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Multigranulation rough set theory is a relatively new mathematical tool for solving com-
plex problems in the multigranulation or distributed circumstances which are character-
ized by vagueness and uncertainty. In this paper, we first introduce the multigranulation
approximation space. According to the idea of fusing uncertain, imprecise information,

we then present three uncertainty measures: fusing information entropy, fusing rough
entropy, and fusing knowledge granulation in the multigranulation approximation space.
Furthermore, several essential properties (equivalence, maximum, minimum) are exam-

ined and the relationship between the fusion information entropy and the fusion rough
entropy is also established. Finally, we prove these three measures are monotonously
increasing as the partitions become finer. These results will be helpful for understand-
ing the essence of uncertainty measures in multigranulation rough space and enriching

multigranulation rough set theory.

Keywords: Rough set theory; multigranulation; fusion information entropy; fusion knowl-
edge granulation; fusion rough entropy

1. Introduction

Rough set theory, proposed by Z. Pawlak1,2, is a soft computing tool to deal with

vagueness and uncertainty in many domains, including artificial intelligence and

cognitive sciences. The rough set philosophy is based on the assumption that with

every object of the universe there is associated a certain amount of information

(data, knowledge), expressed by means of some attributes used for object descrip-
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tion. Objects having the same description are indiscernible (similar) with respect

to the available information by use of the indiscernibility relation. Classical defini-

tions of lower and upper approximations were originally introduced with reference

to the indiscernibility relation. Furthermore, the indiscernibility relation results in

information granulation from which inconsistency or ambiguity is followed in the

domain of discourse.

According to the fundamental importance of rough set theory in many appli-

cable fields including artificial intelligence and cognitive sciences, many researchers

have studied how to measure uncertainty in the rough set theory. The entropy of a

system defined by Shannon3 (1948) is a measure of uncertainty about the system’s

actual structure. It has been a useful mechanism for characterizing the informa-

tion content in various modes and applications in many diverse fields. Since then,

a lot of researchers (see, e.g.4−9) have used Shannon’s entropy and its variants

to measure uncertainty for rough set theory. However, Shannon’s entropy cannot

measure the fuzziness in rough set theory, therefore Liang10,11 proposed a new in-

formation entropy. Unlike the logarithmic behavior of Shannon’s entropy, the gain

function of this entropy possesses the complement nature. It can be used to mea-

sure the fuzziness of rough set and rough classification. Mi et al. also gave a new

fuzzy entropy and applied it for measuring the fuzziness of a fuzzy-rough set based

partition (see, e.g.12). Qian and Liang presented combination information entropy

with intuitionistic knowledge content characteristic in incomplete information sys-

tems and introduced a combination granulation to measure the uncertainty of an

incomplete information system, and the relationship between these two concepts

was established(see, e.g.13,14).

As a significant extension of Pawlak a single-granulation rough set, the multi-

granulation rough set (MGRS) was proposed by Qian et al. for a user’s different

requirements or targets of problem solving (see, e. g.15). One of important contribu-

tions in MGRS is to describe the lower and upper approximations of the rough set

by multiple equivalence relations (multiple granulations) instead of a single equiv-

alence relation (a single granulation). Since then, many researchers have extended

the classical MGRS by using multiple generalized binary relations, such as neigh-

borhood relation (see, e. g.16), tolerance relation (see, e. g.17), fuzzy relation(see, e.

g.18) and variable precision relation (see, e. g.19). It is worthwhile to mention that

Liang et al.(see, e. g.20) proposed an efficient rough feature selection algorithm for

large-scale data sets by the view of multigranulation, which shows an important

implication of MGRS.

However, the mechanism that how to characterize the vagueness and uncertainty

for multigranulation approximation space has not been widely studied. Although

many uncertainty measures for classical rough set theory were developed in (see,

e.g.4−11,18,21−26), they are not applicable in some multigranulation or distributed
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circumstances. In this paper, by using the idea of fusing uncertain, imprecise in-

formation(see, e.g.27−29), we give a definition of fusing information entropy, fusing

rough entropy, and fusing knowledge granulation for multigranulation approxima-

tion space and address some properties of them, respectively. Noting that these

three measures are monotonic increasing as the partitions become finer, which is

a essential property of uncertainty measure argued by Beaubouef et al(see, e.g.6).

These results will be helpful for understanding the essence of uncertainty measure

in the multigranulation rough space.

This paper aims to establish uncertainty measures for multigranulation rough

set theory. Some preliminary concepts such as the knowledge base and the partial

relation “≤” are reviewed in Section 2. In Section 3, we give the definitions of

the partial relation “≤M” and the multigranulation approximation space. Then we

propose three measures: fusion information entropy, fusion knowledge granulation,

fusion rough entropy. Some of their important properties are investigated and the

relationship among fusion information entropy, fusion knowledge granulation, fusion

rough entropy is established as well. In Section 4 concludes this paper with some

remarks and discussions.

2. Preliminaries

In this section, we introduce some fundamental key concepts of rough set theory, the

multigranulation rough set theory(see, e.g.1,2,13), and several uncertainty measures

in the rough set theory(see, e.g.1,2,13). Throughout this paper, we suppose that the

universe U is a finite nonempty set.

2.1. Basic Concepts of Rough Set and Multigranulation Rough Set

Let (U,AT ) be an information system, where U is a non-empty finite set of objects,

and AT is a non-empty finite set of attributes. Each subset of attributes A ⊆ AT

determines an equivalence relation R which constitutes a partition of U , denoted by

Â, or just U/R or U/A. We say the partition B̂ is coarser than the partition Â(or

the partition Â is finer than the partition B̂), denoted by Â ≤ B̂, if they satisfy the

condition that

∀Ai ∈ Â,∃Bj ∈ B̂ such that Ai ⊆ Bj .

If Â ≤ B̂ and Â ̸= B̂, then we say B̂ is strictly coarser than Â (or Â is strictly

finer than B̂) and written by Â < B̂. In particular, in the studies about information

systems, the identity partition ω(U) and universal partition δ(U) are given, where

ω(U) = {{x} | x ∈ U} and δ(U) = {U}. The former is the finest partition on the

universe, and the latter is the roughest partition on the universe.
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For any given information system (U,AT ), where U is a non-empty finite set of

objects, AT is a non-empty finite set of attributes. Suppose A ⊆ AT and X ⊆ U ,

one can define a lower approximation and an upper approximation of X in U by

A(X) =
∪

{Ai ∈ Â | Ai ⊆ X},

and

A(X) =
∪

{Ai ∈ Â | Ai ∩X ̸= ∅},

where A(X) is a set of objects that belong to X with certainty, while A(X) is a set

of objects that possibly belong to X. It is easily shown that the lower approximation

and the upper approximation of X in U are described by a single binary relation

on the universe. In other words, this classical rough set theory is established by

a single granulation in the view of granular computing(see, e. g.30). Here, we say

(U, Â) a single granulation space.

Recently, Qian et al. have extended Pawlak’s rough set model to multigranula-

tion rough set model(MGRS) according to a user’s different requirements or targets

of problem solving. In MGRS, the set approximations are defined by using multiple

equivalence relations (multiple granulations) on the universe.

Let S = (U,AT, f) be a complete information system, X ⊆ U and

A1, A2, · · · , Am ⊆ AT . A lower approximation and an upper approximation of X

in U with respect to A1, A2, · · · , Am are denoted by
∑m

i=1 AiX and
∑m

i=1 AiX,

respectively, where

m∑
i=1

AiX =
∪

{x ∈ U | [x]Ai ⊆ X, for some i ≤ m},

and

m∑
i=1

AiX =∼
m∑
i=1

Ai(∼ X).

The lower approximation of a set X with respect to
∑m

i=1 Ai is a set of all

elements, which can certainly be classified as X using
∑m

i=1 Ai. The upper ap-

proximation of a set is the set of all elements can possibly be classical as X using∑m
i=1 Ai.

In 14, (U, Â1, Â2, · · · , Âm) is called a knowledge base in which Â1, Â2, · · · , Âm

represent various granulations, denoted by KM , i.e., KM = {Â1, Â2, · · · , Âm}. Fur-
thermore, we can say Ω = {KM | KM = {Â1, Â2, · · · , Âm}, Ai ∈ AT} a multigran-

ulation approximation space, which is a family set of knowledge based. In order
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to differentiate classical rough set and multigranulation rough set, we call KM a

multigranulation knowledge base.

Now we define a partial order in Ω. Let PM , QM be two multigranulation

knowledge base in Ω, and we define the multigranulation knowledge base QM is

coarser than the multigranulation knowledge base PM (or the multigranulation

knowledge base PM is finer than the multigranulation knowledge base QM ), de-

noted by PM ≼M QM , between two multigranulation knowledge bases satisfy the

following condition:

PM ≼M QM ⇔ ∀Pi ∈ PM ,∃Qj ∈ QM such that Pi ≤ Qj ,

where “ ≤ ” is a partial relation between two partitions in pawlak rough set. If

PM ≼M QM and PM ̸= QM , then we say QM is strictly coarser than PM (or PM

is strictly finer than QM ) and write PM <M QM . Moreover, if ∀Pi ∈ PM ,∃Qj ∈
QM such that Pi = Qj and ∀Qi ∈ QM ,∃Pj ∈ PM such that Qi = Pj , we call

PM ≈ QM . Particularly, if Âi = ω(U), for all i ∈ {1, 2, · · · ,m} , we say KM =

{ω(U), ω(U), · · · , ω(U)} is a finest multigranulation knowledge base in Ω, whereas,

if for all Âi = δ(U), for all i ∈ {1, 2, · · · ,m} , we say KM = {δ(U), δ(U), · · · , δ(U)}
is a coarsest multigranulation knowledge base in Ω.

2.2. Information Entropy, Knowledge Granulation, and Rough

entropy in the Rough Set Theory

Definition 1.5 (Information entropy) Let K = (U, Â)be a knowledge base, and Â

a partition of U . An information entropy of knowledge Â in the rough set theory is

defined by

IE(Â) = −
m∑
i=1

|Ai|
|U |

log2
|Ai|
|U |

.

This granularity measure, IE, measures the uncertainty associated with the pre-

diction of outcome where elements of each partition set Â are indistinguishable.

IE(Â) achieves the maximum value log2 |U | if and only if Â = ω(U). IE(Â) achieves

the minimum value 0 if and only if Â = δ(U). Obviously, when Â is a partition of

U , or an equivalence relation on U , we have that 0 ≤ IE(Â) ≤ log2 |U |.

Definition 2.11 (Knowledge granulation) Let K = (U, Â) be a knowledge base, and

Â a partition of U . Granulation of knowledge Â in the rough set theory is defined

by

GK(Â) =
1

|U |2
m∑
i=1

|Ai|2.
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GK(Â) achieves the minimum value 1
|U | if and only if Â = ω(U). GK(Â) achieves

the maximum value 1 if and only if Â = δ(U). Obviously, when Â is a partition

of U , or an equivalence relation on U , we have that 1
|U | ≤ GK(Â) ≤ 1. Knowledge

granulation can represent discernibility ability of knowledge, the smaller GK is, the

stronger its discernibility ability.

Definition 3.10 (Rough entropy) Let K = (U, Â) be a knowledge base, and Â a

partition of U . Rough entropy of knowledge Â in the rough set theory is defined by

Er(Â) = −
m∑
i=1

|Ai|
|U |

log2
1

|Ai|
.

Where |Ai|
|U | represents the probability of equivalence class Ai within the universe

U , 1
|Ai| denotes the probability of one of the values in equivalence class Ai. Er(Â)

achieves the maximum value log2 |U | if and only if Â = ω(U). Er(Â) achieves the

minimum value 0 if and only if Â = δ(U). Obviously, when Â is a partition of U ,

or an equivalence relation on U , we have that 0 ≤ Er(Â) ≤ log2 |U |.

3. Measures for Multigranulation Approximation Space

Multigranulation rough set theory is also a relatively new mathematical tool for use

in computer applications in multigranulation or distributed circumstances which

are characterized by vagueness and uncertainty. This approach seems to be of fun-

damental importance to artificial intelligence and cognitive sciences. However, the

mechanism that how to characterize the vagueness and uncertainty for multigranula-

tion approximation space has not been widely studied. It is necessary to investigate

computational methods of uncertainty for multigranulation approximation space.

In this section, we propose three uncertainty measures for it by utilizing the idea

of uncertain information fusing method, accordingly, we call these measures fusing

uncertainty measures.

Definition 4. (Fusion information entropy) Let Ω = {KM} be a multigran-

ulation approximation space, PM ∈ Ω and PM = {Â1, Â2, · · · , Âm}, in which

Âi, i ∈ {1, 2, · · · ,m} is a partition of U . Then a fusion information entropy of the

multigranulation knowledge base PM is defined as follows:

MIE(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) = (

m∑
i=1

IE2(Âi))
1
2 .

We denote MIE(Â1⊕Â2⊕· · ·⊕Âm) by MIE(PM ). In the equation MIE(Â1⊕
Â2⊕· · ·⊕Âm), IE(Â) is an information entropy of knowledge Â.MIE(Â1⊕Â2⊕· · ·⊕
Âm) is a Euclidean distance from the vector

−→
PM = (IE(Â1), IE(Â2), · · · , IE(Âm)) to
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Fig. 1. The model of fusion information entropy

the vector
−→
0 = (0, 0, · · · , 0). The semantics of such a distance MIE(Â1⊕Â2⊕· · ·⊕

Âm) is an uncertainty fusing measure which aims to represent an uncertainty extant

from any a given multigranulation knowledge base to a finest base PM (δ). The

fusion information entropy represents the uncertainty associated with the prediction

of outcomes with respect to m granulations. The vector
−→
0 shown that a fusion

information entropy of the multigranulation knowledge base is equal to 0 if and

only if each single granulation is just the finest granulation δ(U).

To more easily understand fusion information entropy, we employ Figure 1

for further illustration. For simplicity, we suppose the multigranulation space con-

structed with three granular structures.

In Figure 1, coordinate of every point in the cube is regarded as a vector and

its component coordinate represents information entropy for a granular structure.
−→
δ M means the vector

−→
0 = {0, 0, 0} induced by the finest multigranulation approx-

imation space which will be defined later. −→ωM means the vector induced by the

coarsest multigranulation approximation space.
−→
P M means the vector induced by

some multigranulation space as well as
−→
QM . The distance measure from a point

−→
δ M to a point −→ωM (or

−→
QM ,

−→
P M ) represents the uncertainty measure of the fusion

information entropy of the multigranulation approximation space ωM (or QM ,PM ).

In particular, when m = 1, the fusion information entropy MIE(Â1⊕Â2⊕· · ·⊕
Âm) will degenerate to the single granulation information entropy in the Pawlak
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rough set.

However, we wonder whether the fusion information entropy defined by the form

of the square root of quadratic sum is more reasonable than that defined by the

form of a simple linear combination of information entropy. In what follows, we

employ an example to illustrate them.

For example, let U = {x1, x2, x3, x4, x5, x6, x7, x8} be a universe of dis-

course. Suppose PM = {Â1, Â2} and QM = {B̂1, B̂2} are two multigranula-

tion spaces, where Â1 = {{x1, x2}, {x3, x4}, {x5, x6}, {x7, x8}}, Â2 = {U}, B̂1 =

{{x1, x2, x3, x4}, {x5, x6, x7, x8}}, and B̂2 = {{x1, x5, x6, x7}, {x2, x3, x4, x8}} four

partitions of U . Then we obtain MIE(Â1 ⊕ Â2) =

√
IE2(B̂1) + IE2(B̂2) = 2 and

MIE(B̂1⊕ B̂2) =

√
IE2(Â1) + IE2(Â2) = 1 according to Definition 1. However, if

we compute them by using a simple linear combination of information entropy, i.e.,

MIE(Â1 ⊕ Â2) = IE(Â1)+IE(Â1)
2 = 1 and MIE(B̂1 ⊕ B̂2) = IE(B̂1)+IE(B̂1)

2 = 1.

From the above result, one can find that two different multigranulation spaces have

the same fusion information entropy it one employs a simple linear combination of

information entropy. Whereas they are different by using Definition 1. These re-

sults have shown that the fusion entropy defined by the form of square root of a

sum of squares is more meaningful than that defined by the form of a simple linear

combination of information entropy.

Proposition 1. For any i ∈ {1, 2, · · · ,m}, we have IE(Âi) ≤ MIE(Â1⊕ Â2⊕· · ·⊕
Âm).

Proof. Note that information entropy IE(Âi) ≥ 0, we have MIE(Â1 ⊕ Â2 ⊕ · · · ⊕
Âm) =

√∑m
i=1 IE

2(Âi) ≥
√
IE2(Âi) = IE(Âi). Hence, IE(Âi) ≤ MIE(Â1 ⊕ Â2 ⊕

· · · ⊕ Âm).

Property 1. (Equivalence) Let Ω = {KM} be a multigranulation approximation

space, PM , QM two multigranulation knowledge bases in Ω. If PM ≈ QM , then

MIE(PM ) = MIE(QM ).

Proof. Let PM = {Â1, Â2, · · · , Âm}, QM = {B̂1, B̂2, · · · , B̂n} ∈ Ω, suppose

PM ≈ QM , we have m = n and if for any Âi ∈ PM , there exists B̂j ∈ QM , we have

Âi = B̂j , then by the definition of partial relation “ ≤ ” and equivalence property of

information entropy in Pawlak rough set11, we have IE(Âi) > IE(B̂j) holds. There-

fore, we have MIE(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) = (
∑m

i=1 IE
2(Âi))

1
2 = (

∑m
i=1 IE

2(B̂i))
1
2 =

MIE(B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂m).

Property 2. (Maximum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to log2|U | which means
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that the information entropy of each single granulation information entropy achieves

the maximum value log2|U | in KM , then MIE(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the

maximum value
√
mlog2|U |. On the other hand, MIE(Â1⊕Â2⊕· · ·⊕Âm) achieves

the maximum value
√
mlog2|U | if and only if KM = {ω(U), ω(U), · · · , ω(U)}.

Property 3. (Minimum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to 0, which means that

the information entropy of each single granulation information entropy achieves the

minimum value 0 in KM , then MIE(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the minimum

value 0. On the other hand, MIE(Â1⊕ Â2⊕· · ·⊕ Âm) achieves the minimum value

if and only if KM = {δ(U), δ(U), · · · , δ(U)}. Obviously, when Â is a partition of U ,

or an equivalence relation on U , we have that 0 ≤ IE(Â) ≤
√
m log2 |U |.

Proposition 2. Let Ω = {KM} be a multigranulation approximation space,

PM , QM two knowledge bases in Ω, if PM <M QM , then MIE(PM ) > MIE(QM ).

Proof. Suppose PM = {Â1, Â2, · · · , Âm}, QM = {B̂1, B̂2, · · · , B̂n} ∈ Ω, since

PM <M QM , we have m > n and if for any Âi ∈ PM , there exists B̂j ∈ QM ,

we have Âi < B̂j , by the monotonicity of information entropy in Pawlak rough set

(see, e.g.5), IE(Âi) > IE(B̂j) holds. Therefore we have MIE(Â1⊕ Â2⊕· · ·⊕ Âm) =

(
∑m

i=1 IE
2(Âi))

1
2 > (

∑n
i=1 IE

2(B̂i))
1
2 = MIE(B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂m).

Proposition 2. states that fusing information entropy of multigranulation knowl-

edge base monotonously increases as the partitions become finer.

Example 1. Let U = {x1, x2, x3, x4, x5} be a universe of discourse. Suppose Â1 =

{{x1, x2, x3, x4}, {x5}} and Â2 = {{x1}, {x2, x4}, {x3}, {x5}} are two partitions of

U . Then we compute the fusion information entropy of the multigranulation knowl-

edge base KM = {Â1, Â2}. By Definition 1, we have IE(Â1) =
4
5 log2

5
4 + 1

5 log2 5,

IE(Â2) = 3
5 log2 5 + 2

5 log2
5
2 . Hence MIE(Â1 ⊕ Â2) =

√
IE2(Â1) + IE2(Â2) =√

( 45 log2
5
4 + 1

5 log2 5)
2 + ( 35 log2 5 +

2
5 log2

5
2 )

2 =
√
2
5

√
25 log22 5− 50 log2 5 + 34.

Definition 5. (An axiom definition of the fusion knowledge granulation measures)

Let Ω = {KM} be a multigranulation approximation space, MGK be a mapping

from the Ω to the set of non-negative real numbers R+ ∪ 0. We say that MGK

is a fusion knowledge granulation of the multigranulation knowledge base in the

multigranulation rough set if for any PM , QM ∈ Ω, andMGK satisfies the following

conditions:

(1) MGK (PM ) ≥ 0 for any PM ∈ Ω; (Non-negativity)

(2) MGK (PM ) = MGK (QM ) for any PM , QM ∈ Ω if there is PM ≈ QM ;

(Invariability)

(3) MGK (PM ) < MGK (QM ) for any PM , QM ∈ Ω with PM <M QM . (Mono-

tonicity)
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Definition 6. (Fusion knowledge granulation) Let Ω = {KM} be a multigran-

ulation approximation space, PM ∈ Ω and PM = {Â1, Â2, · · · , Âm}, in which

Âi, i ∈ {1, 2, · · · ,m} is a partition of U . Then a fusion knowledge granulation of

the multigranulation knowledge base KM is defined as follows:

MGK (Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) =
1

m
(

m∑
i=1

(GK(Âi)−
1

|U |
)2)

1
2 .

We denote MGK (Â1⊕ Â2⊕· · ·⊕ Âm) by MGK (PM ). In particular, when m = 1,

the fusion information granulation MGK (Â1⊕ Â2⊕· · · Âm) will degenerate to the

single information knowledge granulation in the Pawlak rough set.

Proposition 3. MGK(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) in Definition 6 is a knowledge gran-

ulation under Definition 5.

Proof. (1) Obviously, MGK (PM ) ≥ 0, i.e., MGK (PM ) ≥ 0 is non-negative.

(2) Let PM = {Â1, Â2, · · · , Âm}, QM = {B̂1, B̂2, · · · , B̂n} ∈ Ω, suppose PM ≈
QM , we have m = n and if for any Âi ∈ PM , there exists B̂j ∈ QM , we have

Âi = B̂j , then by the definition of partial relation “ ≤ ” and equivalence property

of knowledge granulation in Pawlak rough set11, we have GK(Âi) > GK(B̂j) holds.

Therefore, we have MGK (Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) = 1
m (

∑m
i=1(GK(Âi)− 1

|U | )
2)

1
2 =

1
m (

∑m
i=1(GK(B̂i)− 1

|U | )
2)

1
2 . = MGK (B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂m).

(3) Let PM , QM ∈ Ω, PM = {Â1, Â2, · · · , Âm}, QM = {B̂1, B̂2, · · · , B̂n} ∈ Ω

with PM <M QM , If PM <M QM , we have m > n and if for any Âi ∈ PM , there

exists B̂j ∈ QM , we have Âi < B̂j , by the monotonicity of knowledge granulation

in Pawlak rough set11, GK(Âi) > GK(B̂j) holds. Therefore we have MGK (Â1 ⊕
Â2 ⊕ · · · ⊕ Âm) = 1

m (
∑m

i=1(GK(Âi)− 1
|U | )

2)
1
2 < 1

m (
∑m

i=1(GK(B̂i)− 1
|U | )

2)
1
2 =

MGK (B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂m).

Proposition 4. For any i ∈ {1, 2, · · · ,m}, we have GK(Âi) ≤ MGK(Â1 ⊕ Â2 ⊕
· · · ⊕ Âm).

Proof. The proof follows from Definition 6.

Property 4. (Maximum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to 1 , which means that

each single information knowledge granulation achieves the maximum value 1 in

KM , then MGK (Â1 ⊕ Â2 ⊕ · · · Âm) achieves the maximum value
√
m
m (1− 1

|U | ). On

the other hand, MGK (Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the minimum value if and

only if KM = KM (δ) = {δ(U), δ(U), · · · , δ(U)}.
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Property 5. (Minimum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to 0, which means that

each single information knowledge granulation achieves the minimum value 1
|U | in

KM , then MGK (Â1 ⊕ Â2 ⊕ · · · Âm) achieves the minimum value 0. On the other

hand, MGK (Â1⊕ Â2⊕· · ·⊕ Âm) achieves the minimum value if and only if KM =

KM (ω) = {ω(U), ω(U), · · · , ω(U)}. Obviously, when Â is a partition of U , or an

equivalence relation on U , we have that 0 ≤ GK(Â) ≤
√
m
m (1− 1

|U | ).

Example 2. (Continued from Example 1) Let U = {x1, x2, x3, x4, x5}, Â1 =

{{x1, x2, x3, x4}, {x5}} and Â2 = {{x1}, {x2, x4}, {x3}, {x5}} two partitions of U ,

then we compute the fusion knowledge granulation of the multigranulation knowl-

edge base KM = {Â1, Â2}. By Definition 2, we have GK(Â1) =
17
25 , GK(Â2) =

7
25 .

Hence MGK (Â1 ⊕ Â2) =

√
GK2(Â1) +GK2(Â2) =

3
25

√
5.

Definition 7. (Fusion rough entropy) Let Ω = {KM} be a multigranulation approx-

imation space, PM ∈ Ω and PM = {Â1, Â2, · · · , Âm}, in which Âi, i ∈ {1, 2, · · · ,m}
is a partition of U . Then a fusion information entropy of the multigranulation

knowledge base KM is defined as follows:

ME r(Â1 ⊕ Â2 ⊕ · · · Âm) = (
m∑
i=1

E2
r(Âi))

1
2 .

We denote ME r(Â1 ⊕ Â2 ⊕ · · · Âm) by ME r(PM ). In the equation of

ME r(Â1 ⊕ Â2 ⊕ · · · Âm), IE(Â) is an information entropy of knowledge Â.

ME r(Â1 ⊕ Â2 ⊕ · · · Âm) represents a Euclidean distance from the vector
−−→
KM =

(Er(Â1),Er(Â2), · · ·Er(Âm)) to the vector
−→
0 = (0, 0, · · · , 0). The vector −→0 denotes

a fusion information entropy of the multigranulation knowledge base is equal to 0

if and only if each single granulation information entropy is equal to 0.

In particular, when m = 1, the fusion information entropy ME r(Â1⊕ Â2⊕· · ·⊕
Âm) will degenerate to the single granulation information entropy in the Pawlak

rough set.

Proposition 5. For any i ∈ {1, 2, · · · ,m}, we have Er(Âi) ≤ MEr(Â1⊕Â2⊕· · ·⊕
Âm).

Proof. The proof follows from Definition 7.

Property 6. (Equivalence) Let Ω = {KM} be a multigranulation approxima-

tion space, PM , QM two knowledge bases in Ω, if PM ≈ QM , then MEr(PM ) =

MEr(QM ).

Proof. The proof follows from Property 1.
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Property 7. (Maximum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to log2|U |, which means

that the rough entropy of each single information granulation achieves the maximum

value log2|U | in KM , then MEr(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the maximum value√
mlog2|U |. On the other hand, MEr(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the maximum

value if and only if KM = {ω(U), ω(U), · · · , ω(U)}.

Property 8. (Minimum) Let Ω = {KM} be a multigranulation approximation

space, if each component value of the vector
−−→
KM is equal to 0, which means that the

rough entropy of each single information granulation achieves the minimum value

0 in KM , then MEr(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the minimum value 0. On the

other hand, MEr(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) achieves the minimum value if and only if

KM = {δ(U), δ(U), · · · , δ(U)}.
Obviously, when Â is a partition of U , or an equivalence relation on U , we have

that 0 ≤ ME r(Â) ≤
√
mlog2|U |.

Proposition 6. Let Ω = {KM} be a multigranulation approximation space,

PM , QM two knowledge bases in Ω, if PM <M QM , then MEr(PM ) < MEr(QM ).

Proof. Let PM = {Â1, Â2, · · · , Âm}, QM = {B̂1, B̂2, · · · , B̂n} ∈ Ω, since PM <M

QM , we have m > n and if for any Âi ∈ PM , there exists B̂j ∈ QM , we have Âi <

B̂j , by the monotonicity of information entropy in Pawlak rough set 11, IE(Âi) >

IE(B̂j) holds. Therefore we have ME r(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) = (
∑m

i=1 IE
2
r(Âi))

1
2 >

(
∑n

i=1 IE
2
r(B̂i))

1
2 = ME r(B̂1 ⊕ B̂2 ⊕ · · · ⊕ B̂m).

Proposition 6 states that fusing information entropy of multigranulation knowl-

edge base monotonously increases as the partitions become finer.

Proposition 7. Let Ω = {KM} be a multigranulation approximation space, PM ∈
Ω and PM = {Â1, Â2, · · · , Âm}, in which Âi, i ∈ {1, 2, · · · ,m} is a partition of

U . Then the relation between the fusion information entropy and the fusion rough

entropy of the multigranulation knowledge base PM is as follows:

MIE2(Â1⊕Â2⊕· · ·⊕Âm)+2
m∑
i=1

IE(Âi)Er(Âi)+ME2
r(Â1⊕Â2⊕· · ·⊕Âm) = m log22 |U |.
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Proof.

MIE2(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) +ME2
r(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm)

=
∑m

i=1 IE
2(Âi) +

∑m
i=1 E

2
r(Âi)

=
∑m

i=1[(IE(Âi) + Er(Âi))
2 − 2IE(Âi) • Er(Âi)]

=
∑m

i=1(−
∑m

i=1
|Ai|
|U | log2

|Ai|
|U | + Er(Âi))

2 − 2IE(Âi) • Er(Âi))

=
∑m

i=1(−
∑m

i=1
|Ai|
|U | (log2 |Ai| − log2 |U |) + Er(Âi))

2 − 2IE(Âi) • Er(Âi))

=
∑m

i=1(−
∑m

i=1
|Ai|
|U | (− log2 |Ai|+ log2

1
|U | ) + Er(Âi))

2 − 2IE(Âi) • Er(Âi))

=
∑m

i=1(−
∑m

i=1
|Ai|
|U | (−1) log2 |Ai|+

∑m
i=1

|Ai|
|U | log2

1
|U | ) + Er(Âi))

2 − 2IE(Âi) • Er(Âi))

=
∑m

i=1(−Er(Âi) +
∑m

i=1
|Ai|
|U | log2

1
|U | ) + Er(Âi))

2 − 2IE(Âi) • Er(Âi))

= m log22 |U | − 2
∑m

i=1(IE(Âi) • Er(Âi)).

Therefore, MIE2(Â1 ⊕ Â2 ⊕ · · · ⊕ Âm) + 2
∑m

i=1 IE(Âi)Er(Âi) +ME2
r(Â1 ⊕ Â2 ⊕

· · · ⊕ Âm) = m log22 |U |.

Example 3. Let U = {x1, x2, x3, x4, x5} be a universe of discourse. Suppose

Â1 = {{x1, x2, x3, x4}, {x5}} and Â2 = {{x1}, {x2, x4}, {x3}, {x5}} are two par-

titions of U . Then we compute the fusion information entropy of the multigranula-

tion knowledge base KM = {Â1, Â2}. By Definition 7, we have Er(Â1) =
4
5 log2

5
4 ,

Er(Â2) =
2
5 log2 2. Hence ME r(Â1 ⊕ Â2) =

√
E2
r(Â1) + E2

r(Â2) =
2
√
7

5 log2 2.

Example 4. Let U = {x1, x2, x3, x4, x5} be a universe of discourse. Sup-

pose PM = {Â1, Â2}, in which Â1 = {{x1, x2}, {x3}, {x4, x5}} and Â2 =

{{x1}, {x2}, {x3}, {x4, x5}}, QM = {B̂1, B̂2} in which B̂1 = {{x1, x2, x3}, {x4, x5}}
and B̂2 = {{x1, x2}, {x3, x4, x5}}. They are four partitions of U . Then we compute

(1) IE(Â1) = 1
5 (5 log2 5 − 4), IE(Â2) = 1

5 (5 log2 5 − 2), we have MIE(Â1 ⊕

Â2) =

√
IE(Â1) + IE(Â2) =

1
5 (50 log

2
2 5−60 log2 5+20). And IE(B̂1) =

1
5 (5 log2 5−

3 log2 3 − 2), IE(B̂2) = 1
5 (5 log2 5 − 3 log2 3 − 2), we have that MIE(B̂1 ⊕ B̂2) =√

GK2(B̂1) +GK2(B̂2) =
√
2
5 (5 log2 5− 3 log2 3− 2). Therefore, MIE2(Â1 ⊕ Â2)−

MIE2(B̂1 ⊕ B̂2) =
2
5 (4 log2 5− 3) > 0. Note that MIE(Âi) ≥ 0, then MIE(Â1 ⊕

Â2) > MIE(B̂1 ⊕ B̂2).

(2) GK(Â1) = 9
25 , GK(Â2) = 7

25 , we have MGK (Â1 ⊕ Â2) =√
GK2(Â1) +GK2(Â2) =

√
5
5 . And GK(B̂1) = 13

25 , GK(B̂2) = 13
25 , we have

MGK (B̂1 ⊕ B̂2) =

√
GK2(B̂1) +GK2(B̂2) =

4
√
2

5 . Therefore, MGK 2(Â1 ⊕ Â2)−
MGK 2(B̂1 ⊕ B̂2) = −27

25 < 0. Note that MGK (Âi) ≥ 0, then MGK (Â1 ⊕ Â2) <

MGK (B̂1 ⊕ B̂2).

(3) Er(Â1) =
4
5 , Er(Â2) =

2
5 , we have ME r(Â1 ⊕ Â2) =

√
E2
r(Â1) + E2

r(Â2) =
2
√
5

5 . And Er(B̂1) =
1
5 (3 log2 3 + 2), Er(B̂2) =

1
5 (2 + 3 log2 3). We have ME r(B̂1 ⊕
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B̂2) =

√
E2
r(B̂1) + E2

r(B̂2) =
√
2
5 (3 log2 3 + 2). Therefore, ME2

r(Â1 ⊕ Â2) −
ME2

r(B̂1 ⊕ B̂2) = − 2
25 (9 log

2
2 3 − 12 log2 3) < 0. Note that ME r(Âi) ≥ 0, then

ME r(Â1 ⊕ Â2) < ME r(B̂1 ⊕ B̂2).

4. Conclusions and Discussions

Multigranulation rough set theory is an importance extension of Pawlak rough set

theory. This theory seems to be of fundamental importance to analyse rough data

and complex problem solving in artificial intelligence and cognitive sciences domain.

It is necessary to investigate to measure uncertainty in multigranulation rough set.

In this paper, using the idea of information fusion, we have first addressed an in-

vestigation of uncertainty measure method for the multigranulation approximation

space. More specifically, we have presented three uncertainty measures such as fus-

ing information entropy, fusing rough entropy and fusing knowledge granulation. In

addition, we have established their some nice properties (equivalence, maximum,

minimum) and proved that these three measures are monotonic increasing as the

partitions become finer. These results will be helpful for understanding the essence

of uncertainty measure in the multigranulation rough space and enriching MGRS

theory.
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