uj−1 inQ [1, j−1]−F , and there exists a Hamilto-
nian path P2 connectingwj+1 and yk−1 inQ [j+1, k−1]−F , where yk−1 ∈ V (Q [k−1]−Fk−1). Let P = P1∪P2∪(C−{(uj, wj)})∪

{(uj, uj−1), (wj, wj+1), (v0, v1)}. Then completingM with P gives a perfectmatching or an almost perfectmatching ofQ k
n −F .

Case 4. |F0| = 2n − 4.
By the induction hypothesis, Q [0] − F0 is matchable. Note that there is at least one fault d-dimensional edge. We have

that there is at most one of |F1|, |F2|, . . . , |Fk−1| which is at least 2. We consider three subcases.
Case 4.1. There exists some j ∈ [1, k − 1] such that |Fj| = 3.
Recall that |F0| ≥ |Fi| for every i ∈ [1, k − 1]. Since 2n − 4 = |F0| ≥ |Fj| = 3, we have that n ≥ 4. By Lemma 3.2,

Q [l]− Fl is Hamiltonian connected for every l ∈ [1, k−1]. Note that |F\F0| = 4 ≤ 2n−2, and that there is exactly one fault
d-dimensional edge. Similar to the proof of the first paragraph of Case 3.1 or the first paragraph of Case 3.2, we can obtain a
perfect matching or an almost perfect matching of Q k

n − F .
Case 4.2. There exists some j ∈ [1, k − 1] such that |Fj| = 2.
Assume that Q [0] − F0 has a perfect matchingM . Similar to the proof of the second paragraph of Case 3.1, we can obtain

a perfect matching or an almost perfect matching of Q k
n − F .

Assume that Q [0]− F0 has an almost perfect matchingM that misses v0. By Lemma 3.2, Q [j]− Fj has a Hamiltonian cycle
C and Q [l] − Fl is Hamiltonian connected for every l ∈ [1, k− 1]\{j}. Suppose that j ∈ {1, k− 1}; without loss of generality,
assume that j = 1. Consider the case that (v0, vk−1) is not faulty, and so vk−1 is not a fault vertex in Q [k − 1] − Fk−1. There
exists (u1, w1) ∈ E(C) such that (u1, u2) is not faulty. By Lemma 3.4, there exists a Hamiltonian path P0 connecting u2 and
vk−1 in Q [2, k − 1] − F . Let P = P0 ∪ (C − {(u1, w1)}) ∪ {(u1, u2), (v0, vk−1)}. Then completing M with P gives a perfect
matching or an almost perfect matching of Q k

n −F . Consider the case that (v0, vk−1) is faulty. Note that there are at most two
fault d-dimensional edges and that dQ [0]−F0(v0) ≥ 2. By Lemma 3.3, there exists an almost perfect matchingM ′ in Q [0]− F0
that misses a vertex x0 such that x0 ≠ v0 and (x0, xk−1) is not faulty. Similar to the above discussion, we can obtain a perfect
matching or an almost perfect matching of Q k

n − F .
Next, suppose that j ∉ {1, k−1}. Consider the case that either (v0, v1) or (v0, vk−1) is not faulty. Without loss of general-

ity, assume that (v0, v1) is not faulty, and so v1 is not a fault vertex in Q [1]− F1. Let (uj, wj) ∈ E(C) such that both (uj, uj−1)
and (wj, wj+1) are not faulty. By Lemma 3.4, there exists a Hamiltonian path P1 connecting v1 and uj−1 in Q [1, j − 1] − F ,
and there exists a Hamiltonian path P2 connecting wj+1 and yk−1 in Q [j + 1, k − 1] − F , where yk−1 ∈ V (Q [k − 1] − Fk−1).
Let P = P1 ∪ P2 ∪ (C − {(uj, wj)}) ∪ {(uj, uj−1), (wj, wj+1), (v0, v1)}. Then completing M with P gives a perfect matching
or an almost perfect matching of Q k

n − F . Consider the case that both (v0, v1) and (v0, vk−1) are faulty. By Lemma 3.3, there
exists an almost perfect matching M ′ in Q [0] − F0 that misses a vertex x0 other than v0. Now, (x0, x1) is not faulty. Similar
to the above discussion, we can obtain a perfect matching or an almost perfect matching of Q k

n − F .
Case 4.3. |Fl| ≤ 1 for every l ∈ [1, k − 1].
By Lemma 3.2, Q [l]− Fl is Hamiltonian connected for every l ∈ [1, k− 1]. Assume that Q [0]− F0 has a perfect matching.

Similar to the proof of the first paragraph of Case 3.1, we can obtain a perfectmatching or an almost perfectmatching ofQ k
n −

F . Next, assume that Q [0] − F0 has an almost perfect matchingM that misses v0. Suppose that at least one of (v0, vk−1) and
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(v0, v1) is not faulty. Without loss of generality, assume that (v0, v1) is not faulty, and so v1 is not a fault vertex in Q [1]− F1.
By Lemma 3.4, there exists a Hamiltonian path P0 connecting v1 and zk−1 inQ [1, k−1]−F , where zk−1 ∈ V (Q [k−1]−Fk−1).
Let P = P0∪{(v0, v1)}. Then completingM with P gives a perfectmatching or an almost perfectmatching ofQ k

n −F . Suppose
that both (v0, vk−1) and (v0, v1) are faulty. Note that v0 is not isolated inQ [0]−F0 and dQ [0]−F0(v0) ≥ 2. By Lemma 3.3, there
exists an almost perfect matching M ′ in Q [0] − F0 that misses a vertex x0 such that x0 ≠ v0 and either (x0, xk−1) or (x0, x1)
is not faulty. Similar to the above discussion, we can obtain a perfect matching or an almost perfect matching of Q k

n − F .
Case 5. |F0| ≤ 2n − 5.
In this case, |Fl| ≤ 2n−5 = 2(n−1)−3 for every l ∈ [0, k−1]. Recall thatQ [l] is isomorphic toQ k

n−1 for every l ∈ [0, k−1].
By Lemma 3.2, Q [l] − Fl is Hamiltonian connected for every l ∈ [0, k − 1]. Now, there exist 0 ≤ i ≤ j ≤ k − 1 such that
|F∩(V (Q [i, j])∪E(Q [i, j]))| ≤ 2n−2 and |F∩(V (Q [j+1, i−1])∪E(Q [j+1, i−1]))| ≤ 2n−2. Note that kn > 2n. There exists
vi ∈ V (Q [i]−Fi) such that vi, vi−1 and (vi, vi−1) are not faulty. By Lemma3.4, there exists aHamiltonian path P1 connecting vi
and uj inQ [i, j]−F , and there exists a Hamiltonian path P2 connecting vi−1 andwj+1 inQ [j+1, i−1]−F , where uj ∈ V (Q [j]−
Fj) andwj+1 ∈ V (Q [j+1]−Fj+1). Then P1 ∪P2 ∪{(vi, vi−1)} is a Hamiltonian path in Q k

n −F , and so Q k
n −F is matchable. �

4. Conclusion

In this paper, we have studied the strongmatching preclusion for k-ary n-cubes.Wehave established the strongmatching
preclusion number and all possible minimum strong matching preclusion sets for k-ary n-cubes with n ≥ 2 and k ≥ 3. The
results can be used in robustness analysis for the k-ary n-cube network with respect to the property of having a perfect
matching or an almost perfect matching.
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