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Fuzzy Granular Structure Distance
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Abstract—A fuzzy granular structure refers to a mathematical
structure of the collection of fuzzy information granules granu-
lated from a dataset, while a fuzzy information granularity is used
to measure its uncertainty. However, the existing forms of fuzzy
information granularity have two limitations. One is that when
the fuzzy information granularity of one fuzzy granular structure
equals that of the other, one can say that these two fuzzy granular
structures possess the same uncertainty, but these two fuzzy gran-
ular structures may be not equivalent to each other. The other lim-
itation is that existing axiomatic approaches to fuzzy information
granularity are still not complete, under which when the partial
order relation among fuzzy granular structures cannot be found,
their coarseness/fineness relationships will not be revealed. To ad-
dress these issues, a so-called fuzzy granular structure distance is
proposed in this study, which can well discriminate the difference
between any two fuzzy granular structures. Besides this advantage,
the fuzzy granular structure distance has another important bene-
fit: It can be used to establish a generalized axiomatic constraint for
fuzzy information granularity. By using the axiomatic constraint,
the coarseness/fineness of any two fuzzy granular structures can be
distinguished. In addition, through taking the fuzzy granular struc-
ture distances of a fuzzy granular structure to the finest one and
the coarsest one into account, we also can build a bridge between
fuzzy information granularity and fuzzy information entropy. The
applicable analysis on 12 real-world datasets shows that the fuzzy
granular structure distance and the generalized fuzzy information
granularity have much better performance than existing methods.

Index Terms—Granular computing (GrC), fuzzy granular struc-
ture distance, fuzzy information entropy, fuzzy information gran-
ularity.

1. INTRODUCTION

RANULAR computing (GrC) was first proposed by
G Zadeh in 1996 [55] and is becoming an important issue in
artificial intelligence and information processing [56]-[58]. As
Zadeh pointed out, information granulation, organization, and
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causation are three key issues in GrC. It has been applied in
various fields, which include data clustering, machine learning,
approximate reasoning, data mining and knowledge discovery,
and so on. To date, several methods have been employed for
studying GrC, such as rough set theory [4], [10], [16], [39],
[47], fuzzy set theory [25]-[27], [29], [30], [46], [50], [51],
concept lattice theory [11], [28], [49], and quotient space theory
[61].

Pawlak established the rough set theory in 1982 [31], [32],
which can be seen as a new method for studying uncertainty
[12]-[15], [40]-[43], [48], [52]. In the context of a rough set,
a given equivalence relation divides a dataset into some classes
or concepts, often called a granular structure in GrC, and an
equivalence class is called an information granule [17], [18].
As a basic concept of rough set theory, a granular structure
base means a family of granular structures, where each granular
structure is induced by a crisp binary relation. The crisp binary
relations include equivalence relation, tolerance relation, neigh-
borhood relation, dominance relation, and so on. If we employ
a fuzzy binary relation for granulating a dataset, objects will
be granulated to a fuzzy granular structure, i.e., a collection of
fuzzy information granules [3], [33]-[36], [41], which can be
used to construct rough approximations of a fuzzy rough set [1],
[2], [7]-19], [54], [59], [60]. Similar to the concept of granular
structure base, a fuzzy granular structure base correspondingly
indicates a set of fuzzy granular structures induced by a family
of fuzzy binary relations.

Information granularity is a measure to calculate the gran-
ulation degree of a universe in the GrC area. It has been an
important problem of how to compute the information granu-
larity of a granular structure in GrC. For fuzzy-set-based GrC,
fuzzy information granularity is employed for measuring the
granulation degree of a fuzzy granular structure induced by a
given dataset. The smaller the fuzzy information granularity, the
finer a fuzzy granular structure. Up to now, several definitions
of (fuzzy) information granularity have been developed with
various perspectives and viewpoints [12], [14], [15], [41], [48],
[52]. Liang et al. [14], [15] contributed two forms of informa-
tion granularity for measuring that of complete data and that
of incomplete data, respectively. Wierman [48] gave a so-called
granulation measure to evaluate the uncertainty of knowledge
from a knowledge base, and its form is the same as Shannon
entropy in some sense. Combination granulation proposed by
Qian and Liang [12] can also be used to measure the granulation
degree of knowledge from a knowledge base. Xu et al. [52] im-
proved the roughness in rough set theory given by Pawlak [31],
which also can be seen as an information granularity. Qian ez al.
[41] put forward two forms of fuzzy information granularity to
measure the coarseness/fineness of a fuzzy knowledge structure.
To obtain a constraint framework of fuzzy information granu-
larity, a series of axiomatic approaches to fuzzy information
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granularity were developed in the literature [41]. For revealing
the properties of information granularity, a partial order relation
is often employed for depicting the monotonicity between gran-
ular structures. However, the fuzzy information granularity still
has its shortages. In what follows, we analyze two limitations
of the existing fuzzy information granularities, which become
the main motivations of this study.

1) Usually, if the fuzzy information granularities of two fuzzy
granular structures are equivalent, then one means that
uncertainties of these two fuzzy granular structures are
identical. However, we cannot judge that they are the same
granular structure. That is to say, the fuzzy information
granularity cannot well differentiate two fuzzy granular
structures from the same fuzzy knowledge base.

2) An axiomatic constraint of fuzzy information granularity
proposes constraints of how to define a reasonable mea-
sure for quantifying the information granularity of a fuzzy
granular structure, in which a partial order relation plays
a very important role. In recent years, several partial order
relations have been developed on fuzzy granular struc-
tures, where the granulation partial order relation is the
most successful for distinguishing the coarseness/fineness
between two fuzzy granular structures. Despite its suc-
cess, the partial order relation often cannot be found be-
tween many fuzzy granular structures. This shows that
the existing axiomatic approaches still are incomplete for
depicting axiomatic constraints of a fuzzy information
granularity.

From the above these analyses, it can be seen that fuzzy infor-
mation granularity still needs further study. To address these is-
sues, in this paper, we first present a new concept, fuzzy granular
structure distance, for differentiating two fuzzy granular struc-
tures from the same universe. Its some interesting properties are
also analyzed, which are used to verify its correctness, validity,
and rationality. Based on the fuzzy granular structure distance,
one gives an axiomatic approach to fuzzy information granular-
ity, called a generalized fuzzy information granularity (GFIG),
which is established based on the fuzzy granular structure dis-
tance between a fuzzy granular structure and the finest one. This
developed axiomatic approach can well overcome the limitation
of existing versions. Finally, through using the fuzzy granular
structure distance, we also build a bridge between fuzzy infor-
mation granularity and fuzzy information entropy. This bridge
shows that in some sense, there may be a complement relation-
ship between the fuzzy information granularity and the fuzzy
information entropy.

The organization of the rest of the paper is as follows. In Sec-
tion II, several preliminary concepts in GrC are briefly recalled.
In Section III, we discuss two limitations of existing forms of in-
formation granularity. To overcome these limitations, Section IV
presents a so-called fuzzy granular structure distance to charac-
terize the difference between any two fuzzy granular structures
and gives its several interesting properties. In Section V, through
analyzing existing axiomatic approaches to fuzzy information
granularity, based on the proposed fuzzy granular structure dis-
tance, we develop a much more generalized axiomatic approach,
called a GFIG, which solves the problem that each of existing
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partial order relations between fuzzy granular structures is often
not found. In Section VI, we also built a bridge between fuzzy
information granularity and fuzzy information entropy. Finally,
Section VII gives a conclusion of this paper.

II. PRELIMINARIES

In GrC, granular structure bases, fuzzy granular structure
bases, fuzzy information granules, and fuzzy granular structures
are several important concepts, which will be briefly reviewed
in this section.

An approximation space K = (U, R) in rough set theory is
also called a granular structure in GrC, where U is a finite and
nonempty set, called a universe, and R C U x U is an equiva-
lence relation on U [31], [32]. The universe U can be partitioned
into some disjoint classes by a given equivalence relation R,
which is generally called a quotient set, just U/R. An equiv-
alence relation is a special kind of similarities among objects
from a dataset. When two objects are included in the same class
EpR(z), one can say that these two objects cannot be distin-
guished using the equivalence relation R. In general, a granular
structure determined by R on U cam be formally represented
as F'(R) = {ERr(x) | « € U}, in which each equivalence class
Egr(z), © € U, is viewed as an information granule consisting
of indistinguishable objects [23], [24], [38]. A family of granular
structures from the same universe is called a granular structure
base, denoted by F' = (U, R), where U is a finite universe, and
R is a set of equivalence relations.

Given a granular structure base /' = (U, R), one knows that
every granular structure F'(R) = {Eg(z) | « € U} isacover of
the universe U, where Vo € U, Eg(x) #@and |,y Er(z) =
U hold. Given this representation, a partial order relation < has
been introduced [12], [13], [37], [53], which is as follows:

P = QP QeR) < Ep(z;) C Eg(x;) for any
ie {1,2,...,|U[}.

If P < (@, one can say that P is much finer than @. It has
been proved (R, <) is a poset [12], [53].

However, as Professor Zadeh pointed out, a crisp information
granulation does not well characterize the fact that in much,
perhaps most, the granules of human reasoning and information
granulation are fuzzy rather than crisp [56]. It is necessary to
generalize crisp information granulations to fuzzy cases. To
address this issue, we review the following concepts in fuzzy
cases.

In fuzzy information granulation, an equivalence relation in
the crisp information granulation is replaced by a fuzzy binary
relation R from a given universe U. We often represents a fuzzy
binary relation by a relation matrix, which is formally as follows:

i1 T2 Tin

~ 21 722 e Ton
M(R) = (1)

Tn1 Tn2 Tnn

where r;; € [0, 1] means the similarity between two objects x;
and z;.
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Given two fuzzy binary relations Ry , Ry, several operations
between them have been often defined as

1) R1 = Rg & Rl(:z: y) = Rg(x y), for all z, y;

2) R= R1 URQ s R= max{R1 (z,y), Rg(x v}

3) R= R1 ﬂRg & R= mln{R1 (2,9), Ry (x,9)}:

4) Ri C Ry & Ry (z,y) < R, (z,y), forall z,y.

Similar to an equivalence relation, given a universe, a fuzzy
binary relation can correspondingly induce a set of fuzzy infor-
mation granules, which is regarded as a fuzzy binary granular
structure. In order to uniformly represent, the granulation re-
sult characterized by this family of fuzzy information granules
is uniformly called a fuzzy granular structure in this paper. A
fuzzy binary granular structure on U is formally written as

, Gﬁ (xn )) (2)

where Gp(zi) = /21 +rig/xe + - i /T, Gp(xi)
means the fuzzy information granule determined by xz; with
respect to R, and 7;; is the similarity between objects x; and
x; [3], [6]. Here, “+” indicates the union of objects. In fact,
G (z;) also can be understood as the fuzzy neighborhood of
z; in a sense. The cardinality of the fuzzy information granule
G () can be calculated with

j=1

A family of fuzzy binary granular structures is called a
fuzzy granular structure base, denoted by F' = (U, R). To uni-
formly represent granular structures, in this study, a fuzzy
binary granular structure determined by P € R is denoted
as F(P) = (Gp(x1),Gp(x2), -+, Gp(x,)), where G () =
pi1/xi + pio/x;i + -+ + pin /x;. Inthis case, the granular struc-
ture is also a binary neighborhood system [17]-[24]. Further-
more, let F(U) denote the collection of all fuzzy binary granular
structures from a given universe U.

Given a fuzzy binary granular structure F' = (Sp(z1),
Gp(x2),...,Gp(xy,)), in particular, if p; =0, i,j <n,
then |G (x;)| =0,i <n, and the fuzzy granular structure
is called the finest one, write as P = w, ie., F(w)=(Gy
(71), Gz (w2), ..., Gz (), where Gg(zi) =3[, “;” , Vi,
J<n,wij =0;if pyy = 1,4, < n, then |G5(z;)| = |U| 1 <
n, and the fuzzy granular structure is called the coarsest
one, write as P = 4, i.e., F(6)(G(5(a:1) G3(x2),- -, G5(xy)),
where G5(z;) =37, ry % VG < m, 8ij = 1.

These fuzzy granular structures found some base units in hu-
man fuzzy reasoning. The underlying algebra structure among
F(U) has been discovered, which can used to reveal the hierar-
chical structure on fuzzy granular structures [41]. To investigate
this issue, four operators among fuzzy granular structures have
been proposed for revealing the algebra structure. These four
operators in a family of fuzzy binary granular structures are
defined by the following definition.

Definition 1: Let F(U) be the collection of all fuzzy binary
granular structures on the universe U, G(P),G € F(U) two
fuzzy granular structures. Four operators (), |J, —, and ? on

F(R) = (Gy(x1),Gg(x2), ...

247
F(U) are defined as
F(P)(F(Q) = {Gpgai) | Gpglx:)
= Gpw) N Gy(n)} )
P JF(Q) = {Gp.5(i) | Gp g (i)
= Gplai) UGq (i)} )
F(P)=F(Q) = {Gp_g(@i) | Gp_g(x:)
= Gp(@)n ~Gg(@)} ©)
WF(P) = {1855 (2:) NG (i) =~ Gp(ai)} ()

where 2; € U, i <n and ~ Gp(z;) =
pio)/xi 4+ 4 (1 = pin) /xi.

These four operators are used to execute intersection oper-
ation, union operation, subtraction operation, and complement
operation in-between fuzzy granular structures. Based on these
four operators, we can fine, coarsen, decompose fuzzy granular
structures and calculate complement of a fuzzy granular struc-
ture, respectively. It deserves to point out that (), |J, —, and?
can be seen as four atomic formulas, and their finite connections
are also formulas. In the context of these four operators, it has
been proved that the algebra structure of these fuzzy granular
structures is a lattice structure. In addition, those proposed four
operators also can be employed for generating some new fuzzy
granular structures on the same universe. That is to say, on the
same universe, we can induce new fuzzy binary granular struc-
tures by some known fuzzy binary granular structures through
combining these operators. Furthermore, these four operators
have some nice properties, which have been discussed in [41].

(1—pin)/x; + (1 -

III. TWO LIMITATIONS OF FUZZY INFORMATION GRANULARITY

Fuzzy information granularity and fuzzy information entropy
are two main approaches to measuring the uncertainty of a fuzzy
granular structure [3], [41]. A fuzzy information granularity is
used to assess the coarseness of a fuzzy granular structure, while
a fuzzy information entropy is adopted for measuring the un-
certainty of the actual structure of a fuzzy granular structure.
As Qian et al. pointed out [41], in a sense, the relationship be-
tween fuzzy information entropy and fuzzy information gran-
ularity may be a complement relationship, and they have the
same capability for characterizing the uncertainty of a fuzzy
binary granular structure. However, the existing definitions of
fuzzy information granularity still have two shortages, which
are revealed by the following two subsections, respectively.

A. First Limitation of Fuzzy Information Granularity

In GrC, the scale of each of information granules is often
taken into account for designing measures of information gran-
ularity [14], [33]-[36], [38], which are used to compute the
degree of granulation of a crisp granular structure. Some of
fuzzy information entropies are also defined based on sizes
of fuzzy information granules in a fuzzy granular structure.
To measure the information granularity of a fuzzy granular
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structure, the literature [3] and the literature [41] developed
two forms of fuzzy information granularities, respectively. In
the following, we only review these two definitions of fuzzy
information granularity. _

Definition 2: Let F(R) = (G (21), G (22), ..., Gp(w,)).
Then, fuzzy information granularity of R is defined as

N 1 n G- ;
popee
i=1

where |G j; (;)| is the cardinality of the fuzzy information gran-
ule G ().

Definition 3: Let F(R) = (G (z1), Gx(x2), .. ..Gp(2,)).
Then, fuzzy information granularity of R is defined as

~ 1 1
BB = -3 togy ©)
2 e
where |G ; (;)| is the cardinality of the fuzzy information gran-
ule G ().

Usually, if the fuzzy information granularity (or fuzzy infor-
mation entropy) of one fuzzy granular structure is equal to that
of the other fuzzy granular structure, one can say that these two
fuzzy granular structures possess the same uncertainty. How-
ever, this does not mean that these two fuzzy granular structures
are equivalent each other. That is to say, the fuzzy information
entropy and the fuzzy information granularity cannot well re-
veal the difference between two fuzzy granular structures in a
fuzzy granular structure base. It can be seen from the following
examples. _

Example 1: Let U = {xy, 29,23}, F(P)=
(22),Gp(as) € F(U) and F(Q) = .
(x3)) e F(U) be two fuzzy granular structures, where
GP(Il)—02/£E1+O3/I2 +06/I3, GP(SCQ)—04/I2+
0.7/z2 +0.8/x9, Gp(x3) = 0.2/21 +0.2/22 + 0.6 /23, and
Gg(z1) =0.4/21 + 0 4/ +0.3/z3, Gg(z2) = 0.3/21 +
0.4/22 +0.3/x3, G5(x3) = 0.5/21 +0.6/72 + 0.8/23.

From Definition 2, we calculate their fuzzy information gran-
ularities as follows:

3
or(P) = L3S Calrl s

(Gp(r1)Gp

P
(GQ (xl)GQ (xg), G5

3 e N
GK(O) = éz w — GK(P) = 2.

That is GK (P) = GK(Q).
From Definition 3, we compute the information granularities
of these two fuzzy granular structures as follows:
3

~ 1 1 1
E.(P)= =Y Zlogy—— = ~10g,2.09
(P) ;3 G T 30

3
1 1 1
— 3 logy ——— = 10g:2.09.
223G (w)] 3

That is, E, (P) = E,(Q).
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However, the fuzzy granular structure F(P) is clearly not
equal to F' (@) It shows that the fuzzy information granularity
cannot effectively differentiate any two fuzzy granular struc-
tures. Fuzzy information entropy also has the same shortage,
and hence, we omit its discussion here.

B. Second Limitation of Fuzzy Information Granularity

For characterizing the uncertainty of a granular structure, a
partial order relation plays a very important role. In recent years,
several partial order relations on fuzzy granular structures have
been developed. In what follows, we review the existing partial
order relations and their properties. _

In what follows, we suppose F'(P), F(Q) € F(U), where
F(P) = (Gﬁ(xl)a Gﬁ(x2)7 B Gﬁ(-{n))Gﬁ(ajt) = pil/xl»

- Gg(@n)), and G (@) = gir/ay + - + g /o + - +
Gin /Ty then, the existing partial order relations and their
properties are as follows.

The partial order relation 31 is defined as [3], [45]:

F(P)glF(Q) =4 Gﬁ(ml) - G@ (%L), forall: <n < Dij <
qij, foralli, j < n,just }531 @ It is called a rough partial order
relation. ~ _

Furthermore, F(P) = F(Q) < Gp(x;) = Gg(x;), for all
1 <n <& pj;=qy, for al 4,j<mn, wrte as 15:@
F(P)=,F(Q) & F(P)=,F(Q) and F(P) # F(Q), denoted
by P<1Q.

The partial order relation 22 is defined as [41]:
F(P)=2,F(Q) < |Gp (i) < |Gg ()|, for all i < n,~vzhe£e
|G| =271 iy |Gg(zi)l = 31 qijs just P=Q.
The partial order relation is called a generalized rough partial
order relation. B

Moreove& F(f) :NF(Q) <:>~|G13(xi)|~: G5 (~a:i)|, for a~ll
i <m,just P~ Q. F(P)=,F(Q) & F(P)=,F(Q)and F(P)
od F(é), write as 15-?2@.

The ~pz}vrtial order relation <3 is defined as [41]: _

F(P)=3F(Q) < for F(P), there exists a sequence F' () of
F(Q)suchthat |G 5 (z;)| < |Gg(x})], foralli < n,just P=5Q,
where E’(@) = (Gg(a)),Gy(xy),... Gg(a),)). 1tis called a
granulation partial order relation.

In addition, F(P) ~ F(Q) « |G (i) = G (x;)| for all
i <n, denoted by P~ Q. F(P)23F(Q) < F(P)=Z3F(Q)
and F(P) % F(Q), write as P=3Q.

To date, these three partial order relations have been well used
to compare the coarseness/fineness between two given fuzzy
granular structures from the same universe. The relationships
among these three partial order relations had been established
with the following three theorems.

Theorem I (see[41]): Partial order relation <, is a special
instance of partial relation =5.

Theorem 2 (see[41]): Partial order relation 32 is a special
instance of partial relation 23.

Theorem 3 (see[41]): Partial order relation =< is a special
instance of partial relation 3 3.
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From the above theorems, one can draw such a conclusion that
the partial order relation =3 is the best one for distinguishing
the coarseness/fineness between two fuzzy granular structures.
However, the partial order relation 33 still has its shortages
for distinguishing fuzzy granular structures. This is because
one cannot find these partial order relations among some fuzzy
granular structures, which is illustrated with Example 2.

Example 2: Let U = {x1,x2,23,24}, F(P)=(Gp(x1),
Gp(22).Cp (1), Gpla4)) €F(U) and F(Q) = (Cg(m).
Gg(@2),Gg(x3), G (w4)) € F(U) be two fuzzy granular
structures, where Gp(x1) = 1/21 +0/22 +0/23 +0/24,
Gp(xg)—03/x2 +06/$2+0/$2 +0/$4, (13)—0/1’1
+0/z9 +0.4/23 +0/24, Gp(24) =0/21 +0/x2 +0/x3 +
0.1/z4, and G (z1) = 1/961 +0.6/z2 +0/23 +0.7/24, Gy
(.%'2) = 0.3/.%‘1 + 07/$2 + 08/3?3 + O/.’L’47 G@(l‘g) :0/.’L‘1 +
0/3?2 +O/1}3+0/$4, Gé($4):0/$1+0/1}2 +O7/.’L’3+
0.4 / ZTy.

For this example, there does not exist any array of members
in F(Q) such that F(P)=3F(Q) or F(Q)=3F(P). Neverthe-
less, the fuzzy granular structure F' (é) should be much coarser
than the fuzzy granular structure F' (13), intuitively. Unfortu-
nately, one cannot differentiate the coarseness/fineness between
these two fuzzy granular structures through using the granula-
tion partial order relation 33 in this case. That is to say, when
there does not exist one of these three partial order relations be-
tween F'(P) and F(Q), their information granularities cannot
be compared. Hence, the axiomatic definitions of information
granularity based on these partial order relations still have such a
limitation for characterizing coarseness/fineness degrees among
fuzzy granular structures.

From Section III-A and III-B, the existing forms of fuzzy
information granularity have two obvious limitations, which
brings a challenge for studying uncertainty in GrC. To over-
come these limitations, it is very desirable to develop a measure
for differentiating two fuzzy granular structures, which is an
important problem in GrC.

IV. Fuzzy GRANULAR STRUCTURE DISTANCE
AND ITS PROPERTIES

In this section, we will introduce a concept of fuzzy granular
structure distance to distinguish two given fuzzy knowledge
structures.

From the composition of a fuzzy granular structure, fuzzy in-
formation granules are basic units. To give an effective distance
between two fuzzy granular structures, the fuzzy information
granules determined by an object with two fuzzy binary relations
should be well differentiated. The accumulation of differences
on fuzzy information granules determined by all objects can
characterize the entire difference between two fuzzy granular
structures from the same universe.

Based on the above idea, given a universe U, we introduce
a new concept of fuzzy granular structure distance with the
following definition. _

Definition 4: Let ' = (U,R) be a fuzzy granular struc-
ture base, P,Q € R, F(P) = {Gs(x), x € U} and F(Q) =
{G5(@), x € U} two fuzzy granular structures. The fuzzy
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granular structure distance between F'(P) and F/(Q) is formally
defined as

Ul G i) AG5 (x;
PP, @) = iy 3o P
whete |G (1) AG (1:)| = G p (1) U Gy a:)] = [Gp(ai) 0

GQ(%)L z; €U.

The fuzzy granular distance can well describe the difference
between two fuzzy granular structures coming from the same
universe.

Theorem 4 (Extremum): Let F(U) be the collection of all
fuzzy granular structures induced by the universe U, F(IB),
F(Q) two granular structures in F(U). Then, D(F(P), F(Q))
achieves its minimum value D(F(]g)7 F(Q)) = 0 if and only
if F(P) = F(Q) and D(F(P) F(é)) achieves its maximum
ValuellfP—wandQ—6(orP—6andQ—w)

Obviously, 0 < D(F(P), F(Q)) < 1 holds.

In what follows, we continue to employ Example 1 for veri-
fying the validity of the fuzzy granular structure distance.

Example 3 (Continued from Example 1): By Definition 4, it
follows that

P A |G 5 () AG (2
DF(P) F(@) = gy > PP

1 /06+09+09) 24
3 ( 3 ) 97

It can be seen that the fuzzy granular structure distance can
effectively measure the difference of those two fuzzy granular
structures in Example 1.

In what follows, we investigate some of important properties
of the fuzzy granular structure distance proposed above.

Based on the definition of the fuzzy rough partial relation =<
among fuzzy granular structures, we can find that the relation
among fuzzy granular structures is based on the inclusion rela-
tions between two fuzzy information granules of every object
with two fuzzy binary relations. Therefore, we can employ the
rough partial relation =, for investigating the properties of the
fuzzy granular structure distance.

For further investigation, we first give a distance between two
fuzzy sets with the same number of objects.

Let A and B be two fuzzy sets; then, the difference between
them can be described by the equation as follows:

d(A,B) =|AUB| —|ANB|. (11)

For the distance between fuzzy sets, one can obtain the fol-
lowing lemma. o _

Lemma 1: Let A,NB , and C’Nbe t~hree~fuzzy sets_on_the
same universe, A C B C C or A D B D C; then, d(A, B) +

d(B,C) = d(A,C).

Proof: Supposing ACB

have 11 (x:) < g (2:) < o

d(A,B) +d(B,C)
= |[AUB| -

C then for any z; € U, we
( ;). Hence

|ANB|+|BUC|—|BNC|
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= ZME(%)
= ZM@(M)

= JAuC| -
= d(A, Q).

n

_ Z“Z
i=1
n

- Zug(xi)
i=1

|IANC|

(i) +ZM@(%) - Zug(ﬂf )

If ADBDC, similarly, we have d(lé) + d(é,é) =
d(A, C). This completes the proof. [ |
Let F(P) = {Gp(x), x €U}, F(Q )—{G (x), x € U},
and F(R ) = {G(x), x € U} be three fuzzy granular struc-
tures on the universe U. By Definition 4 and Lemma 1, we can

get some theorems as follows.

Theorem 5: Let I = (U,R) be a fuzzy granular struc-
ture base, P, Q, ReR. If F(P)< F(Q)< F(R) or
F(E)Q F(Q)< F(P), then D(F(P),F(R)) = D(F(P),
F(Q)) + D(F(Q), F(R)).

Proof: Suppose that F(P)=,F(Q)=,F(R), for any z; €
U, we have G5 (z;) € Gg(wi) € Gp(x ) By Lemma 1, one
has that

D(F(P),F(Q)) + D(F(@,F(E))
(%)AG Yl

Ul

1 L d(Gp (), Gy () 1

Ul

= D(F(P),F(R)).

Similarly, when F(E){lF(Q)< F(P), one also has that
D(F(P), F(R)) = D(F(P),F(Q)) + D(F(Q), F(R)). This

completes the proof. |
This theorem is clearly illustrated by the following
Example 4. _
Example 4: LetU = {a:l,xg} F(P) = (Gp(x1)Gp(x2)),
€F(U), F(Q) = (Gg(z1), Gglxz)) € F(U),F(R) = (Gp

(1), Gj(z
GP(Il) =0. 1/1‘1 + 0. 2/:132,
(1171) —02/IE1 +03/SCQ, Q
(1) =0.3/21 +0.4/z9, Gp(x ) 4/9:1 +0.6/z2. By
Definition 4 one can get D(F(P),F(Q)) = %1 D(F(Q).
F(R)) = %, and D(F(Q),F(R)) = %2; hence, D(F(P),
F(R)) = D(F(P) F(Q)) + D(F(Q), F(R)).

From the above discussions and analysis, we can get three
corollaries as follows.

( D) 02/1‘2 +03/I2,GN

9)) € F(U), and F( P)=1F(Q)=,F(R), where
({ZZQ) 03/1‘1 +O4/I2,G~
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Corollary 1: Let F(U) be a family of all fuzzy granular
structures induced by a given universe U, F'(P ) F(Q) € F(U)
two fuzzy granular structures. If F(P)=,F(Q), then one has
that D(F(P), F(@)) < D(F(Q), F(@)).

Corollary 2: Let F(U) be a family of all fuzzy granular
structures induced by a given universe U, F'(P ) F(Q) € F(U)
two fuzzy granular structures. If F(P) L F(Q), then one has
that D(F(P), F(3)) > D(F(Q), F(3)).

In what follows, we discuss the triangle inequality of the
fuzzy granular structure distance on F(U).

Due to the maximum and minimum operators of the fuzzy set
and (11), we can easily obtain another lemma as follows.

Lemma 2: Given three fuzzy sets A, B, and C, d(A B) +

d(B,C) > d(A,C), d(A,B)+d(A,C)>d(B,C), and
d(A,C) +d(B,C) > d(A, B).

Based on the lemma above, one can draw a conclusion that
(F(U), D) is a distance metric on F(U).

Theorem 6: Let F(U) be a family of all fuzzy granular struc-
tures induced by a given universe U; then, (F(U), D) is a dis-
tance space. |

Proof: B ~

1) By Definition 4, it is clear that D(F'(P), K(Q)) > 0.

2) From the symmetry of the operator A, one has that
D(F(P), F(Q)) = D(F(Q), K(P)).

3) In order to prove the triangle inequality, given
three fuzzy granular structures F(P), F(Q) and
F(R) € F(U), without loss of generality, one
needs to prove D(F(P),F(Q))+ D(F(P),F(R)) >
D(F(Q), F(R)).

By Lemma 2, for z; €U, D(Gp(z;),Gg(xi))+

D(Gp(xi), Gg(xi)) > D(G@(mi), G (x;)); hence,

D(F(P),K(Q)) + D(F(P), K(R))
(7)) AGq ()]
Ul

5 (@) AGE ()|
U]
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Analogously, one has that D(F(E),F(Cg))-i-D(F(}Z),
F(R) > D(F(Q). F(P)) and D(F(R), F(Q)) + D(F(P),
F(Q)) = D(F(R), F(P)).

Therefore, (F(U), D) is a distance space. |

Example 5 (Continued from Example 2): By Definition 4,
we can obtain that D(K (P), F(Q)) = %%, D(F(Q 0)), F(R )) =
26 and D(F(ﬁ~) F(R)) = L4, Thus, one has that D(F(R )
F(Q))+D(F(P) F(R)) > D(F(Q),F(P)). D(F(R),

F(Q)) + D(F(P), F(Q)) > D(F(R), F(P)).

From the above discussions, we conclude that the fuzzy gran-
ular structure distance is an effective metric for calculating the
difference between two fuzzy granular structures from the same
universe, which also can describe the geometric structure of all
fuzzy granular structures from the same universe from the idea
of geometry.

V. GENERALIZED Fuzzy INFORMATION GRANULARITY

Inrecent years, several researchers have already paid attention
to the problem of what is the essence of fuzzy information gran-
ularity for fuzzy granular structures. Qian et al. [41] attempted
to unify the definitions by using some existing axiomatic ap-
proaches to fuzzy information granularity. In this section, based
on the proposed fuzzy granular structure distance, we aim to
propose a generalized axiomatic definition to fuzzy information
granularity.

Through employing the partial order relation =;, 7€
{1, 2, 3}, Qian et al. [41] had given three axiomatic defini-
tions of a fuzzy information granularity in the context of fuzzy
binary granular structures.

Definition 5 (see[41]): Let F(U) be the set constructed by
all fuzzy binary granular structures on the universe U. VF(P) €
F(U), there exists a real number g(P) satisfying the following
properties:

1) g(P) > 0 (Nonnegativity);

2) if F(P)=F(Q), VF(P),

¢(Q) (Invariability);

3) if F(P)=1F(Q), VF(P),

¢(Q) (Monotonicity);
then g is called a fuzzy rough granularity (just FRG).

Definition 6 (see[41]): Let F(U) be the set constructed by
all fuzzy binary granular structures on the universe U. VF(]B) €
F(U), there exists a real number g(P) satisfying the following
properties:

1) g(P) > 0 (Nonnegativity);

2) if F(P) ~ F(Q), VF(P),

¢(Q) (Invariability);

3) if F(P)=:F(Q), VF(P),

g(@) (Monotonicity);
then g is called a generalized fuzzy rough granularity (just
GFRG).

Definition 7 (see[41]): Let F(U) be the set constructed by

all fuzzy binary granular structures on the universe U. VF' (}3) €

F(Q) € F(U), then g(P) =

F(@) € F(U), then g(ﬁ) <

F(Q) € F(U), then g(P) =

F(Q) € F(U), then g(P) <
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F(U), there exists a real number g(P) satisfying the following
propertles
1) g(P)>0 (Nonnegativity);

2) if F(P)~ F(Q), VF(P),F

¢(Q) (Invariability);

3) if F(P)=3F(Q), VF(P),

¢(Q) (Monotonicity);
then ¢ is called a fuzzy information granularity (just FIG).

For the above three axiomatic definitions of fuzzy informa-
tion granularity, to date, the fuzzy information granularity has
the strongest ability for differentiating the coarseness/fineness
degrees of fuzzy granular structures. It is very interesting that
the fuzzy granular structure distance can be used to construct a
fuzzy information granularity. This mechanism is shown in the
following theorem.

Theorem 7: Let F(U) be the set constructed by all fuzzy
binary granular structures on the universe U. VF(P), F(@) €
F(U). Then, D(F(P), F(&)) is afuzzy information granularity.

Proof- Assume U be a finite universe, let F(P)=
(Gp(x1),Gp(x2),...,Gp(xn)) and F(0) = (Gz (1), Gs
(xg), 3Gz (wy)), where Gp(w) =377, %’Jfﬁi,j <mn,

i; = 0.

1) Clearly, the distance D is nonnegative.

2) If F(P) ~ F(Q), then there must exist a bijective map-

ping function f : F(P) — F(Q) such that |Gp(xi)| =

F(Q) € F(U), then g(P) =

F(@) € F(U), then g(]B) <

[f(Gp(z:))l, zi €U, and f(Gp(xi)) = Gg(x;,). One
has that
D(F(E), F 'i p(@1)AGs (a1)|
=2 U
U] \U\ 0
a |U|Z |U| \U|Z |U\
U] \U\
_ b ‘G@(l‘h -0
- |U|Z; U |U|Z \U|
= D(F(Q), F(@)).
3) Now one proves that if F(P)=3F(Q), then

D(F(P), F(@)) < D(F(Q), F()). Let P,Q € R with
F(P)Z%3F(Q).  F(P) ={Gp(11),Gp(x2),...,Gp
(2} and F(Q) = {Gg (1), Gg(22), ... Gg(zpw))}s
then there exists a sequence F'(Q) of F(Q), where
F(Q) = {Gé(xll),GQv(x;),...,Gé(x/‘w)}, such that
Gp(zi)] <Gy (z;)|, and there at least exists x, € U

such that |G 5 ()| < |f(Gp ()| = |G@(m;)| Thus
- L |G () AG ()
DEP).FG) =572 Z 0]
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Fig. 1.

U
RN Gp(@)] =0 | |Gp(,)] -0
U\, 4. 1O ]
U] /
1 Gg(x)| —0  |Ga(a)] —0
< o +
U] Z U] U]

= D(F(Q). F(@)),

ie., D(F(P),F(@)) < P(F(Q), F()).

Summarizing above, D(F'(P), F'(w)) is a fuzzy information
granularity. |

From the theorem above, we can see that the fuzzy granular
structure distance between the fuzzy granular structure F'(P)
and the finest one F'(w) can be regarded as a fuzzy information
granularity. In fact, the distance D(F(P), F(&)) has some bet-
ter properties for depicting the information granularity of any
fuzzy granular structure. Its advantages can be further explained
in the following paragraph.

Through analyzing the sematic of the fuzzy granular struc-
ture distance D(F(P), F(w)), one can come back to resurvey
the performance of information granularity in Definition 7. In
fact, the axiomatic definition in Definition 7 is still not the best
characterization of information granularity of a fuzzy granular
structure. In Definition 7, one needs to find a suitable mapping
function f such that F'(P)=3F(Q). Nevertheless, if this partial
order relation cannot be found between F/(P) and F(Q), we will
not compare their information granularities. From the viewpoint
of the fuzzy granular structure distance, we can overcome this
limitation. In other words, for two given fuzzy granular struc-
tures, if one cannot distinguish fineness/roughness relationship
in-between them, we can first use the finest fuzzy granular struc-
ture as a reference and, then, observe the fuzzy granular structure
distance between every fuzzy granular structure and the finest
one. The longer the fuzzy granular structure distance between
a fuzzy granular structure and the finest one, the bigger the
information granularity of this fuzzy granular structure. This
mechanism can be closely explained by Fig. 1.

In Fig. 1, F(P), F(Q), and F(R) are three fuzzy granular
structures, and F'(w) are the finest fuzzy granular structures,
where the partial order relations 31, 32, and 33 are all not
found between F(P) and F(Q). That is to say, each of the
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axiomatic definition of fuzzy rough granularity, that of gener-
alized fuzzy rough granularity, and that of fuzzy information
granularity cannot deal with this situation, whereas, if we take
the finest fuzzy granular structure F'(&) as a reference, then
the fuzzy granular structure distance can work. In particular,
it is of interest that when F(P)< F(R), D(F(R),F(@)) =
D(F(R), F(P)) +D(F(P) F(0)).

Based on the point of view, we develop a more generalized and
comprehensible axiomatic definition of information granularity
of a fuzzy granular structure in GrC.

Definition 8: Let F' = (U, R) be a fuzzy granular structure
base, if VP € R, there exists a real number g(P) satisfying the
below properties:

1) g(P) > 0; (Nonnegativity)

2) if D(F(P), F(@)) = D(F(Q), K(@)),VP,Q € R, then
g(P) = 9(Q 0); (Invariability) o
3) if D(F(P), F(w)) < D(F(Q), F(w)),YP,Q € R, then

g(P) < ¢(Q), (Granulation monotonicity)
then g is called a GFIG.

In the following, we analyze several properties of the GFIG
above.

Theorem 8: Let g is a GFIG on a fuzzy granular structure
base ' = (U,R), P,Q € R. One has the following properties:

D gP)=g1P); N

2) g(PNQ) <g(P).9(PNQ) < 9(Q):

3) g(P) <g(PUQ), 9(Q) <g(PUQ).

Proof: They are straightforward.

Example 6 (Continued from Example 2): To distinguish the
coarseness/fineness degree between those two fuzzy granular
structures, we, respectively, calculate two fuzzy granular struc-
ture distances to the finest fuzzy granular structure F(w) as
follows:

Ul

D(F(P), F@) = 7773 Z o x@f S
_ 1+03+06+04+01 3
- 16 20
and
. 1 LG () AGs (1))
D(F(Q), F(@)) = WZ o

1+06+07+03+074+08+0.7+04 13

16 40

Obviously, one has that D(F(P), F(©)) < D(F(Q), F(@)).
Hence, the coarseness/fineness between these two fuzzy granu-
lar structures can be distinguished, and F'((Q) is much coarser
than F(P). Therefore, the axiomatic definition of GFIG is much
better than that of fuzzy information granularity in Definition 7.

In next study, we address whether each of G K in Definition 2
and E, in Definition 3 satisfies the proposed axiomatic definition
of GFIG or not.

Theorem 9: GK
Definition 8.

in Definition 2 is a GFIG under
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Proof:
1) Obviously, it is nonnegative.
2) Let F(P), F(Q) € F(U) be two fuzzy granular struc-

3)

tures, where F'(P) = (Gp(x1),Gp(x2), ..., Gplxy)),
F(Q) = (GQ (1), GQ (z2),.. .,GQ (x,)). We assume

that D(F(P), F(@)) = D(F(Q), F(©)); then, one has
that

v
L Z‘Gp(xi)AGw(xZH
Ul = Ul
- 1% |Gy (@) AGs ()|
Ul = Ul ’
that is,
XU: -0 1ZU':|G@(:&)I—0
U] & \UI Cul& Tl

hence, Zi:l |G 5 ()| = ZlU‘l 155 (2;)|; therefore, P ~

@ (see the definition 0f~“ ” in Section III-B). Then,
from the definition of =3, we can know that tNhere
exists a sequence F'(Q) of F(Q), where F (Q)=
(Gg(z1),Gg (@), ..., Gg(x,)), such that |Gy (z;)| =
Ga (3)], i < n. Therefore

GK(P) = Z |G %Z
1 Gs (i)
_ E; Qn _

If D(F(P),F(®)) < D(F(Q), F(&)), ie, &2

G ~() AG~(x,)| 0] 165 AG~()|

—EU‘< } \U|Z —|G o that is, 77
ul 16 U

Z‘, ‘1 U] \U\ Z‘ | 0] ; hence, Zi:l

|Gp(x)| < Z‘Ull |G (w:)]; therefore, P=5Q, then there
exists a sequence F (Q) of F(Q), where F(Q)=
(GQ (z}), GQ(JCIQ) - Gg (z,)), such that |G (z;)| <
|GQ(x})|, i <n, and there exists zo € U such that
IG5 (x0)| <|Gy (z,)|. Hence,

ox(p) = L3102

L N D [ AC
n n
i=1,x;#xg
1 " G5 (x; G5 (x,
1 3 Gald)l | (Gt
n n
i=1,x;#xg
1 G (i)l ~
n “ n
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that is, GK (P) < GK(Q).

Summarizing the above, G K in Definition 2 is a GFIG under
Definition 8. The proof is complete. |

Theorem 10: E,

in Definition 3 is a GFIG under

Definition 8.
Proof:
1) Obviously, it is nonnegative.
2) Let F(P),F(Q) € F(U) be two fuzzy granular struc-

3)

turef’ where F(ﬁ) = (Gﬁ(«fCl),Gﬁ(l‘g), s Gﬁ(xn))a
F(Q) = (Ci@ (21), G (@2), - = Gg(wn)). We assume
that D(F(P), F(@)) = D(F(Q), F(&)); then,

that is,

Gp(a)| -0

E‘U|1 |G 5 ()] :E‘Ull |G (z;)]; therefore,

P~ Q (see the definition 0£ “~"1in §ect10n 1II-B), ~then
there exists a sequence F'(Q) of F(Q), where F' (Q) =
(GQ(I}),GQ(JUQ),...,G@(a?n)), such that |G5(x;)| =
|G (2;)], @ < n. Therefore

hence,

~ 1 1
E.(P)= =) —logy——
(P) ; n 082 G (x

z”: 110g 1
_ Zlogyg ————
i=1 n |G@(.TL)|

1 1 ~
- —log =E, Q)
; no< 155 (« (

If D(F(P), F(@)) < D(F(Q), F(&)), then
1 N (G (i) AGS ()]

Ul = U
1 L |Gy () AGs ()]
DS ‘
U] = U ’
that is,
vl UL |Gy ()] — 0
IUIZ \UI IU\Z U|
hence, YO\ |G (i) < ) |G (ai)]:  therefore,

there exists a sequence F' (Q) of F(Q), where F'(Q) =
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(Gg(a1), Gy (@), Gg(x,)). such that |G (x;)| <

|G ()|, i <n, and there exists 2y € U such that
|G5(xo)| < \G@(xé)\. Hence

n

1
EEaT = " tlogs|Gia 1)

i=1

E, (]5) — Z %logg |
i=1

1 n

~ 2

i=1,z; #xg

1
10g2K?ﬁ($iﬂ'+’%40g2ﬂ?ﬁ($0)

a 1
Z logs |G (i) + 510g2|G(5 (z0)]

1
< —
K i=1,2;#xg

1 1 ~
=Y —logg—— =E,

ie., E.(P) < E.(Q).

From the above, we conclude that F, in Definition 3 is a
GFIG under Definition 8. The proof is complete. |

Remark: Based on these analysis and discussions above, one
can draw such a conclusion: The GFIG defined by the fuzzy
granular structure distance can well distinguish the coarse-
ness/fineness degree between any two fuzzy granular structures
from the same universe, which can completely solve the prob-
lem of how to measure the information granularity of a fuzzy
granular structure in fuzzy-set-based GrC. These results will be
very significant for studying uncertainty in GrC.

VI. CONNECTING Fuzzy INFORMATION GRANULARITY AND
Fuzzy INFORMATION GRANULARITY BY FuzzY GRANULAR
STRUCTURE DISTANCE

The concept of entropy is originally from Physics, which is
often used to assess out-of-order of a system. The bigger the
entropy value of a system is, the higher the out-of-order of this
system is. In information theory, the notion of entropy was intro-
duced by Shannon to measure uncertainty of a system’s structure
[44]. The entropy in information theory is named information
entropy. It is well known that the information entropy can well
measure the information content of an information system. The
extended version of the entropy to measure information content
of a fuzzy granular structure is called a fuzzy information en-
tropy. There has been two forms of fuzzy information entropy
in the existing literature works [3], [5], [6], [41]. In this section,
with the viewpoint of the fuzzy granular structure distance, we
want to reveal the connection between fuzzy information gran-
ularity and fuzzy information entropy.

To measure the uncertainty of a fuzzy granular structure, the
Shannon’ entropy was extended by Hu er al. [3], and this variant
was also used to characterize the uncertainty of a fuzzy rough
set and that of a fuzzy probability rough sets. The variant could
overcome the limitation of Shannon’s entropy only working in
classical sets. _

Definition 9 (see[3]): Let F(R) =

Gﬁ(mn));

(Gﬁ(xl),Gﬁ(xz)N,...,
then, fuzzy information entropy of F(R) is
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defined as
|G x;)|

= —— ZlogQ

When F (R) is a Pawlak granular structure, the fuzzy infor-
mation entropy will have the same form as Shannon’s entropy.
In other words, the uncertainty of a Pawlak granular struc-
ture also can be calculated by this definition with a uniform
configuration.

Through generalizing the Liang’s mutual information en-
tropy, Qian et al. [41] gave another measure for fuzzy gran-
ular structures. This measure can also be used to measure the
uncertainty of a given fuzzy granular structure. The following
definition gives the form of the fuzzy information entropy.

Definition 10: Let F(R) = (Gp(71),Gp(r2),. ..
(2,)); then, fuzzy information entropy of F(R) is defined as

R -y 1 (1- G5

)

12)

,Gg

13)

If a Pawlak granular structure be considered, the fuzzy infor-
mation entropy can also be degenerated to the form of Liang’s
mutual entropy. The definition of the fuzzy information entropy
and that of Liang’s mutual entropy are constructed with a uni-
form configuration.

Now, we come back to consider another interesting property
of the fuzzy granular structure distance. For any fuzzy granular
structure F'(P), we observe the relationship among F'(P), the
finest one and the coarsest one with a view of the fuzzy gran-
ular structure distance from the same universe. The following
theorem is an interesting phenomenon.

Theorem 11: Let F(U) be a family of all fuzzy granular
structures from a given universe U, and F (13) a fuzzy granular
structure in F(U). Then, D(F(P), F(6)) + D(F(P), F(&))

=1.

Proof: Let F(P) = (Gp(x1),Gp(x2),- (1:7,))
where Gy (x;) = pir/z1 + pia /22 + - —HDm/Tm (5)2
(G5(@1), Gy (x2), ., G5(x,)).  where  G(a;) = 1/ +
1)z +---+1/z,, and F(©)= (Gz(x1),Gs(x2),...,
Gz (xy)), where G5 (z;) = 0/x1 +0/a9 + -+ 4+ 0/,

From the definition of fuzzy granular structure distance, one
has

DFPLFE) = > n
and
D(F(P), F@) = — > S0~ py)

Hence, we have

D(F(P),F(8)) + D(F(P),F(@)) = 1.

Summarizing the above, this completes the proof. |
Theorem 11 indicates that the fuzzy granular structure dis-
tance of a fuzzy granular structure to the coarsest one and that
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of this granular structure to the finest one are strictly comple-
mentary. Thinking about the characteristic of the GFIG with
the fuzzy granular structure distance in the previous section,
we then explore some connections between fuzzy information
entropy and the fuzzy granular structure distance.

First, we address the relationship between each of two fuzzy
information entropies of a fuzzy granular structure and the fuzzy
granular structure distance between it and the finest granular
structure. From the definitions of fuzzy information entropy and
the fuzzy granular structure distance, we obtain the following
two theorems. _

Theorem 12: Let F(U) be a family of all fuzzy granular
structures from a given universe U, and F(P), F (@) e F(U).
If D(F(P), F(&)) = D(F(Q), F(&)), then H(P) < H(Q).

Proof: If D(F(P), F(&)) > D(F(Q), F(&)), from the
proof of Theorem 10, one easily has |G 5 (z;)| > |G ()], i <
n, and according to Definition 9, then H(P) < H(Q) holds. ®

Theorem 13: Let f‘(U ) be a family of all fuzzy granular
structures from a given universe U, and F(P), F(Q) € F(U ).
It D(F(P), F(@)) > D(F(Q), F(&)), then E(P) < E(Q).

Proof: Similar to the proof of Theorem 12, it can be proved.l

Motivated by the strictly complementary in Theorem 11, it is
very interesting to observe the relationship between each of two
fuzzy information entropies of a fuzzy granular structure and
the fuzzy granular structure distance between it and the coarsest
granular structure. From the definitions of fuzzy information
entropy and the fuzzy granular structure distance, we draw the
following two conclusions.

Theorem 14: Let F(U) be a family of all fuzzy granular
structures from a given universe U, and F/(P), F(Q) € F(U).
If D(F(P) F((S)) < D(F(Q) F((S)) then H(P) < H(@)

Proof: The theorem follows directly from Theorems 11 and
12 and Definition 9.

Theorem 15: Let F(U) be a family of all fuzzy granular
structures from a given universe U, and F/(P), F(Q) € F(U).
If D(F(P), F(3)) < D(F(Q), F(9)), then E(P) < E(Q).

Proof: The theorem can be directly proved from Theorem
11 and 12 and Definition 10.

From the above five theorems, we could say that in a sense,
there may exist a complement relationship between fuzzy in-
formation granularity and fuzzy information entropy. That is
to say, they could have the same capability on measuring the
uncertainty of a fuzzy granular structure on the same universe.
The fuzzy granular structure distance plays a key role for build-
ing this bridge between fuzzy information granularity and fuzzy
information entropy in GrC.

VII. APPLICABLE ANALYSIS

The fuzzy granular structure distance and the GFIG have some
potential applications. For example, in rough set theory, the
GFIG can help us to effectively choose suitable fuzzy granular
structures for approximating a target concept or a target decision
with much higher approximation accuracy. For another example,
the fuzzy granular structure distance can be used to construct a
heuristic function in the process of feature selection, and be also
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used to perform association analysis between two variables. In
order to the compactness of the article, we do not make a detailed
discussion here.

In what follows, we only analyze the application effectiveness
of the proposed fuzzy granular structure distance and the GFIG
in the GrC area. To address this issue, we conduct two kinds
of numerical experiments with 12 real-world datasets coming
from UCI Repository of machine learning databases, which
are shown as Table I. In this table, Glass Identification, Ecoli,
Pima Indians Diabetes, Seeds, Planning Relax, and Wine are six
numeric datasets; and Breast Cancer, Lenses, Balloons, Space
Shuttle Autolanding Domain, Hayes-Roth, and Soybean are six
categorical datasets.

Before testing how the fuzzy granular structure distance be-
haves in real-world applications, we need to generate first fuzzy
granular structures from these six datasets. For categorical data,
the partition induced by a set of features is regarded as one spe-
cial fuzzy granular structures. For the six numeric datasets, we
normalize the numerical feature a into the interval [0, 1] with

a—0Qmin
a =
Qmax —Qmin
The value of the fuzzy similarity degree 7;; in (1) between

objects z; and x; with respect to feature a is calculated as

1—-4x |I’7 7Ij|,|1’j
rij = .
0, otherwise.

As rjj =7y and r; = 1, 0 <7 <1, the matrix M in (1) is
a fuzzy similarity relation. The fuzzy similarity relation deter-
mines a fuzzy binary granular structure. Given a dataset with m
features, one can generate 2™ fuzzy binary granular structures
(see final column in Table I), which are used to test the effec-
tiveness of the proposed fuzzy granular structure distance and
GFIG.

In first experiment, we compare the fuzzy granular struc-
ture distance with information granularity for differentiating
fuzzy granular structures coming from the same dataset. We
compute pairs of fuzzy granular structures differentiated by
the fuzzy granular structure distance and information gran-
ularity, respectively. With loss of generality, we select GK
in (8) as one representative of the information granular-
ity family in this experiment. These experimental results on
these 12 datasets are shown in Fig. 2. The index Identifi-

able ratio is computed by the formula Identifiable ratio =
pairs of fuzzy granular structures distinguished from each other
all pairs of fuzzy granular structures
It is easy to see from Fig. 2 that on each dataset, the Iden-

tifiable ratio of the fuzzy granular structure distance is equal
to or greater than that of the information granularity G K. This
shows that compared with information granularity, the proposed
fuzzy granular structure distance has much better performance
for characterizing differences among fuzzy granular structures.
In fact, as long as two given fuzzy granular structures are not
the same as each other, they can be distinguished by the fuzzy
granular structure distance.

In second experiment, we compare the GFIG with three
existing versions for characterizing coarseness/fineness de-
grees of fuzzy granular structures coming from the same
dataset. We compute pairs of fuzzy granular structures whose
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TABLE I
TWELVE DATASETS IN THE EXPERIMENTAL ANALYSIS
Datasets Objects  Features  Granular structures  Pairs of granular structures
Glass Identification 214 9 511 130 305
Ecoli 336 7 127 8001
Pima Indians Diabetes 768 8 255 32385
Seeds 210 7 127 8001
Planning Relax 182 12 4095 8382 465
Wine 178 13 8191 33542 145
Breast Cancer 699 9 511 130 305
Lenses 24 4 15 105
Balloons 20 4 15 105
Space Shuttle Autolanding Domain 15 6 63 1953
Hayes-Roth 132 4 15 105
Soybean (Small) 47 35 511 130 305
c |
0.98
=) 096
© 094 m Fuzzyinformation granularity
a
a2 W Fuzzygranular structure distance
2 oo
S 0.88
=
— 0.B6
0.84
0.82
&5
F
oY
<®
s
Fig. 2. Comparison on fuzzy granular structure distance and information granularity.

coarseness/fineness degrees can be characterized by the GFIG
and three existing versions, respectively. Experimental results
on the 12 datasets are shown in Fig. 3.

From Fig. 3, one can see that the Identifiable ratio of the GFIG
is consistently and significantly much better than each of exist-
ing axiomatic approaches to fuzzy information granularity on
the 12 datasets. This implies that compared with FRG, GFRG,
and FIG, GFIG possesses much stronger ability for comparing
coarseness/fineness relationships among fuzzy granular struc-
tures. These four axiomatic approaches to fuzzy information
granularity can be ranked as follows:

FRG — GFRG — FIG — GFIG.

GFIG is the best one in these four axiomatic approaches to fuzzy
information granularity. It is worth pointing out that even though
two given fuzzy granular structures are the same as each other
in the sense of GFIG, the granular structure distance between
them may be still not zero.

VIII. CONCLUSION

In fuzzy GrC proposed by Zadeh, a fuzzy granular structure
means a mathematical structure of the collection of fuzzy infor-
mation granules granulated from a dataset. The concept of fuzzy
information granularity is employed to measure the uncertainty
of a fuzzy granular structure. However, in order to profoundly
study uncertainty in fuzzy GrC, we have analyzed two limita-
tions of the fuzzy information granularity. The first limitation is
that the fuzzy information granularity cannot well distinguish
the difference between any two fuzzy granular structures. This
arises from the fact that when the information granularity of one
fuzzy granular structure is equal to that of the other, this does not
mean that these two fuzzy granular structures are equivalent to
each other. The second limitation is that the existing axiomatic
definitions of fuzzy information granularity are still not able to
well measure the coarseness/fineness relationships among some
fuzzy granular structures. To address these issues, we have pro-
posed a so-called fuzzy granular structure distance in this study,
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Fig. 3.  Pairs of fuzzy granular structures distinguished by four different axiomatic approaches to fuzzy information granularity respectively and their Identifiable

ratios on 12 datasets.

which can well discriminate the difference between any two
fuzzy granular structures. Unlike fuzzy information granularity,
as long as two fuzzy granular structures is different, it must
make a fine distinction between them. This is because that the
fuzzy granular structure distance takes both the distribution of
all fuzzy information granules and the difference between the

two fuzzy information granules induced by each object into ac-
count. To solve the second limitation, based on the proposed
fuzzy granular structure distance, we have developed a general-
ized axiomatic approach to fuzzy information granularity, under
which the coarseness/fineness of any two fuzzy granular struc-
tures can be distinguished. In this approach, the partial order
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relation among fuzzy granular structures is established by the
fuzzy granular structure distance between each fuzzy granular
structure and the finest one. It is very interesting that through
taking the fuzzy granular structure distances of a fuzzy granular
structure to the finest one, and the coarsest one into account,
we have also built a bridge between fuzzy information granu-
larity and fuzzy information entropy. These results will be very
significant for studying uncertainty in fuzzy GrC.
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