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a b s t r a c t

Decision-theoretic rough set theory (DTRS) is becoming one of the important research directions for studying

set approximations using Bayesian decision procedure and probability theory in rough set community. In this

paper, a novel model, fuzzy multigranulation decision-theoretic rough set model (FM-DTRS), is proposed in

terms of inclusion measure of fuzzy rough sets in the viewpoint of fuzzy multigranulation. Gaussian kernel

is used to compute the similarity between objects, which induces a fuzzy equivalence relation, and then we

make use of Tp-norm operator with the property of Hadamart product to aggregate the multiple induced

fuzzy equivalence relations. We employ the aggregated relation to fuzzily partition the universe and then

obtain multiple fuzzy granulations from the multi-source information system. Moreover, some of its prop-

erties are addressed. A comparative study between the proposed fuzzy multigranulation decision-theoretic

rough set model and Qian’s multigranulation decision-theoretic rough set model is made. An example is em-

ployed to illustrate the effectiveness of the proposed method which may provide an effective approach for

multi-source data analysis in real applications.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Rough set theory, originated by Pawlak [27,28], is a mathemat-

ical tool to deal with uncertainty in a wide variety of applications

[2–4,9,18,19,29,30,42,43,50]. In the past 10 years, several extensions

of Pawlak rough set model have been proposed in terms of vari-

ous requirements, such as the decision-theoretic rough set model

[43], the variable precision rough set (VPRS) model [56], the rough

set model based on tolerance relation [12,36], the Bayesian rough

set model [39], the fuzzy rough set model [6] and the probabilis-

tic rough sets [44]. The probabilistic rough sets, as an important re-

search direction in rough set community, have been paid close at-

tentions [10,11,13,14,44–47,49]. Specially, Yao [44] presented a new

rule induction method based on the decision-theoretic rough set al-

lowing for error tolerance through setting the thresholds: α and β ,

which is constructed by positive region, boundary region and nega-

tive region, respectively. Since then, the decision-theoretic rough sets

have attracted more and more concerns. Azam and Yao [1] proposed

a threshold configuration mechanism for reducing the overall uncer-
∗ Corresponding author at: School of Mathematics and Statistics, Minnan Normal

University, Zhangzhou, Fujian 363000, china. Tel.: +86 5962528109.
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ainty of probabilistic regions in the probabilistic rough sets. Jia et al.

10] developed an optimization representation of decision-theoretic

ough set model, and gave a heuristic approach and a particle swarm

ptimization approach for implementing an attribute reduction with

minimum cost. Liu et al. [13,15] combined the logistic regression

ith the decision-theoretic rough set to form a new classification

pproach and investigated the three-way decision procedure with

ncomplete information combining the incomplete information ta-

le and loss function table together. Yu et al. [49] applied decision-

heoretic rough set model to automatically determining the number

f clusters with much smaller time cost. Li et al. [20] developed a

equential strategy in a decision process, which based on a formal

escription of granular computing.

In the view of granular computing (proposed by Zadeh [51]), in

he existing rough set models, a concept described by a set is al-

ays characterized via the so-called upper and lower approximations

nder a single granulation, i.e., the concept is depicted by known

nowledge induced from a single binary relation on the universe.

onveniently, this kind of rough set models is called single gran-

lation rough sets. Based on a user’s different requirements, Qian

t al. [32] developed the multigranulation rough set which provides

new perspective for decision making analysis based on the rough

et theory. Since the multigranulation rough set was proposed, the

heoretical framework has been largely enriched, and many extended

http://dx.doi.org/10.1016/j.knosys.2015.09.022
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ultigranulation rough set models and relative applications have

lso been proposed and studied [17,21–24,32,33,38,40,41]. For exam-

le, Qian et al. [33] have first proposed a new multigranulation rough

et model through combining MGRS and the decision-theoretic rough

ets together, called a multigranulation decision-theoretic rough set

odel. Sang et al. [31] proposed a new decision-theoretic rough set

odel based on the local rough set and the dynamic granulation prin-

iple, called a decision-theoretic rough set under dynamic granula-

ion (DG-DTRS) which satisfies the monotonicity of the positive re-

ion of a target concept (or decision).

However, the decision and most of knowledge in the real life ap-

lications are often fuzzy and one often encounters a kind of spe-

ial information system in which data come from different sources,

uch an information system is called a multi-source information sys-

em. Therefore it is necessary to introduce the fuzzy rough method-

logy into the classical DTRS for wider applications. The researchers

4,6,16,52–55] dealt with the real-value data sets by applying a fuzzy

ough technique to solving problem. For example, Chen et al. [4] and

hao et al. [53] used fuzzy rough sets to propose novel methods for

ttribute reduction and rule induction. Liang et al. [16] has proposed

he triangular fuzzy decision-theoretic rough set by considering the

osses being expressed by triangular fuzzy numbers. However, they

till cannot be used to analyze data in the context of fuzzy multigran-

lation, which limits its further applications in many problems under

he framework of the fuzzy environment. This motivates us to de-

elop a new approximate strategy based on decision-theoretic rough

ets to analyze data from the multi-source fuzzy information system.

Kernel methods have been proven to be an important methodol-

gy which is widely discussed in pattern recognition and machine

earning domains. It maps data into a higher dimensional feature

pace in order to simplify classification tasks and make them lin-

ar [37,42]. In the rough set field, Hu et al. [7,8] found a high level

f similarity between kernel methods and rough sets and made use

f kernel to extract fuzzy relations for rough sets based data analysis.

s an example, in this paper, Gaussian kernel is used to generate a

uzzy binary relation which satisfies reflexive, symmetric and transi-

ive. However, the existing study is based on data coming from only

single source and little attention was paid to deal with data which

ome from different sources. To address this issue, in this study, we

ill introduce Gaussian kernel to extract a fuzzy equivalence relation

etween objects from a multi-source information system. It can be

roven that the similarity matrix induced by Gaussian kernel is both

eflexive and positive semi-definitive. Then we employ the TP-norm

perator: TP(a, b) = a · b to aggregate multiple induced fuzzy rela-

ions to get an aggregation matrix which is called Hadamard product

atrix [35]. It can induce a new fuzzy Tcos-equivalence relation be-

ause it is still both reflexive and positive semi-definitive, and then

t will be used to partition a universe into a family fuzzy information

ranules forming a fuzzy granular structure for one of the sources

rom the multi-source information system. By the same way, one can

btain multiple fuzzy granular structures which constitute the fun-

amentals of the novel model in the paper.

From the above, based on different fuzzy granular structures gen-

rating from a multi-source fuzzy information system, the aim of this

aper is to present a new approach to approximate the decision class

ith a certain level of tolerance for errors through inclusion measure

etween two fuzzy granules. This approach called fuzzy multigranu-

ation decision-theoretic rough sets (FM-DTRS) combines the multi-

ranulation decision-theoretic idea with fuzzy set theory. Some of its

roperties are addressed. A comparative study between the proposed

nd Qian’s multigranulation decision-theoretic rough set model is

ade.

The rest of this paper is organized as follows. Some basic concepts

f classical rough sets, variable precision fuzzy rough sets, and multi-

ranulation rough sets are briefly reviewed in Section 2. In Section 3,

e first investigate two fuzzy multigranulation decision-theoretic
ough set forms that include the optimistic fuzzy multigranulation

ecision-theoretic rough sets, and the pessimistic fuzzy multigran-

lation decision-theoretic rough sets. Then, we analyze the loss

unction and the entire decision risk in the context of fuzzy multi-

ranulation. When the thresholds have a special constraint, the

ultigranulation decision-theoretic rough sets will produce one of

arious variables of multigranulation rough sets. In Section 4, an ex-

mple is used to illustrate our method. Finally, Section 5 concludes

his paper by bringing some remarks and discussions.

. Preliminaries

In this section, we introduce some basic notions and redescribe

ome related rough set models by inclusion degree, which are Pawlak

ough sets, variable precision fuzzy rough sets, and multigranulation

ecision-theoretic rough sets, repestively [7,27,34,52,56]. Throughout

his paper, let U be a finite non-empty set called the universe of dis-

ourse. The class of all fuzzy sets in U will be denoted as F(U). For a

et A, |A| denotes the cardinality of the set A.

efinition 1. Assumed R̃ is a fuzzy equivalence relation induced by a

umerical attribute or fuzzy attribute. For any x, y, z ∈ U, it satisfies:

(1) reflexivity: R̃(x, y) = 1;

(2) Symmetry: R̃(x, y) = R̃(y, x); and

(3) Transitivity: R̃(x, z) ≥ min(R̃(x, y), R̃(y, z)).

The relation can be written as a matrix as

(R̃) = (̃ri j)n×n =

⎡
⎢⎢⎣

r̃11 r̃12 · · · r̃1n

r̃21 r̃22 · · · r̃2n

...
. . .

r̃n1 r̃n2 · · · r̃nn

⎤
⎥⎥⎦

here r̃i j is the similarity degree between xi and xj.

If condition (3) is replaced by T(R̃(x, y), R̃(y, z)) ≤ R̃(x, z) called (T-

ransitivity), then R̃ is said to be a fuzzy T-equivalence relation Kerre

nd Ovchinnikov where T is some triangular norm .

efinition 2. The fuzzy equivalence class SR̃(xi) of xi induced by a

uzzy equivalence relation R̃ is defined as

R̃(xi) = r̃i1

x1

+ r̃i2

x2

+ · · · + r̃in

xn
,

here ‘+′ means the union operation. Obviously, SR̃(xi) is a fuzzy in-

ormation granule containing xi. r̃i j is the degree of xi equivalent to

j. Obviously, a crisp equivalence class [x]R is a special fuzzy granule

ith r̃(x, y) = 1, y ∈ [x]R.

As we know, a fuzzy equivalence relation generates a fam-

ly of fuzzy information granules from the universe, which com-

oses a fuzzy equivalence granular structure, written by K(R̃) =
SR̃(x1), SR̃(x2), . . . , SR̃(xn)}. Particularly, if r̃ii = 1 and r̃i j = 0, j �=
, i, j < n, then SR̃(xi) = 1, i ≤ n, and R̃ is called a fuzzy identity re-

ation, and we write it as R̃ = ϕ; if r̃i j = 1, i, j < n, then |SR̃(xi)| =
U|, i ≤ n and R̃ is called a fuzzy universal relation, which is written

s R̃ = δ.

efinition 3. [7] Let A and B be two fuzzy granules in the universe U,

he inclusion measure I(A, B)) is defined as

(A, B) = |A ∧ B|
|A| ,

here ‘∧′ means the operation ‘min’ and |A| = ∑
x∈U μA(x).

We denote A ⊂ εB, meaning I(A, B) ≥ ε.

awlak rough set is based on the two fundamentals concepts: an

quivalence relation R and a family of equivalence classes which is

partition of a finite non-empty universe U. If U = {x1, x2, . . . , xn}
s characterized with a collection of attribute, each attribute gen-

rates an indiscernible relation R on U. Then < U, R > is called an
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approximation space. The family of the equivalence classes [x]R are

called elemental information granules in the approximation space.

They form a family of concepts to approximate arbitrary subset of ob-

jects. Based on the inclusion measure, the lower, upper approxima-

tions and boundary region of X ⊆ U can also be defined as

R(X) = {x ∈ U | I([x]R, X) = 1},
R(X) = {x ∈ U | I([x]R, X) > 0},

BN(X) = {x ∈ U | 0 < I([x]R, X) < 1}.
Since the equivalence relation appears to be too strict, which lim-

its the applicability of Pawlak rough set model, Ziarko [56] first intro-

duced an error-tolerance level with set inclusion [52] to propose the

concept of variable precision rough set model (VPRS) which is defined

as

Rα(X) = {x ∈ U | I([x]R, X) ≥ α},

R
β
(X) = {x ∈ U | I([x]R, X) > β}.
Furthermore, if the fuzziness is taken into consideration, then it is

important to extend VPRS into FVPRS. That is, the variable precision

lower and upper approximations of a crisp set X by a family of fuzzy

information granules are defined as

R̃
α
(X) = {x ∈ U | I(SR̃(x), X) ≥ α},

R̃
β
(X) = {x ∈ U | I(SR̃(x), X) > β},

where 1 ≥ α ≥ 0.5, 0.5 > β ≥ 0. And the variable precision boundary

region is

BNα,β(X) = R̃
β
(X) − R̃

α
(X) = {x ∈ U | β < I(SR̃(x), X) ≤ α}.

In the classical rough set theory, the approximate operators par-

tition the universe into three disjoint regions POS(A), NEG(A) and

BND(A). In this section, we briefly review some basic concepts in the

decision-theoretic rough set. For convenience, in the Bayesian deci-

sion procedure, a finite set of states can be written as � = {ω, ¬ω},
and a finite set of three possible actions can be denoted by A =
{a1, a2, a3}, where a1, a2 and a3 represent the three actions, deciding

accept, deciding decline and deciding discard. Let P(ω|X) and P(¬ω|X)

be the condition probability of an object x being in state ω and ¬ω, re-

spectively, given that the object is described by X. Let λ(aj|ω) denote

the loss, or cost, for taking action aj when the state is ω, the expected

loss associated with taking action ai, (i = 1, 2, 3) is given by

R(ai|X) = λ(ai|ω) · P(ω|X) + λ(ai|¬ω) · P(¬ω|X).

The Bayesian decision procedure leads to the following minimum-

risk decision rules:

(P) decide POS(ω) if R(a1|X) ≤ R(a2|X) and R(a1|X) ≤ R(a3|X);
(B) decide NEG(ω) if R(a2|X) ≤ R(a1|X) and R(a2|X) ≤ R(a3|X);
(N) decide BND(ω) if R(a3|X) ≤ R(a1|X) and R(a3|X) ≤ R(a2|X).

Based on Yao’s study, the minimum-risk decision rules (P),(N),(D)

can be written as:

(P)decide POS(ω) if P(ω|X) ≥ α and P(ω|X) ≥ γ ;
(B)decide NEG(ω) if P(ω|X) ≤ β and P(ω|X) ≤ γ ;
(N)decide BND(ω) if P(ω|X) ≤ α and P(ω|X) ≥ β;

where α = λ12−λ32
(λ31−λ32)−(λ11−λ12)

, β = λ32−λ22
(λ21−λ22)−(λ31−λ32)

, γ =
λ12−λ22

(λ21−λ22)−(λ11−λ12)
. And λ11 = λ(a1|ω),λ21 = λ(a2|ω),λ31 =

λ(a |ω),λ = λ(a |¬ω),λ = λ(a |¬ω),λ = λ(a |¬ω).
3 12 1 22 2 32 3
Through using the conditional probability P(ω|X), the Bayesian de-

ision procedure can decide how to assign x into these three disjoint

egions [44].

If one takes multiple binary equivalence relations into problem

olving, the multigranulation rough set will be proposed. According

o two different approximation strategies, Qian et al. [32,33] devel-

ped two different multigranulation rough sets (MGRS) including the

ptimistic and pessimistic ones.

efinition 4. Let IS = (U, AT, f ) be a complete information system,

1, A2, . . . , Am ⊆ AT, and X ⊆ U. The optimistic lower and upper ap-

roximations of X with respect to A1, A2, . . . , Am are denoted by
m
i=1 Ai

O
X and

∑m
i=1 Ai

O
X, respectively, where

m∑
i=1

Ai

O,α=1

(X) = {x ∈ U | I([x]A1
, X) = 1 ∨ I([x]A2

, X) = 1 ∨ · · ·

∨ I([x]Am
, X) = 1},

m

i=1

Ai

O,β=0

(X) = {x ∈ U | I([x]A1
, X) > 0 ∧ I([x]A2

, X) > 0 ∧ · · ·

∧ I([x]Am
, X) > 0}.

Then (
∑m

i=1 Ai
O
(X),

∑m
i=1 Ai

O
(X)) is called the classical optimistic

GRS [32].

In addition, the definition of the classical pessimistic MGRS [33] is

efined as follows:

m∑
i=1

Ai

P,α=1

(X) = {x ∈ U | I([x]A1
, X) = 1 ∧ I([x]A2

, X) = 1 ∧ · · ·

∧ I([x]Am
, X) = 1},

m

i=1

Ai

P,β=0

(X) = {x ∈ U | I([x]A1
, X) > 0 ∨ I([x]A2

, X) > 0 ∨ · · ·

∨I([x]Am
, X) > 0}.

. Fuzzy multigranulation decision-theoretic rough sets

Let us consider a scenario when one obtains information regard-

ng a set of objects from different sources. Each source is regarded as

classical information system which has some attributes with fuzzy

ttribute values. Thus, such an information system is called a multi-

ource fuzzy information system.

efinition 5. A multi-source information system is MS = {ISi | ISi =
U, ATi, {(Va)a∈ATi

}, fi)}, where,

(1) U is a finite non-empty set of objects, called the universe;

(2) ATi is a non-empty finite set of attributes of each subsystem;

(3) {Va} is the value of the attribute a ∈ ATi; and

(4) fi: U × ATi → {(Va)a∈ATi
} such that for all x ∈ U and a ∈ ATi, f(x,

a) ∈ Va.

Particular, if the attribute value is fuzzy, we call MS =
ISi | ISi = (U, ATi, {(Va)a∈ATi

}, fi)} a multi-source fuzzy informa-

ion system. In this paper, we suppose MS is composed of

single-source information systems. Similar to the granulation

ethod for the single-source information system, one gets m

uzzy granular structures: K(R̃1), K(R̃2), . . . , K(R̃m), where K(R̃i) =
SR̃i

(x1), SR̃i
(x2), . . . , SR̃i

(xn)} and SR̃i
(x j){ j = 1, 2, . . . , n} are fuzzy

ranules. As a result, one obtains a fuzzy multigranulation approxi-

ation space, denoted as (U, K(R̃1), K(R̃2), . . . , K(R̃m)).

In this section, how to approximate X through m fuzzy condition

ranular structures and how to extract fuzzy decision rules in a given

ulti-source fuzzy system are two important problems in the pro-

ess of multi-source data analysis. It has been proven that a fuzzy
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inary relation over U with Gaussian kernel satisfies reflexive, sym-

etric and Tcos-transitive, called a fuzzy T-equivalence relation over U

25]. In the following, Gaussian kernel is introduced to acquire a fuzzy

-equivalence relation which will partition a universe into a family of

uzzy information granules.

Suppose U is a finite set of objects, xi ∈ U is described by a vector

xi1, xi2, . . . , xim >∈ Rn. Thus, U is viewed as a subset of Rn.

The similarity between two objects is computed by Gaussian ker-

el K(xi, x j) = exp( − ‖xi−x j‖2

2δ2 ), where ‖xi − x j‖ is the Euclidean dis-

ance between xi and xj and K(xi, xj) satisfies

(1) K(xi, xj) ∈ [0, 1];

(2) K(xi, x j) = K(x j, xi); and

(3) K(xi, xi) = 1.

emma 1 ([25]). A fuzzy binary relation induced by Gaussian ker-

el is Tcos-equivalence relation, where Tcos(a, b) = max{a · b −
√

1 − a2 ·
1 − b2, 0}.

emma 2 ([26]). A matrix induced by Gaussian kernel is positive semi-

efinite.

emma 3 ([35]). Let A = (ai j)n×n, B = (bi j)n×n ∈ Fn×n be two positive

emi-definite matrices, then Hadamard product A◦B is positive semi-

efinite, where A ◦ B = (ai j ∗ bi j)n×n.

Lemma 3 is quite important and instrumental to achieve the main

esults of this paper. It is possible for us to get a new relation satisfy-

ng reflexivity, symmetry and T-transitivity by the property of Hadamard

roduct.

heorem 1. Let A = (ai j)n×n, B = (bi j)n×n ∈ Fn×n be two reflexive

i.e., aii = 1, i = 1, 2, . . . , n) and positive semi-definite matric, then

adamard product A◦B is reflexive and positive semi-definite, where

◦ B = (ai j ∗ bi j)n×n.

roof. Suppose C = A ◦ B = (ci j)n×n, based on the definition of

adamard product A◦B, we know that cii = aii ∗ bii = 1. Hence, C is

eflexive. And the matrix C is positive semi-definite matric in terms

f Lemma 3. Therefore, it holds. �

heorem 2. A reflexive and positive semi-definite matrix is equivalent

o a fuzzy Tcos- equivalence relation.

roof. It can be proved easily by Lemma 1, Lemma 2 and

emma 3. �

From the above discussions, we use R̃G(xi, x j) = exp(−‖xi−x j‖2

2δ2 )
o compute the similarity of objects xi and xj with respect to an

ttribute of a single source information system and then obtains a

orresponding similarity matrix which is both reflexive and positive

emi-definitive. In terms of Theorem 2, we use Tp-norm operator:

p(a, b) = a · b to get a Hadamard product matrix which is still both

eflexive and positive semi-definitive. Therefore, an aggregated fuzzy

quivalence relation will be induced by the Hadamard product matrix

nd then granulate the universe U into a family of fuzzy equivalence

nformation granules forming a fuzzy granular structure of a single

nformation system. By using the same method, one obtains a fam-

ly of fuzzy granular structures with respect to different sources from

he multi-source information system.

.1. Optimistic fuzzy multigranulation decision-theoretic rough sets

Using the idea of the optimistic multigranulation rough sets: a

arget concept’s multigranulation lower approximation only needs

t least one granular structure to satisfy with the inclusion condi-

ion between an equivalence class and the approximation target, the

quation R(X) = 1 − NEG(X), and the breaking-criteria [44], we give

crisp concept’s approximations through m fuzzy granular structures
n terms of fuzzy T-equivalence relations computed with Gaussian

ernel.

efinition 6. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . .,
(R̃m), and a crisp decision class X ⊆ U, the optimistic lower

nd upper approximations of X, denoted by
∑m

i=1 R̃i
O,α

(X) and

m
i=1 R̃i

O,β
(X), respectively, are defined as

m

i=1

R̃i

O,α

(X) = {x ∈ U | I(SR̃1
(x), X) ≥ α ∨ I(SR̃2

(x), X) ≥ α ∨ · · ·

∨ I(SR̃m
(x), X) ≥ α},

m

i=1

R̃i

O,β

(X) = U − {x ∈ U | I(SR̃1
(x), X) ≤ β ∨ I(SR̃2

(x), X) ≤ β ∨ · ·

∨ I(SR̃m
(x), X) ≤ β},

here SR̃i
(x) is the fuzzy equivalence class of x induced by the fuzzy

-equivalence relations R̃i, I([x]R̃i
, X) is the fuzzy inclusion degree be-

ween [x]R̃i
and X, and α, β are two probability constraints with 0.5 ≤

≤ 1 and 0 ≤ β < 0.5.

Then, we call (
∑m

i=1 R̃i
O,α

(X),
∑m

i=1 R̃i

O,β
(X)), the optimistic fuzzy

ultigranulation decision-theoretic rough sets. By the lower and up-

er approximations, the fuzzy optimistic multigranulation decision-

heoretic boundary region of X is defined as

N
o,α,β∑m

i=1 R̃i

(X) =
m∑

i=1

R̃i

O,β

(X) −
m∑

i=1

R̃i

O,α

(X).

heorem 3. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and a crisp decision class X ⊆ U, the optimistic upper approxi-

ation of X of the fuzzy multigranulation decision-theoretic rough set is

lso represented as

m

i=1

R̃i

O,β

(X) = {x ∈ U | I(SR̃1
(x), X) > β ∧ I(SR̃2

(x), X)

> β ∧ · · · ∧ I(SR̃m
(x), X) > β}.

From the definition of optimistic fuzzy multigranulation decision-

heoretic rough sets, one can obtain the following propositions.

roposition 1. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . .,
(R̃m), and a crisp decision class X ⊆ U. Then the following properties

old.

(1)
∑m

i=1 R̃i
O,α

(X) ⊇ R̃
α
i (X);

(2)
∑m

i=1 R̃i

O,β
(X) ⊆ R̃

α

i (X);

where

α
(X) = {x ∈ U | I(SR̃(x), X) ≥ α},

β
(X) = {x ∈ U | I(SR̃(x), X) < β}.

roposition 2. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and a crisp decision class X ⊆U. Then the following properties

old.

(1)
∑m

i=1 R̃i
O,α

(X) = ⋃m
i=1 R̃

α
i (X);

(2)
∑m

i=1 R̃i

O,β
(X) = ⋂m

i=1 R̃
β

i (X).

roposition 3. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . .,
(R̃m), and two crisp decision classes X ⊆ Y ⊆U. Then the following prop-

rties hold.

(1)
∑m

i=1 R̃i
O,α

(X) ⊇ ∑m
i=1 R̃i

O,α
(Y);
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(2)
∑m

i=1 R̃i

O,β
(X) ⊆ ∑m

i=1 R̃i

O,β
(Y).

The optimistic fuzzy multigranulation decision-theoretic rough sets

are the rational extension of some models. Let us derive the other model

from its definitions.

Case 1. If X is a crisp subset and R̃i, (i = 1, 2, . . . , m) are m crisp

equivalence relations on U, the optimistic FM-DTRS is degenerated to

MDTRS. Here, it deserves special noting here that the equation (19) in

[34] which is the upper optimistic multigranulation approximation of

X, should be corrected as follows:

m∑
i=1

Ri

O,β

(X) = {x ∈ U | I(SR̃1
(x), X) > β ∧ I(SR̃2

(x), X) > β ∧ · · ·

∧ I(SR̃m
(x), X) > β}.

Case 2. If X is a crisp subset and R̃i, (i = 1) is a crisp equivalence rela-

tion on U, the optimistic FM-DTRS is degenerated to DTRS.

3.1.1. Optimistic fuzzy multigranulation loss function

Based on the Bayesian decision procedure and Yao’s decision-

theoretic study, let Rk(ai|X) be kth expected loss under kth gran-

ular structure, then the optimistic fuzzy multigranulation deci-

sion’s expected loss associated with taking action a1, a2, a3 is

given by

R∑m
k=1 R̃

(O,α,β)
k

=
m∑

k=1

Rk(ai|X), (i = 1, 2, 3).

3.1.2. Optimistic fuzzy multigranulation decision rules

Similar to the classical decision-theoretic rough sets, when the

thresholds 1 ≥ α > β ≥ 0, we can get the following decision rules:

(OFMP1) if ∃i ∈ {1, 2, . . . , m} such that I(SR̃i
(x), X) ≥ α, decide

POS(X);

OFMB1) if ∀i ∈ {1, 2, . . . , m} such that I(SR̃i
(x), X) ≤ β, decide

NEG(X);

OFMN1) otherwise, decide BND(X).

When the thresholds 1 ≥ α = γ = β ≥ 0, we can get the following

decision rules:

(OFMP1) if ∃i ∈ {1, 2, . . ., m} such that I(SR̃i
(x), X) ≥ α, decide

POS(X);

OFMB1) if ∀i ∈ {1, 2, . . . , m} such that I(SR̃i
(x), X) ≤ α, decide

NEG(X);

OFMN1) otherwise, decide BND(X).

3.2. Pessimistic fuzzy multigranulation decision-theoretic rough sets

Definition 7. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

K(R̃m), and a crisp decision class X ⊆ U, the pessimistic lower and up-

per approximations of X, denoted by
∑m

i=1 R̃i
P,α

(X) and
∑m

i=1 R̃i

P,β
(X),

respectively, are defined as

m∑
i=1

R̃i

P,α

(X) = {x ∈ U | I(SR̃1
(x), X) ≥ α ∧ I(SR̃2

(x), X) ≥ α ∧ · · ·

∧ I(SR̃m
(x), X) ≥ α},
m

i=1

Ri

P,β

(X) = U − {x ∈ U | I(SR̃1
(x), X) ≤ β ∧ I(SR̃2

(x), X) ≤ β ∧ · ·

∧ I(SR̃m
(x), X) ≤ β}.

By the lower and upper approximations, the fuzzy pessimistic

ultigranulation decision-theoretic boundary region of X is defined

s

N
P,α,β∑m

i=1 R̃i

(X) =
m∑

i=1

R̃i

P,β

(X) −
m∑

i=1

R̃i

P,α

(X).

Then, we call (
∑m

i=1 R̃i
P,α

(X),
∑m

i=1 R̃i

P,β
(X)) pessimistic fuzzy

ultigranulation decision-theoretic rough sets, and α, β are two

robability constraints with 0.5 ≤ α ≤ 1 and 0 ≤ β < 0.5.

heorem 4. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and a crisp decision class X ⊆ U, the pessimistic upper approxi-

ation of X of the fuzzy multigranulation decision-theoretic rough set is

lso represented as

m

i=1

R̃i

P,β

(X) = {x ∈ U | I(SR̃1
(x), X) > β ∨ I(SR̃2

(x), X) > β ∨ · · ·

∨ I(SR̃m
(x), X) > β}.

From the definition of fuzzy pessimistic multigranulation

ecision-theoretic rough sets, one can obtain the following proposi-

ions.

roposition 4. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and a crisp decision class X ⊆ U. Then the following properties

old.

(1)
∑m

i=1 R̃i
P,α

(X) ⊆ R̃
α
i (X);

(2)
∑m

i=1 R̃i

P,β
(X) ⊆ R̃

β

i (X).

roposition 5. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and a crisp decision class X ⊆ U. Then the following properties

old.

(1)
∑m

i=1 R̃i
P,α

(X) = ⋂m
i=1 R̃

α
i (X);

(2)
∑m

i=1 R̃i

P,β
(X) = ⋃m

i=1 R̃
β

i (X).

roposition 6. Given m fuzzy granular structures: K(R̃1), K(R̃2), . . . ,

(R̃m), and two crisp decision classes X ⊆ Y ⊆ U. Then the following

roperties hold.

(1)
∑m

i=1 R̃i
P,α

(X) ⊇ ∑m
i=1 R̃i

P,α
(Y);

(2)
∑m

i=1 R̃i

P,β
(X) ⊆ ∑m

i=1 R̃i

P,β
(Y).

The pessimistic fuzzy multigranulation decision-theoretic rough

ets are the rational extension of some models. Let us derive the other

odel from its definitions.

ase 1. If X is a crisp subset and R̃i, (i = 1, 2, . . . , m) are m crisp

quivalence relation on U, the pessimistic FM-DTRS is degenerated to

DTRS. Here, it deserves special noting here that the equation (22) in

34] which is upper pessimistic multigranulation approximation of X,

hould be corrected as follows:

m

i=1

Ri

P,β

(X) = {x ∈ U | I(SR̃1
(x), X) > β ∨ I(SR̃2

(x), X) > β ∨ · · ·

∨ I(SR̃m
(x), X) > β}.

ase 2. If X is a crisp subset and R̃i, (i = 1) is a crisp equivalence rela-

ion on U, the pessimistic FM-DTRS is degenerated to DTRS.
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Fig. 1. Structure of FM-DTRS.

Table 1

A multi-source fuzzy information system of an evaluation problem of a credit card applicant.

EC1 EC2 EC3 Decision

c1 c4 c7 c2 c5 c8 c3 c6 c9 D

x1 0.8 0.1 0.2 0.1 0.1 0.5 0.1 0.2 0.3 Accept

x2 0.3 0.5 0.2 0.3 0.3 0.7 0.4 0.2 0.1 Accept

x3 0.2 0.1 0.6 0.6 0.3 0.2 0.2 0.6 0.2 Decline

x4 0.6 0.3 0.5 0.2 0.2 0.2 0.2 0.5 0.3 Accept

x5 0.4 0.4 0.3 0.3 0.4 0.3 0.3 0.2 0.4 Decline

x6 0.2 0.3 0.5 0.2 0.3 0.6 0.2 0.4 0.2 Decline

x7 0.3 0.3 0.6 0.3 0.4 0.2 0.3 0.3 0.2 Accept

x8 0.3 0.4 0.3 0.3 0.2 0.2 0.3 0.4 0.5 Decline

x9 0.3 0.2 0.4 0.3 0.4 0.4 0.4 0.4 0.2 Decline

3

retic study, let Rk(ai|X) be kth expected loss under kth granular structure,

t ssociated with taking action a1, a2, a3 is given by

R

3

esholds 1 ≥ α > β ≥ 0, we can get the following decision rules:

( X);

( X);

(

decision rules:

( ;

( ;

(

S, which is shown as Fig. 1.

4

ethod [5,48].

E pplicants depicted by a fuzzy multi-source decision information system.

S applicant in each sub-information (source) system, denoted by EC1, EC2,

a = best education, c4 = high salary, c7 = older age, c2 = better education,

c lary, and c9 = young age, respectively. The membership degrees of every

a x7} and D2 = {x3, x5, x6, x8, x9}.

il.

compute the similarity degree to induce a fuzzy T-equivalence relation be-

ute of every source. Then for a source EC1 of the multi-source information
.2.1. Pessimistic fuzzy multigranulation loss function

Based on the Bayesian decision procedure and Yao’s decision-theo

hen the pessimistic fuzzy multigranulation decision’s expected loss a

∑m
k=1 R̃

(P,α,β)
k

= �m
k=1Rk(ai|X), (i = 1, 2, 3).

.2.2. Pessimistic fuzzy multigranulation decision rules

Similar to the classical decision-theoretic rough sets, when the thr

PFMP1) if ∀i ∈ {1, 2, . . . , m} such that I(SR̃i
(x), X) ≥ α, decide POS(

PFMB1) if ∃i ∈ {1, 2, . . . , m} such that I(SR̃i
(x), X) ≤ β, decide NEG(

PFMN1) otherwise, decide BND(X).

When the thresholds 1 ≥ α = γ = β ≥ 0, we can get the following

PFMP1) if ∀i ∈ {1, 2, . . ., m} such that I(SR̃i
(x), X) ≥ α, decide POS(X)

PFMB1) if ∃i ∈ {1, 2, ���, m} such that I(SR̃i
(x), X) ≤ α, decide NEG(X)

PFMN1) otherwise, decide BND(X).

Based on the above discussions, we can gain a structure of FM-DTR

. Example

In this section, we employ an example to illustrate our proposed m

xample 1. Let us consider an evaluation problem of a credit card a

uppose that U = {x1, x2, . . . , x9} is a set of nine applicants. Every

nd EC3, is described by three fuzzy conditional attributes. They are c1

5 = middle salary, c8 = middle age, c3 = good education, c6 = low sa

pplicant are given in Table 1. A decision partition is D1 = {x1, x2, x4,

In what follows, we will describe the process of computing in deta

(1) We make use of Gaussian kernel with an assumption δ = 0.3 to

tween xi (i = 1, 2, . . ., 9) and x j ( j = 1, 2, . . . , 9) by each attrib
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itional attributes: c1, c4, and c7, respectively, which are as follows:

.4111 0.1353 0.2494 0.2494 0.2494

9460 0.9460 1.0000 1.0000 1.0000

8007 1.0000 0.9460 0.9460 0.9460

8007 0.4111 0.6065 0.6065 0.6065

0000 0.8007 0.9460 0.9460 0.9460

8007 1.0000 0.9460 0.9460 0.9460

9460 0.9460 1.0000 1.0000 1.0000

9460 0.9460 1.0000 1.0000 1.0000

9460 0.9460 1.0000 1.0000 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6065 0.8007 0.8007 0.6065 0.9460

9460 0.8007 0.8007 0.9460 0.6065

6065 0.8007 0.8007 0.6065 0.9460

9460 1.0000 1.0000 0.9460 0.9460

0000 0.9460 0.9460 1.0000 0.8007

9460 1.0000 1.0000 0.9460 0.9460

9460 1.0000 1.0000 0.9460 0.9460

0000 0.9460 0.9460 1.0000 0.8007

8007 0.9460 0.9460 0.8007 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

9460 0.6065 0.4111 0.9460 0.8007

9460 0.6065 0.4111 0.9460 0.8007

6065 0.9460 1.0000 0.6065 0.8007

8007 1.0000 0.9460 0.8007 0.9460

0000 0.8007 0.6065 1.0000 0.9460

8007 1.0000 0.9460 0.8007 0.9460

6065 0.9460 1.0000 0.6065 0.8007

0000 0.8007 0.6065 1.0000 0.9460

9460 0.9460 0.8007 0.9460 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ity degrees and gets a similarity matrix on three attributes of EC1, which

U as follows:
system, one obtains three similarity matrix induced from cond

(RG
c1(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.2494 0.1353 0.8007 0

0.2494 1.0000 0.9460 0.6065 0.

0.1353 0.9460 1.0000 0.4111 0.

0.8007 0.6065 0.4111 1.0000 0.

0.4111 0.9460 0.8007 0.8007 1.

0.1353 0.9460 1.0000 0.4111 0.

0.2494 1.0000 0.9460 0.6065 0.

0.2494 1.0000 0.9460 0.6065 0.

0.2494 1.0000 0.9460 0.6065 0.

(RG
c4(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.4111 1.0000 0.8007 0.

0.4111 1.0000 0.4111 0.8007 0.

1.0000 0.4111 1.0000 0.8007 0.

0.8007 0.8007 0.8007 1.0000 0.

0.6065 0.9460 0.6065 0.9460 1.

0.8007 0.8007 0.8007 1.0000 0.

0.8007 0.8007 0.8007 1.0000 0.

0.6065 0.9460 0.6065 0.9460 1.

0.9460 0.6065 0.9460 0.9460 0.

(RG
c7(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 1.0000 0.4111 0.6065 0.

1.0000 1.0000 0.4111 0.6065 0.

0.4111 0.4111 1.0000 0.9460 0.

0.6065 0.6065 0.9460 1.0000 0.

0.9460 0.9460 0.6065 0.8007 1.

0.6065 0.6065 0.9460 1.0000 0.

0.4111 0.4111 1.0000 0.9460 0.

0.9460 0.9460 0.6065 0.8007 1.

0.8007 0.8007 0.8007 0.9460 0.

(2) We use Tp-norm: Tp(a, b) = a ∗ b to aggregate the three similar

generates a fuzzy partition called a fuzzy granular structure on
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.2359 0.0657 0.0821 0.1431 0.1889

.8465 0.4594 0.3292 0.8948 0.4857

.2946 0.7575 0.7575 0.3480 0.7165

.6065 0.4111 0.5738 0.4594 0.5427

.0000 0.6065 0.5427 0.9460 0.7165

.6065 1.0000 0.8948 0.7165 0.8465

.5427 0.8948 1.0000 0.5738 0.7575

.9460 0.7165 0.5738 1.0000 0.7575

.7165 0.8465 0.7575 0.7575 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zy information granules on U as follows:

0.0657

x6

+ 0.0821

x7

+ 0.1431

x8

+ 0.1889

x9

;

+ 0.4594

x6

+ 0.3292

x7

+ 0.8948

x8

+ 0.4857

x9

;

+ 0.7575

x6

+ 0.7575

x7

+ 0.3480

x8

+ 0.7165

x9

;

+ 0.4111

x6

+ 0.5738

x7

+ 0.4594

x8

+ 0.5427

x9

;

+ 0.6065

x6
+ 0.5427

x7
+ 0.9460

x8
+ 0.7165

x9
;

+ 1.0000

x6

+ 0.8948

x7

+ 0.7165

x8

+ 0.8465

x9

;

+ 0.8948

x6

+ 1.0000

x7

+ 0.5738

x8

+ 0.7575

x9

;

+ 0.7165

x6

+ 0.5738

x7

+ 1.0000

x8

+ 0.7575

x9

;

+ 0.8465

x6

+ 0.7575

x7

+ 0.7575

x8

+ 1.0000

x9

.

(SRG
EC1

(x3), D1) = 0.29,

(SRG
EC1

(x6), D1) = 0.32,

(SRG
EC1

(x9), D1) = 0.33.

(SRG
EC1

(x3), D2) = 0.71,

(SRG
EC1

(x6), D2) = 0.68,

(SRG
EC1

(x9), D2) = 0.67.

arity matrices induced by the attributes of EC2 and EC3. Accordingly, one

tively.
(RG
EC1

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.1025 0.0556 0.3889 0

0.1025 1.0000 0.1599 0.2946 0

0.0556 0.1599 1.0000 0.3114 0

0.3889 0.2946 0.3114 1.0000 0

0.2359 0.8465 0.2946 0.6065 1

0.0657 0.4594 0.7575 0.4111 0

0.0821 0.3292 0.7575 0.5738 0

0.1431 0.8948 0.3480 0.4594 0

0.1889 0.4857 0.7165 0.5427 0

From the granular structure (RG
EC1

(xi, x j)), one can get nine fuz

SRG
EC1

(x1) = 1.000

x1

+ 0.1025

x2

+ 0.0566

x3

+ 0.3889

x4

+ 0.2359

x5

+

SRG
EC1

(x2) = 0.1025

x1

+ 1.0000

x2

+ 0.1599

x3

+ 0.2946

x4

+ 0.8465

x5

SRG
EC1

(x3) = 0.0556

x1

+ 0.1599

x2

+ 1.0000

x3

+ 0.3114

x4

+ 0.2946

x5

SRG
EC1

(x4) = 0.3889

x1

+ 0.2946

x2

+ 0.3114

x3

+ 1.0000

x4

+ 0.6065

x5

SRG
EC1

(x5) = 0.2359

x1

+ 0.8465

x2

+ 0.2946

x3

+ 0.6065

x4

+ 1.0000

x5

SRG
EC1

(x6) = 0.0657

x1
+ 0.4594

x2
+ 0.7575

x3
+ 0.4111

x4
+ 0.6065

x5

SRG
EC1

(x7) = 0.0821

x1

+ 0.3292

x2

+ 0.7575

x3

+ 0.5738

x4

+ 0.5427

x5

SRG
EC1

(x8) = 0.1431

x1
+ 0.8948

x2
+ 0.3480

x3
+ 0.4594

x4
+ 0.9460

x5

SRG
EC1

(x9) = 0.1889

x1

+ 0.4857

x2

+ 0.7165

x3

+ 0.5427

x4

+ 0.7165

x5

Based on the inclusion measure of fuzzy sets, we get that

Iδ=0.3(SRG
EC1

(x1), D1) = 0.70, Iδ=0.3(SRG
EC1

(x2), D1) = 0.38, Iδ=0.3

Iδ=0.3(SRG
EC1

(x4), D1) = 0.49, Iδ=0.3(SRG
EC1

(x5), D1) = 0.39, Iδ=0.3

Iδ=0.3(SRG
EC1

(x7), D1) = 0.36, Iδ=0.3(SRG
EC1

(x8), D1) = 0.35, Iδ=0.3

Similarly, one gets

Iδ=0.3(SRG
EC1

(x1), D2) = 0.30, Iδ=0.3(SRG
EC1

(x2), D2) = 0.62, Iδ=0.3

Iδ=0.3(SRG
EC1

(x4), D2) = 0.51, Iδ=0.3(SRG
EC1

(x5), D2) = 0.61, Iδ=0.3

Iδ=0.3(SRG
EC1

(x7), D2) = 0.64, Iδ=0.3(SRG
EC1

(x8), D2) = 0.65, Iδ=0.3

By using the same method, one obtains the other two simil

gets two other fuzzy granular structures on U as follows, respec
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.3889 0.7165 0.2946 0.4594 0.4594

.3889 0.8948 0.2359 0.2359 0.5738

.5427 0.1690 0.5738 0.5738 0.4594

.7165 0.3889 0.7575 0.9460 0.6065

.0000 0.5427 0.9460 0.7575 0.9460

.5427 1.0000 0.3679 0.3679 0.7165

.9460 0.3679 1.0000 0.8007 0.8007

.7575 0.3679 0.8007 1.0000 0.6412

.9460 0.7165 0.8007 0.6412 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(SRG
EC2

(x3), D1) = 0.31,

(SRG
EC2

(x6), D1) = 0.46,

(SRG
EC2

(x9), D1) = 0.39.

(SRG
EC2

(x3), D2) = 0.69,

(SRG
EC2

(x6), D2) = 0.54,

(SRG
EC2

(x9), D2) = 0.61.

.7575 0.7165 0.7165 0.5134 0.4594

.5738 0.6065 0.8465 0.3114 0.7575

.3114 0.8007 0.5738 0.4594 0.6412

.5427 0.8948 0.7165 0.7165 0.7165

.0000 0.6065 0.7575 0.7575 0.6065

.6065 1.0000 0.8948 0.5738 0.8007

.7575 0.8948 1.0000 0.5738 0.8948

.7575 0.5738 0.5738 1.0000 0.5738

.6065 0.8007 0.8948 0.5738 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(SRG
EC3

(x3), D1) = 0.40,

(SRG
EC3

(x6), D1) = 0.31,

(SRG
EC3

(x9), D1) = 0.44.

(SRG
EC3

(x3), D2) = 0.60,

(SRG
EC3

(x6), D2) = 0.69,

(SRG
EC3

(x9), D2) = 0.56.

nclusion degree between fuzzy granules S
RG

ECi

(xi) and S
RG

ECi

(x j) and assume

upper optimistic/pessimistic approximations of the decision concepts D1
(RG
EC2

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.5134 0.1211 0.5427 0

0.5134 1.0000 0.1512 0.2231 0

0.1211 0.1512 1.0000 0.3889 0

0.5427 0.2231 0.3889 1.0000 0

0.3889 0.3889 0.5427 0.7165 1

0.7165 0.8948 0.1690 0.3889 0

0.2946 0.2359 0.5738 0.7575 0

0.4594 0.2359 0.5738 0.9460 0

0.4594 0.5738 0.4594 0.6065 0

Similarly, based on the inclusion degree, we have that

Iδ=0.3(SRG
EC2

(x1), D1) = 0.45, Iδ=0.3(SRG
EC2

(x2), D1) = 0.47, Iδ=0.3

Iδ=0.3(SRG
EC2

(x4), D1) = 0.45, Iδ=0.3(SRG
EC2

(x5), D1) = 0.39, Iδ=0.3

Iδ=0.3(SRG
EC2

(x7), D1) = 0.40, Iδ=0.3(SRG
EC2

(x8), D1) = 0.42, Iδ=0.3

And

Iδ=0.3(SRG
EC2

(x1), D2) = 0.55, Iδ=0.3(SRG
EC2

(x2), D2) = 0.53, Iδ=0.3

Iδ=0.3(SRG
EC2

(x4), D2) = 0.55, Iδ=0.3(SRG
EC2

(x5), D2) = 0.61, Iδ=0.3

Iδ=0.3(SRG
EC2

(x7), D2) = 0.60, Iδ=0.3(SRG
EC2

(x8), D2) = 0.58, Iδ=0.3

Similarly,

(RG
EC3

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.4857 0.3679 0.5738 0

0.4857 1.0000 0.3114 0.3889 0

0.3679 0.3114 1.0000 0.8948 0

0.5738 0.3889 0.8948 1.0000 0

0.7575 0.5738 0.3114 0.5427 1

0.7165 0.6065 0.8007 0.8948 0

0.7165 0.8465 0.5738 0.7165 0

0.5134 0.3114 0.4594 0.7165 0

0.4594 0.7575 0.6412 0.7165 0

Moreover, based on the inclusion degree, we compute that

Iδ=0.3(SRG
EC3

(x1), D1) = 0.50, Iδ=0.3(SRG
EC3

(x2), D1) = 0.52, Iδ=0.3

Iδ=0.3(SRG
EC3

(x4), D1) = 0.42, Iδ=0.3(SRG
EC3

(x5), D1) = 0.45, Iδ=0.3

Iδ=0.3(SRG
EC3

(x7), D1) = 0.47, Iδ=0.3(SRG
EC3

(x8), D1) = 0.39, Iδ=0.3

And,

Iδ=0.3(SRG
EC3

(x1), D2) = 0.50, Iδ=0.3(SRG
EC3

(x2), D2) = 0.48, Iδ=0.3

Iδ=0.3(SRG
EC3

(x4), D2) = 0.58, Iδ=0.3(SRG
EC3

(x5), D2) = 0.55, Iδ=0.3

Iδ=0.3(SRG
EC3

(x7), D2) = 0.53, Iδ=0.3(SRG
EC3

(x8), D2) = 0.61, Iδ=0.3

Based on the above three fuzzy granular structures and the i

that α = 0.6, β = 0.35 and δ = 0.30, one can get the lower and

and D , respectively.
2
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(D1) = {x1};

(D1) = {x1, x2, x4, x5, x7}.

D1) = φ;

D1) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}.

(D2) = {x2, x3, x5, x6, x7, x8, x9};

(D2) = {x2, x3, x4, x5, x6, x7, x8, x9}.

D2) = {x3};

D2) = {x1, x2, x3, x4, x5, x6, x7, x8, x9}.

ecide Accept;

ecide Decline;

cide Accept;

cide Decline;

e the expected loss, which is omitted here.

, respectively. But we only display the results for the case of δ = 0.2 as

.0388 0.0022 0.0036 0.0126 0.0235

.6873 0.1738 0.0821 0.7788 0.1969

.0639 0.5353 0.5353 0.0930 0.4724

.3247 0.1353 0.2865 0.1738 0.2528

.0000 0.3247 0.2528 0.8825 0.4724

.3247 1.0000 0.7788 0.4724 0.6873

.2528 0.7788 1.0000 0.2865 0.5353

.8825 0.4724 0.2865 1.0000 0.5353

.4724 0.6873 0.5353 0.5353 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.1194 0.4724 0.0639 0.1738 0.1738

.1194 0.7788 0.0388 0.0388 0.2865

.2528 0.0183 0.2865 0.2865 0.1738

.4724 0.1194 0.5353 0.8825 0.3247

.0000 0.2528 0.8825 0.5353 0.8825

.2528 1.0000 0.1054 0.1054 0.4724

.8825 0.1054 1.0000 0.6065 0.6065

.5353 0.1054 0.6065 1.0000 0.3679

.8825 0.4724 0.6065 0.3679 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
An optimistic fuzzy lower approximation of D1:
∑3

i=1 R̃G
i

O,α

An optimistic fuzzy upper approximation of D1:
∑3

i=1 R̃G
i

O,α

A pessimistic fuzzy lower approximation of D1:
∑3

i=1 R̃G
i

P,α
(

Apessimistic fuzzy upper approximation of D1:
∑3

i=1 R̃G
i

P,α
(

An optimistic fuzzy lower approximation of D2:
∑3

i=1 R̃G
i

O,α

An optimistic fuzzy upper approximation of D2:
∑3

i=1 R̃G
i

O,α

A pessimistic fuzzy lower approximation of D2:
∑3

i=1 R̃G
i

P,α
(

Apessimistic fuzzy upper approximation of D2:
∑3

i=1 R̃G
i

P,α
(

(3) Decision rules

a. Optimistic decision rules:

(OFMP1) if x ∈ ∑3
i=1 R̃G

i

O,α
(D1) or x ∈ U − ∑3

i=1 R̃G
i

O,α
(D2), then d

(OFMB1) if x ∈ U − ∑3
i=1 R̃G

i

O,α
(D1) or x ∈ ∑3

i=1 R̃G
i

O,α
(D2), then d

(OFMN1) otherwise, decide Retard.

b. Pessimistic decision rules:

(PFMP1) if x ∈ ∑3
i=1 R̃G

i

P,α
(D1) or x ∈ U − ∑3

i=1 R̃G
i

P,α
(D2), then de

(PFMB1) if x ∈ U − ∑3
i=1 R̃G

i

P,α
(D1) or x ∈ ∑3

i=1 R̃G
i

P,α
(D2), then de

(PFMN1) otherwise, decide Retard.

(4) We can use the triangular number employed in [16] to comput

Similarly, we compute with assumptions δ = 0.2 and δ = 0.1

follows.

(RG
EC1

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.0059 0.0015 0.1194 0

0.0059 1.0000 0.0162 0.0639 0

0.0015 0.0162 1.0000 0.0724 0

0.1194 0.0639 0.0724 1.0000 0

0.0388 0.6873 0.0639 0.3247 1

0.0022 0.1738 0.5353 0.1353 0

0.0036 0.0821 0.5353 0.2865 0

0.0126 0.7788 0.0930 0.1738 0

0.0235 0.1969 0.4724 0.2528 0

(RG
EC2

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.2231 0.0087 0.2528 0

0.2231 1.0000 0.0143 0.0342 0

0.0087 0.0143 1.0000 0.1194 0

0.2528 0.0342 0.1194 1.0000 0

0.1194 0.1194 0.2528 0.4724 1

0.4724 0.7788 0.0183 0.1194 0

0.0639 0.0388 0.2865 0.5353 0

0.1738 0.0388 0.2865 0.8825 0

0.1738 0.2865 0.1738 0.3247 0
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d

a

f

A

p

N

6

v

s

f

F

R

and

(RG
EC3

(xi, x j)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0.1969 0.1054 0.2865 0

0.1969 1.0000 0.0724 0.1194 0

0.1054 0.0724 1.0000 0.7788 0

0.2865 0.1194 0.7788 1.0000 0

0.5353 0.2865 0.0724 0.2528 1

0.4724 0.3247 0.6065 0.7788 0

0.4724 0.6873 0.2865 0.4724 0

0.2231 0.0724 0.1738 0.4724 0

0.1738 0.5353 0.3679 0.4724 0

So, we have

Iδ=0.2(SRG
EC1

(x1), D1) = 0.93, Iδ=0.2(SRG
EC1

(x2), D1) = 0.38, Iδ=0.2

Iδ=0.2(SRG
EC1

(x4), D1) = 0.61, Iδ=0.2(SRG
EC1

(x5), D1) = 0.32, Iδ=0.2

Iδ=0.2(SRG
EC1

(x7), D1) = 0.37, Iδ=0.2(SRG
EC1

(x8), D1) = 0.30, Iδ=0.2

Iδ=0.2(SRG
EC2

(x1), D1) = 0.62, Iδ=0.2(SRG
EC2

(x2), D1) = 0.51, Iδ=0.2

Iδ=0.2(SRG
EC2

(x4), D1) = 0.49, Iδ=0.2(SRG
EC2

(x5), D1) = 0.35, Iδ=0.2

Iδ=0.2(SRG
EC2

(x7), D1) = 0.32, Iδ=0.2(SRG
EC2

(x8), D1) = 0.40, Iδ=0.2

Iδ=0.2(SRG
EC2

(x1), D1) = 0.56, Iδ=0.2(SRG
EC2

(x2), D1) = 0.61, Iδ=0.2

Iδ=0.2(SRG
EC2

(x4), D1) = 0.40, Iδ=0.2(SRG
EC2

(x5), D1) = 0.42, Iδ=0.2

Iδ=0.2(SRG
EC2

(x7), D1) = 0.50, Iδ=0.2(SRG
EC2

(x8), D1) = 0.32, Iδ=0.2

Here, if we also assume that α = 0.6 and β = 0.35, one can get the

optimistic/pessimistic lower and upper approximations of the deci-

sion concept D1.

That is, an optimistic fuzzy lower approximation of D1:∑3
i=1 R̃G

i

O,α
(D1) = {x1, x2, x3, x4};

An optimistic fuzzy upper approximation of D1:
∑3

i=1 R̃G
i

O,α
(D1) =

{x1, x2, x3, x4, x6, x7}.

A pessimistic fuzzy lower approximation of D1:
∑3

i=1 R̃G
i

P,α
(D1) =

φ;

Apessimistic fuzzy upper approximation of D1:
∑3

i=1 R̃G
i

P,α
(D1) =

{x1, x2, x3, x4, x5, x6, x7, x8, x9}.

In addition, the optimistic/pessimistic lower and upper approxi-

mations of D2 can be gotten by the same process.

From the above, when α and β are constant, the lower of the op-

timistic approximate of the decision concept is becoming larger by

decreasing δ. In other words, the approximate accurate is becoming

larger which is more proximate to the original data. Therefore, one

can choose the reasonable parameter for higher approximate accu-

rate through a large of experiments which will be discussed in future.

5. Conclusion and discussion

In this paper, we have proposed a new model called the fuzzy

multigranulation decision-theoretic rough set approach for the

multi-source information system. It is in terms of the inclusion mea-

sure of fuzzy rough sets in the viewpoint of fuzzy multigranula-

tion. A Gaussian kernel function has been used to compute simi-

larity between objects and then fuzzily partition the universe into

fuzzy granulation. Some of its important properties have been ad-
dressed. A comparative study between the proposed fuzzy multigran-
3 0.4724 0.4724 0.2231 0.1738

5 0.3247 0.6873 0.0724 0.5353

4 0.6065 0.2865 0.1738 0.3679

8 0.7788 0.4724 0.4724 0.4724

0 0.3247 0.5353 0.5353 0.3247

7 1.0000 0.7788 0.2865 0.6065

3 0.7788 1.0000 0.2865 0.7788

3 0.2865 0.2865 1.0000 0.2865

7 0.6065 0.7788 0.2865 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

(x3), D1) = 0.63,

1

(x6), D1) = 0.39,

1

(x9), D1) = 0.24.

(x3), D1) = 0.20,

2

(x6), D1) = 0.44,

2

(x9), D1) = 0.32.

2

(x3), D1) = 0.36,

2

(x6), D1) = 0.38,

2

(x9), D1) = 0.43.

lation decision-theoretic rough set model and Qian’s multigranu-

ation decision-theoretic rough set model is made. An example has

een employed to illustrate our method’s effectiveness in real ap-

lications. It shows that the proposed approach will be helpful for

ealing with multi-source data. Further research includes how to re-

uce redundant fuzzy granular structures in the process of rough data

nalysis under the fuzzy multigranulation environment and how to

use multi-source fuzzy data with the proposed method.
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