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Abstract A spatial predator–prey model with col-
ored noise is investigated in this paper. We find that
the number of the spotted pattern is increased as the
noise intensity is increased. When the noise intensity
and temporal correlation are in appropriate levels, the
model exhibits phase transition from spotted to stripe
pattern. Moreover, we show the number of the spot-
ted and stripe pattern, with respect to both noise in-
tensity and temporal correlation. These studies raise
important questions on the role of noise in the pattern
formation of the populations, which may well explain
some data obtained in the ecosystems.
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1 Introduction

Interaction between species and their natural environ-
ment is the main feature in ecological systems. One
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of the most important types of interaction, which have
effects on population dynamics of all species, is preda-
tion. As a result, predator–prey models have received
more and more attention in ecological science since
the early days of this discipline [1].

It is reported that spatial inhomogeneities like the
inhomogeneous distribution of nutrients as well as in-
teractions on spatial scales like diffusion plays an im-
portant role on the dynamics of ecological popula-
tions [2–7]. Furthermore, Holling emphasized the in-
fluence of noise in the ecological dynamics [8]. There
are inherent uncertainties in an ecological system such
as varying rainfall or the nutrient inputs. Moreover,
there are considerable anthropogenic disturbances that
exacerbate the uncertainty in the way an ecosystem re-
sponds [9, 10]. Apart from random fluctuations, there
are seasonal variations in various ecological parame-
ters. Several studies consider the effects of seasonal-
ity [11–13].

In spatially extended nonlinear systems, noise-
induced phenomenon have been the topic in physics
and mathematics [14]. Especially, noise has organiz-
ing rather than disruptive effects in some systems.
Some more important examples are noise-induced
transitions [15, 16], stochastic resonance [17], and so
on.

In the recent 20 years, noise-induced effects in
population dynamics have been largely investigated
[18–21]. In particular, the problem of the stability of
complex ecological systems in the presence of noise
has been widely discussed [22]. New counterintu-
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itive phenomena, such as stochastic resonance [23],
noise enhanced stability [24], and noise delayed ex-
tinction [25, 26] can appear because of the presence of
noise in ecosystems.

In the present paper, we performed numerical sim-
ulations of noise-induced complicated phenomenon,
by using a predator–prey model in two-dimensional
space with colored noise. The paper is organized as
follows. In Sect. 2, we obtain a spatial predator–prey
model with colored noise, and interpret the biological
meaning of these parameters of the model. In Sect. 3,
by performing a series of simulations, we illustrate the
phase transition from spotted to stripe pattern. Finally,
conclusions and discussion are given.

2 Model

Since the Holling–Tanner type predator–prey model
received great attention by many theoretical and math-
ematical biologists [27, 28], we will focus our investi-
gations on the following equations:

dn

dτ
= r1n

(
1 − n

K

)
− qnp

n + c
, (1a)

dp

dτ
= r2p

(
1 − p

γn

)
, (1b)

where n and p denote the prey and predator, respec-
tively. The parameters r1 and r2 represent the intrinsic
growth rate. The value K represents the carrying ca-
pacity of the prey and γ n takes on the role of a prey-
dependent carrying capacity for the predator. The pa-
rameter γ is a measure of the quality of the prey as
food for the predator. The rate at which predators re-
move the prey, qn/(n+c), is know as a Holling type-II
predator response [29–31]. And the parameter q is the
maximum number of prey that can be eaten per preda-
tor per time and the parameter c is a saturation value; it
corresponds to the number of prey to achieve one half
the maximum rate q .

Following the method in [27], with the scaling

u = n

K
, v = p

γK
, r = r2

r1
, (2a)

a = qγ

r1
, b = c

K
, t = r1τ, (2b)

we arrive at the following equations containing dimen-
sionless quantities:

du

dt
= u(1 − u) − auv

b + u
, (3a)

dv

dt
= rv

(
1 − v

u

)
. (3b)

The objective of this paper is to investigate the noise
effect on the system with diffusion. As a result, the
model we employ is as follows:

∂u

∂t
= u(1 − u) − auv

b + u
+ d1∇2u, (4a)

∂v

∂t
= rv

(
1 − v

u

)
+ d2∇2v + η(r, t), (4b)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 is the usual Laplacian opera-
tor in two-dimensional space and the variables u and
v denote prey and predator densities, respectively. d1,
d2 are the diffusion coefficients of prey and predator,
respectively. The stochastic factors are taken into ac-
count as the term, η(r, t), obtained from microscopic
interaction in the space [32–38]. The noise term η(r, t)
is introduced additively in space and time, which is the
Ornstein–Uhlenbech process that obeys the following
stochastic partial differential equation [39]:

∂η(r, t)

∂t
= − 1

τ
η(r, t) + 1

τ
ξ(r, t), (5)

where ξ(r, t) is a Gaussian white noise with zero mean
and correlation,
〈
ξ(r, t)

〉 = 0, (6a)〈
ξ(r, t)ξ(r ′, t ′)

〉 = 2φδ(r − r ′)δ(t − t ′). (6b)

The colored noise η(r, t), which is temporally corre-
lated and white in space, satisfies

〈
η(r, t)η(r′, t ′)

〉 = φ

τ
exp

(
−−|t − t ′|

τ

)
δ(r − r′), (7)

where τ controls the temporal correlation, and φ mea-
sures the noise intensity.

3 Main results

In this paper, we rely on numerical integration of the
model of (4). We consider here spatiotemporal evo-
lution of this system while colored noise evolving
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in the space and time when the system lies within
the regime of Turing domain. Extensive testing was
performed through numerical integration to describe
model (4), and the results are shown in this section.
We use XMDS (http://www.xmds.org/) to do the nu-
merical simulations.

The noisy fluctuations may sometimes cause the
density of the population to be less than zero. As a
result, at each position in space, whenever the popu-
lation densities fall below a certain prescribed value
ε they are set to zero or a sufficiently small positive
constant [40, 41]. In the simulations, different types
of dynamics are observed and the distributions of prey
and predator are always of the same type. As a result,
we can restrict our analysis of pattern formation to one
distribution (in this paper, we show the distribution of
prey, for instance).

Let us first consider the case that there is no noise.
From the Appendix, we can choose the proper val-
ues of the parameters for simulations. Figure 1 shows
the evolution of the spatial pattern of prey population
at t = 1000, with small random perturbation of the
stationary solution E∗ of the spatially homogeneous
systems with the parameters set: a = 0.75, b = 0.25,
r = 0.004, d1 = 0.1, and d2 = 1. One can see that the
regular spotted pattern prevails in the domain.

We have checked that a large variety of distinct pat-
terns can be obtained by making small changes in just
the parameters, such as a, b, and so on. However, we
are interested in how noise affects the dynamics for
fixed deterministic parameters and the extent to which
noise is capable of changing the patterns exhibited by
the deterministic system. To this end, we fix the de-

terministic model parameters to the values and vary
parameters φ and τ .

Figure 2 shows spontaneous formation of spotted
spatial patterns emerge for different values of the noise
intensity φ and fixed temporal correlation τ . As φ is
increased, the number of the spotted pattern in the spa-
tial domain is increased.

We found that, for both large φ and τ , the transition
of different type patterns of the prey population in two-
dimensional space will emerge. In Fig. 3, we show the
snapshots of contour pictures of the time evolution of
the prey population with φ = 0.5 and τ = 20. One can
see from this figure that the initial conditions lead to

Fig. 1 (Color online) Typical spotted pattern of the prey in
two-dimensional space when system (4) without the noise term.
Numerical results are obtained in 400×400 size. Parameter val-
ues are used as: a = 0.75, b = 0.25, r = 0.004, d1 = 0.1, and
d2 = 1

Fig. 2 (Color online)
Snapshots of contour
pictures of the time
evolution of the prey at
t = 1000 as the value of
noise intensity φ being
decreased. Parameter values
are used as: a = 0.75,
b = 0.25, r = 0.004,
d1 = 0.1, d2 = 1, and
τ = 3. (A) φ = 0.001;
(B) φ = 0.01

http://www.xmds.org/
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Fig. 3 (Color online) Transition from spotted patterns to the
stripe pattern in two-dimensional space when system (4) with
the noise term. Numerical results are obtained in 300×300 size.

Parameter values are used as: a = 0.75, b = 0.25, r = 0.004,
d1 = 0.1, d2 = 1, φ = 0.5 and τ = 20. (A) t = 100; (B) t = 300;
(C) t = 1500

Fig. 4 The number of spotted and stripe patterns for t = 1000
as a function of noise intensity in the space with 
x = 
y = 1
and 300 × 300 size. Here, triangles and dots stand for spotted
and stripe patterns, respectively. Parameter values are used as:
a = 0.75, b = 0.25, r = 0.004, d1 = 0.1, d2 = 1, and τ = 30

the formation of the spotted pattern. And as time is in-
creased, coexistence of the spotted and stripe patterns
emerge, but the spotted patterns dominate the domain.

The question naturally arising here is how noise
intensity and temporal correlation have effect on the
spatial pattern. We show the effect of noise in Fig. 4,
which is obtained from a statistics of 14 experiments
and t = 1000 for different value of the noise inten-
sity φ. To well see our analysis, we have also in-
cluded the evolution of the number of the spotted (de-
noted by triangles) and the stripe pattern (denoted by
dots), respectively. One can see from this figure that
there exists an optimum-noise interval that guarantees
the maximum number of spots for fixed τ . Moreover,
when the noise intensity is small, there is no stripe

Fig. 5 The number of spotted and stripe patterns for 300,000
iterations as a function of temporal correlation in the space with

x = 
y = 1.25 and 400 × 400 size. Here, triangles and dots
stand for spotted and stripe patterns, respectively. Parameter
values are used as: a = 0.75, b = 0.25, r = 0.004, d1 = 0.1,
d2 = 1, and φ = 0.8

pattern. As noise intensity is increased, stripe pattern
emerges.

Now, it is natural to ask what the consequence of
the temporal correlation of the colored noise is, in par-
ticular, on the number of the spotted and stripe pattern.
In order to well understand that mechanism, we also
performed a series of simulations for fixed noise inten-
sity φ, which is shown in Fig. 5. We choose 16 param-
eters set for numerical simulations. We find that, when
τ is small, the number of the spotted pattern is increas-
ing as τ being increased, and reaches the maximum
value at τ ≈ 12. However, when τ is large enough, the
number of the spotted pattern is decreasing as τ is fur-
ther increased. Furthermore, there is also no stripe pat-
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tern for small value of temporal correlation. And while
the value of τ is larger than 14, stripe pattern emerge
and the number of it is a increasing function of τ .

4 Discussion and conclusion

It has been observed in the literature that the effect
of color noise on the dynamic behavior of spatial
predator–prey models [42, 43], especially spatial pat-
terns, had been not well understood despite their po-
tential ecological reality and intrinsic theoretical inter-
est. These structures may, in fact, correspond to the
real ecosystem. For such reason, we have investigated
the spatial patterns of a Holling–Tanner model with
both noise and diffusion.

In this paper, we have presented a numerical anal-
ysis of the effect of noise on the pattern formation
of the predator–prey model. In [3], we only consid-
ered the spatial model with diffusion and did not ob-
tain the transition from one type pattern to another.
Moreover, predator–prey models with noise and diffu-
sion can well understand the contradiction between the
population dynamics predicted by deterministic mod-
els and those observed data in marine and for terres-
trial animals [44].

A question of interest is whether our results are ro-
bust to the density dependent noise. That is to say, the
model will be changed as the following form:

∂u

∂t
= u(1 − u) − auv

b + u
+ d1∇2u, (8a)

∂v

∂t
= rv

(
1 − v

u

)
+ d2∇2v + vη(r, t). (8b)

To address this issue, we performed extensive com-
puter simulations for different parameter values (in to-
tal, more than 100 parameter sets were examined). We
found that, as the noise intensity is increased, the num-
ber of the spotted pattern is increased; see Fig. 6. How-
ever, there is no noise-induced phase transition from
the spotted to stripe pattern.

In this paper, the results are obtained with respect
to the choice of initial conditions as small random per-
turbation of the stationary solution N∗ and P ∗. But
our computer simulations indicate that the number of
the spotted or stripe pattern is rather sensitive to the
details of the initial distribution [45]. This issue, how-
ever, should be given a more careful consideration and
will become a subject of a separate study.

Appendix: Stability analysis of system (4)

To study patterns of the cross diffusion system given
by (4), we must consider a spatially homogeneous sys-
tem. So, we first find the steady state as follows:

(i) E0 = (1,0), which is corresponding to extinction
of the predator;

(ii) interior equilibrium point E∗ = (u∗, v∗), which is
corresponding to coexistence of prey and predator,
and given by

u∗ = v∗, (9a)

v∗ = 1 − a − b + √
(a + b − 1)2 + 4b

2
. (9b)

There has been some work on the stability analysis of
the model (1) [29, 46]. However, the main purpose of
the present paper is to investigate the effect of noise
on the spatial pattern. As a result, we are interested
to study the stability behavior of the interior equilib-
rium point E∗, as in this case both the population ex-
ist simultaneously. We address the temporal stability
of the uniform states which is associated with nonuni-
form perturbations

(
u

v

)
=

(
u∗

v∗

)
+ ε

(
uκ

vκ

)
eλt+iκx + C + O(ε2), (10)

where λ is the perturbation growth rate, κ is the
wavenumber, and C stands for complex conjugate. The
linear instability (ε � 1) of each one of the uniform
states, is deduced from the dispersion relations. Sub-
stituting expression (10) into (4) and neglecting all
nonlinear terms in u and v, one finds the character-
istic equation for the growth rate λ as determinant of
J, where

J=
(

λ − a11 + d1κ
2 −a12

−a21 λ − a22 + d2κ
2

)
, (11)

where

a11 = 2P

(−1 − a − b − M)2
, (12)

a12 = a(−1 + a + b − M)

1 − a + b + M
, (13)

a21 = r, (14)

a22 = −r, (15)
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Fig. 6 (Color online)
Snapshots of contour
pictures of the time
evolution of the prey at
t = 1000 as the value of
noise intensity φ being
decreased. Parameter values
are used as: a = 0.75,
b = 0.25, r = 0.004,
d1 = 0.1, d2 = 1 and τ = 3.
(A) φ = 0.001;
(B) φ = 0.01

with P = −1 + 4a − 2b − b2 + ab − 5a2 + 2a3 +
ab2 + 3a2b − M − bM + 3aM − abM − 2a2M , and
M = √

(a + b − 1)2 + 4b.

We obtain that the eigenvalue is the root of the fol-
lowing equation:

λ2 + Aκλ + Bκ = 0, (16)

where

Aκ = (d1 + d2)κ
2 − (a11 + a22), (17a)

Bκ = d1d2κ
4 − (d2a11 + d1a22)κ

2 + a11a22 − a12a21.

(17b)

Therefore, the solution of (16) is given by

λκ = −Aκ ± √
A2

κ − 4Bκ

2
. (18)

Diffusion-driven instability requires that the stable,
homogeneous steady state is driven unstable by the in-
teraction of the dynamics and diffusion of the species
and, therefore, from the arguments given above we are
interested in obtaining conditions such that, without
diffusion and with diffusion, respectively,

Re(λκ2=0) < 0, (19a)

Re(λκ2>0) > 0, (19b)

for some κ2 > 0.
The onset of Hopf instability corresponds to the

case, when a pair of imaginary eigenvalues cross the
real axis from the negative to the positive side. And
this situation occurs only when the diffusion vanishes.

Mathematically speaking, the Hopf bifurcation occurs
when

Im(λk) �= 0, Re(λk) = 0 at k = 0. (20)

And the Turing bifurcation occurs when

Im(λk) = 0, Re(λk) = 0 at k = kT �= 0, (21)

and the wavenumber kT satisfies

k2
T =

√
B0

d1d2
. (22)

A general linear analysis [3, 5] shows that the
necessary conditions for yielding Turing patterns are
given by

a11 + a22 < 0,

a11a22 − a12a21 > 0,

d1a22 + d2a11 > 0,

(d2a11 + d1a22)
2 > 4d1d2(a11a22 − a12a21).
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