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This paper first points out that the reducts obtained from a simplified decision table are different from
those obtained from its original version, and from a simplified decision table, we cannot obtain the
reducts in the sense of entropies. To solve these problems, we propose the compacted decision table that
can preserve all the information coming from its original version. We theoretically demonstrate that the
order preserving of attributes’ inner significance and outer significance in the sense of positive region and
two types of entropies after a decision table is compacted, which ensures that the reducts obtained from a
compacted decision are identical to those obtained from its original version. Finally, several numerical
experiments indicate the effectiveness and efficiency of the attribute reduction algorithms for a com-
pacted decision table.
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1. Introduction

In many practical applications, the dimensions of data sets (the
number of attributes) are becoming higher and higher [1,8,24,31].
For these high-dimensional data, attributes irrelevant to recogni-
tion tasks may deteriorate the performance of learning algorithms,
and result in the high computing cost [11,33]. Therefore, feature
selection has become an important preprocessing step in pattern
recognition, data mining and machine learning [9,36].

Among existing feature selection algorithms, supervised feature
selection algorithms are commonly employed to process the data
with class labels, in which there are some representatives, such
as feature selection algorithm with feature selection algorithm
based on mRMR [32], sparsity-inducing norms [14], feature selec-
tion algorithm based on t-test [44,45], feature subset selection
algorithm with ordinal optimization [5] and feature selection algo-
rithm based on neighborhood multi-granulation fusion [25]. For
the investigation of feature selection, one of critical issues is how
to select feature subset, and filters, wrappers and embedded meth-
ods have been generally recognized as the most popular methods
to solve the issue [2,8]. In filters methods [16,17], the selection of
feature subsets has nothing to do with the chosen learning
machine. In wrappers methods [18], the selection of feature
subsets depends on the learning machine that scores subsets of
feature according to their predictive power. In embedded methods
[8,18], the selection of feature subsets, which is a part of training
process, is embedded in learning machines. General speaking, fil-
ters and embedded methods are more efficient than wrappers
methods, and the wrappers and embedded methods are more
effective than filters methods [8].

Attribute reduction is an important research area in rough set
theory [4,28–30]. From the perspective of feature selection, attri-
bute reduction is a specific kind of supervised feature selection
method which adopts filters method. In recent years, researchers
have introduced a lot of attribute reduction algorithms. Skowron
and Rauszer [40], based on discernibility matrix, proposed an attri-
bute reduction algorithm, by which all reducts can be obtained. Hu
and Cercone [10] introduced discernibility matrix into decision
tables. Ye and Chen [57] found out that only the reducts for a con-
sistent decision table can be obtained by the method in [10], and
proposed a modified discernibility matrix that is suitable for an
inconsistent decision table. Yang [54], through considering the dis-
cernibility information in the consistent and inconsistent parts of a
decision table respectively, proposed another decision-relative dis-
cernibility matrix, by which the time of computing reducts is sig-
nificantly reduced. Wei et al. [51] proposed two discernibility
matrices in the sense of Shannon entropy and complement
entropy, which efficiently expands the application range of attri-
bute reduction methods based on discernibility matrix. However,
the problem of finding all reducts via using these discernibility
matrices has been proved to be NP-hard [52,56].
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To solve the above problem, researchers introduced heuristic
search strategy into the algorithms of finding reducts, which
remarkably lessens their computational burden. Hu and Cercone
[10] proposed a heuristic attribute reduction algorithm, in which
the positive region is utilized to evaluate attribute significance
and stop criterion. Slezak [38,39] first introduced an attribute
reduction algorithm in the sense of Shannon entropy. Wang et al.
[46,47] further improved the kind of algorithms in the sense of
shannon entropy. Sequently, Liang et al. [20–22,49], through intro-
ducing complement entropy to assess attribute significance and
stop criterion, defined a new type of attribute reduction algo-
rithms: the one based on complement entropy. To deal with hybrid
data with numerical and categorical attributes, the attribute reduc-
tion algorithms based on fuzzy rough set and rough fuzzy set were
proposed in [3,12,13,37,41,50]. Additionally, plenty of attribute
reduction methods were introduced to process incomplete data
[26,27]. Yao and Zhao proposed the attribute reduction methods
in decision-theoretic rough sets [55], which can achieve the objec-
tive of minimize the cost of decisions [15]. Although these heuristic
algorithms have speed up the process of finding reducts, the attri-
bute reduction algorithms are still inefficient to deal with large
data.

To further improve heuristic attribute reduction algorithms,
Qian et al. [34] proposed a acceleration mechanism, in which the
useless objects for finding reducts is progressively deleted in each
iteration. The similar idea in [34] was developed to deal with
incomplete data sets and hybrid data sets [35,48]. However, in
[34,35,48], only the useless objects are gradually deleted from data
sets. In fact, the number of attributes also largely affects the effi-
ciency of attribute reduction algorithm. Based on this considera-
tion, Liang et al. [23] developed a more effective attribute
reduction algorithm, in which both the useless objects and the
irrelevant attributes are progressively removed from data sets in
the process of finding reducts.

However, all the objects in one equivalence class are dealt with
one by one when running these algorithms mentioned above,
though they have the same value on each condition attribute.
Thus, it is obvious that the duplicated counting results in the
unnecessary time-consuming. To address this issue, some
researchers introduced several homomorphisms of an information
system, by which a massive information system can be compacted
into a relatively small-scale information system and all its reducts
are unchanged under the condition of homomorphism
[6,7,19,42,43]. Furthermore, to remove the redundancy of a deci-
sion table, Xu et al. [53] proposed the simplified decision table,
in which all the objects in a condition equivalence class are repre-
sented by one of objects in the equivalence class. Thus, the attri-
bute reduction algorithms based on the simplifying decision
table become more efficient than the previous ones. But, it is worth
noticing that for the objects in one condition equivalence class,
their values on the decision attribute are possibly different. In
other words, the simplification of a decision table in [53] could
make a loss of the values on decision attributes. It is precisely
the fault of the simplified decision table that motivates us to seek
a new method which cannot only eliminate the repetition of con-
dition attribute values, but also preserve all the information on
decision attributes.

Based on the analysis mentioned above, in this paper, we first
point out that the reducts obtained from a simplified decision table
are different from those obtained from its original version. Then,
we propose the compacted decision table, and demonstrate that
the sequence preserving of inner significance and outer signifi-
cance in the sense of positive region after a decision table is com-
pacted. And then, we indicate that from a simplified decision table,
the reducts in the senses of Shannon entropy and complement
entropy cannot be acquired, and demonstrate that they are able
to obtained from a compacted decision table. Sequently, we design
three algorithms based on the proposed compacted decision table
to find the reducts in the sense of positive region, Shannon entropy
and complement entropy. Finally, several numerical experiments
are carried out to verify that our proposed algorithms are more
efficient than the existing algorithms.

The remainder of the paper is organized as follows. In Section 2,
some preliminaries about the rough set theory and attribute reduc-
tion algorithms are reviewed. In Section 3, we point out the fault of
the simplified decision table, propose the compacted decision
table, demonstrate sequence preserving of inner significance and
outer significance in the sense of positive region, and design a
new positive region attribute reduction algorithm. In Section 4,
based on the proposed compacted decision table, we demonstrate
the sequence preserving of inner significance and outer signifi-
cance in the sense of Shannon entropy and complement entropy,
and give the corresponding attribute reduction algorithms. In
Section 5, several numerical experiments are carried out to indi-
cate the effectiveness and efficiency of the proposed algorithms.
Section 6 concludes the paper with some remarks.

2. Preliminaries

2.1. Rough set

An information system (also known as a data table, an attri-
bute–value system, a knowledge representation system) is a
4-tuple S ¼ ðU;A;V ; f Þ (for short S ¼ ðU;AÞ), where U is a
non-empty and finite set of objects, called a universe, and A is a
non-empty and finite set of attributes, Va is the domain of the attri-
bute a;V ¼

S
a2AVa and f : U � A ¼ V is a function f ðx; aÞ 2 Va for

each a 2 A [28].
Each attribute subset B # A derives an indiscernibility relation

in the following way: RB ¼ fðx; yÞ 2 U � Ujf ðx; aÞ ¼ f ðy; aÞ;8a 2 Bg,
where f ðx; aÞ and f ðy; aÞ denote the values of objects x and y with
respect to the attribute a, respectively. Moreover, the relation RB

partitions U into some equivalence classes given by
U=RB ¼ f½x�Bjx 2 Ug, just U=B, where ½x�B is the equivalence class
determined by x with respect to B, i.e., ½x�B ¼ fy 2 Ujðx; yÞ 2 RBg.
Furthermore, for any Y # U, one defines that ðBðYÞ;BðYÞÞ is the
rough set of Y with respect to B, where the lower approximation
BðYÞ and the upper approximation BðYÞ of Y [28] are described by

BðYÞ ¼ fxj½x�B # Yg and BðYÞ ¼ fxj½x�B \ Y – ;g:

The objects in BðYÞ can be certainly classified as the members of
Y on the basis of knowledge in B, while the objects in BðYÞ can be
only possibly classified as the members of Y on the basis of knowl-
edge in B. The set BNBðYÞ ¼ BðYÞ � BðYÞ is called the B�boundary
region of Y. A set is called a rough set (or a crisp set) if the boundary
region is non-empty (or empty).

A classification problem can be represented by a decision table
DT ¼ ðU; C [ DÞ with C \ D ¼ Ø, where an element of C is called a
condition attribute, C is called a condition attribute set, an element
of D is called a decision attribute, and D is called a decision attri-
bute set. For the convenience of the latter discussion, we define
@ð½xi�BÞ ¼ ff ðxj; dÞjxj 2 ½xi�BÞg, where D ¼ fdg.

For a given decision table DT ¼ ðU;C [ DÞ;B # C;U=D
¼ fY1;Y2; . . . ;Yng, we define the lower and upper approximations
of the decision attribute set D with respect to B as

BD ¼ fBY1;BY2; . . . ;BYng; and BD ¼ fBY1; BY2; . . . ;BYng:

Furthermore, the positive region of D with respect to B is defined as
POSU

B ðDÞ ¼
Sn

i¼1BYi, the boundary region is defined as

BNDU
B ðDÞ ¼ BD� BD, and the negative region NEGU

B ðDÞ ¼ U � BD.
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Furthermore, we define a partial relation � on the family
fU=BjB # Ag as follows: U=A � U=B if and only if for every ½xi�A there
exists ½xj�B such that ½xi�A # ½xj�B; xi; xj 2 U. In this case, we say that B
is coarser than A (or A is finer than B). If U=A � U=B and U=A – U=B,
we say that B is strictly coarser than A (or A is strictly finer than B),
denoted by U=A � U=B (or U=B � U=A). Moreover, if U=C � U=D in a
decision table, we call the decision table is consistent, otherwise it
is inconsistent.

2.2. Attribute significance

It is crucial how to measure the significance of one attribute
when obtaining the reducts by a heuristic algorithm. Thus, for
the development of this paper, we review three representative sig-
nificance measures, which are based on positive region, Shannon
condition entropy, complement condition entropy, respectively.

For a given decision table DT ¼ ðU;C [ DÞ and B # C, the three
attribute significance measures are reviewed as follows.

� Attribute significance based on positive region (PR) [10]:
The inner significance of a 2 C is defined as
Siginner
PR ða;C;D;UÞ ¼ cU

C ðDÞ � cU
C�fagðDÞ;

The outer significance of a 2 C � B with B is defined as

Sigouter
PR ða;B;C;D;UÞ ¼ cU

B[fagðDÞ � cU
B ðDÞ;

where cU
B ðDÞ ¼

jPOSU
B ðDÞj
jUj .

� Attribute significance based on Shannon condition entropy
(SCE) [38]:
The inner significance of a 2 C is defined as
Siginner
SCE ða;C;D;UÞ ¼ HUðDjC � fagÞ � HUðDjCÞ;

The outer significance of a 2 C � B with B is defined as

Sigouter
SCE ða;B;C;D;UÞ ¼ HUðDjBÞ � HUðDjB [ fagÞ;

where HUðDjBÞ ¼ �
Pm

i¼1
jXi j
jUj
Pn

j¼1
jXi\Yj j
jXi j

log jXi\Yj j
jXi j

;Xi 2 U=B;Yj 2 U=

D;m ¼ jU=Bj and n ¼ jU=Dj.
� Attribute significance based on complement condition entropy

(CCE) [20]:
The inner significance of a 2 C is defined as
Siginner
CCE ða;C;D;UÞ ¼ EUðDjC � fagÞ � EUðDjCÞ:

The outer significance of a 2 C � B with B is defined as

Sigouter
CCE ða;B;C;D;UÞ ¼ EUðDjBÞ � EUðDjB [ fagÞ:

where EUðDjBÞ ¼
Pm

i¼1

Pn
j¼1
jYj\Xi j
jUj

jYc
j�Xc

i j
jUj ;m ¼ jU=Bj;n ¼ jU=Dj, and

Xc
i and Yc

j are the complements of Xi 2 U=B and Yj 2 U=D,
respectively.

By means of the inner significance, core [20,28,34,46] can be
defined as follows.

Let DT ¼ ðU;C [ DÞ be a decision table and a 2 C. If

Siginner
D ða;C;D;UÞ > 0, then a is a core attribute of C with respect

to D in the context of type D, where D 2 fPR; SCE;CCEg.

2.3. Heuristic attribute reduction algorithms

Many heuristic algorithms of obtaining reducts have been pro-
posed, in which forward greedy search strategy is commonly
adopted. This kind of algorithms start from core, and gradually
add the attribute with the maximum outer significance into
the candidate attribute subset in each iteration until the stop
criterion is satisfied. The description of an forward greedy attribute
reduction algorithm is reviewed as follow.

Algorithm 1 ([10,34]). General forward greedy attribute reduction
algorithm (GAR-D)
Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: red Ø;// red is the pool to conserve the selected

attributes;

Step 2: Compute Siginner
D ðak;C;D;UÞ; k 6 jCj;

Step 3: Put ak into red, where Siginner
D ðak;C;D;UÞ > 0;

Step 4: While EFU
Dðred;DÞ – EFU

DðC;DÞ Do// This provides a
stopping criterion.

{red red [ fa0g, where Sigouter
D ða0; red;C;D;UÞ

¼ maxfSigouter
D ðak; red;C;D;UÞ; ak 2 C � redg};

Step 5: return red and end,

where EFU
DðB;DÞ ¼ EFU

DðC;DÞ is the stop criterion and D ¼
fPR; SCE;CCEg. For example, while the positive region is employed
as the evaluation function, EFU

PRðB;DÞ is equal to POSU
B ðDÞ and

EFU
PRðC;DÞ is equal to POSU

C ðDÞ.

Based on Algorithm 1, Qian et.al. [34] proposed an accelerator
(shown in Algorithm 2) for heuristic attribute reduction in which
the current positive region is progressively removed in each itera-
tion. Thus, the consuming time of finding a reduct is significantly
reduced.

Algorithm 2 [34]. Accelerator for attribute reduction from the
perspective of objects (ACC-D)
Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: red Ø;// red is the pool to conserve the selected

attributes;

Step 2: Compute Siginner
D ðak;C;D;UÞ; k 6 jCj;

Step 3: Put ak into red, where Siginner
D ðak;C;D;UÞ > 0;// These

attributes form the core of the given decision table
Step 4: i 1 and U1  U;

Step 5: While EFUi
D ðred;DÞ – EFUi

D ðC;DÞ,
Do {Compute the positive region POSUi

redðDÞ,
Uiþ1 ¼ Ui � POSUi

redðDÞ,
red red [ fa0g, where Sigouter

D ða0; red;C;D;Uiþ1Þ
¼maxfSigouter

D ðak; red;C;D;Uiþ1Þ; ak 2 C � redg,
i iþ 1;

Step 6: return red and end,

where EFUi
D ðB;DÞ ¼ EFUi

D ðC;DÞ is the stop criterion,
D ¼ fPR; SCE;CCEg. For example, while the positive region is

employed as the evaluation function, EFUi
PRðB;DÞ is equal to

POSUi
B ðDÞ and EFUi

PRðC;DÞ is equal to POSUi
C ðDÞ. Based on the

Ref. [34], we review the time complexity of Algorithm 2.
The time complexity of Step 2 is OðjUjjCjðjCj � 1ÞÞ. The time
complexity of Step 5 is Oð

P
i¼1jCjjU

0
ijðjCj � iþ 1ÞÞ. And the time com-

plexity of other steps is constant. Therefore, the time complexity of

Algorithm 2 is OðjU0jjCjðjCj � 1Þ þ
PjCj

i¼1jU
0
ijðjCj � iþ 1ÞÞ. Comparison

with Algorithm 1, it is easy to know that Step 5 of Algorithm 2 is
the key point to accelerate attribute reduction.
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3. Simplified decision tables and compacted decision tables

In this section, we first point out that the sequence of attribute
significance in a simplified decision table is inconsistent with that
in its original version by means of a concrete example. To solve the
issue, we propose a kind of new decision table: the compacted
decision table. It preserves all the information that its correspond-
ing original decision table has. We further demonstrate that the
sequence of attribute significance can be remain after compacting
a decision table. Finally, we design the positive region attribute
reduction algorithm based on the proposed compacted table.

For the development of this section, the simplified decision
table, positive region and negative region of a simplified decision
table are first reviewed.

Definition 3.1 [53]. Given a decision table DT ¼ ðU;C [ DÞ;
U=C ¼ f½x01�C ; ½x02�C ; . . . ; ½x0m�Cg, then the simplified decision table is
defined as DT 0 ¼ ðU0;C [ DÞ, where U0 ¼ fx01; x02; . . . ; x0mg.

The following example gives a concrete simplified decision
table.

Example 3.1. From Table 1, we can obtain U ¼ fx1; x2; x3; x4;

x5; x6; x7; x8; x9; x10; x11; x12; x13; x14; x15g, U=C ¼ ffx1; x3g; fx2; x5g;
fx4g; fx6; x9; x11g; fx7; x10; x14g; fx8; x12g; fx13; x15gg. From the
Definition 3.1, we get Table 1’s simplified version, which is shown
as Table 2.

To investigate the properties of a simplified decision table and
the attribute significance for it, we will review positive region
and negative region for a simplified decision table as follows.

Definition 3.2 [53]. Given a decision table DT ¼ ðU;C [ DÞ and its
simplified version DT 0 ¼ ðU0;C [ DÞ;B # C, then the positive region
of D with respect to B is defined as

POSU0

B ðDÞ ¼ fx 2 XjX 2 U0=B ^ X # U0POS ^ jX=Dj ¼ 1g;

where U0POS ¼ fx0ij½x0i�C 2 POSU
C ðDÞg.
Table 1
A decision table.

a1 a2 a3 a4 D

x1 1 1 1 1 0
x2 2 2 2 1 1
x3 1 1 1 1 0
x4 1 3 1 3 0
x5 2 2 2 1 1
x6 3 1 2 1 0
x7 2 2 3 2 2
x8 2 3 1 2 3
x9 3 1 2 1 1
x10 2 2 3 2 2
x11 3 1 2 1 1
x12 2 3 1 2 3
x13 4 3 4 2 1
x14 2 2 3 2 2
x15 4 3 4 2 2

Table 2
The decision table simplified from Table 1.

a1 a2 a3 a4 D

x1 1 1 1 1 0
x2 2 2 2 1 1
x4 1 3 1 3 0
x6 3 1 2 1 0
x7 2 2 3 2 2
x8 2 3 1 2 3
x13 4 3 4 2 1
Definition 3.3 [53]. Given a decision table DT ¼ ðU;C [ DÞ and its
simplified version DT 0 ¼ ðU0;C [ DÞ;B # C, then the negative region
of D with respect to B is defined as

NEGU0

B ðDÞ ¼ fXjX 2 U0=B;X # U0NEGg;

where U0NEG ¼ U0 � U0POS.

Based on the positive region and the negative region, the inner
significance and the outer significance of a condition attribute in a
simplified decision table are defined as:

Definition 3.4. Given a decision table DT ¼ ðU;C [ DÞ and its
simplified version DT 0 ¼ ðU0;C [ DÞ, then the inner significance of
8a 2 C is

Siginner
PR ða;C;D;U

0Þ ¼ jPOSU0

C ðDÞj � jPOSU0

C�fagðDÞj:

Computing core, which is one key step in attribute reduction
algorithms, is precisely based on the inner significance.
Definition 3.5 [53]. Given a decision table DT ¼ ðU;C [ DÞ and its
simplified version DT 0 ¼ ðU0;C [ DÞ, B # C, then the outer signifi-
cance of 8a 2 ðC � BÞ is

Sigouter
PR ða;B;C;D;U

0Þ ¼ jPOSU0

B[fagðDÞ [ NEGU0

B[fagðDÞj � jPOSU0

B ðDÞ

[ NEGU0

B ðDÞj:

For a condition attribute, the value of its outer significance
determines whether it is added into a candidate reduct. In other
words, the sequence of all attributes’ outer significance values in
a certain iteration of an attribute reduction algorithm determines
which attribute is added in the candidate reduct. Therefore, the
sequence of outer significance values is crucial to the outcome
of running an attribute reduction algorithm. However, we find
out that the sequence of outer significance values of the condition
attributes in a decision table is different from that in its
simplified version, which will be illustrated by the following
example.
Example 3.2. From Table 1, we have U=C ¼ ffx1; x3g; fx2; x5g;
fx4g; fx6; x9; x11g; fx7; x10; x14g; fx8; x12g; fx13; x15gg. Based on
Table 1’s simplified version (Shown as Table 2), we can obtain
the simplified universe U0 ¼ fx1; x2; x4; x6; x7; x8; x13g.

By computing on Table 1, we have that U=fa1g ¼ ffx1; x3; x4g;
fx2; x5; x7; x8; x10; x12; x14g; fx6; x9; x11g; fx13; x15gg, U=fa1; a2g ¼
ffx1; x3g; fx4g;fx2;x5;x7;x10;x14g;fx8;x12g;fx6;x9;x11g;fx13;x15gg,
and U=fa1;a3g ¼ ffx1;x3;x4g;fx2;x5g;fx7;x10;x14g;fx8;x12g;fx6;

x9;x11g;fx13;x15gg. And, by computing on Table 2, we have that
U0POS ¼ fx1;x2;x4;x7;x8g, U0NEG ¼ U0C �U0POS ¼ fx6;x13g, U0=fa1g ¼
ffx1;x4g; fx2;x7;x8g;fx6g;fx13gg, U0=fa1;a2g ¼ ffx1g;fx4g;fx2;x7g;
fx8g;fx6g;fx13gg, and U0=fa1;a3g ¼ ffx1;x4g;fx2g;fx7g;fx8g;fx6g;
fx13gg.

For the convenience of illustration, we suppose B ¼ fa1g. by

Definitions 3.2 and 3.3, we have that U0B ¼ POSU0

B ðDÞ [ NEGU0

B

ðDÞ ¼ fx6; x13g; POSU
B ¼ ;, U0B[fa2g ¼ POSU0

B[fa2gðDÞ [ NEGU0

B[fa2gðDÞ ¼

fx1; x4; x8; x6; x13g and POSU
B[fa2g ¼ fx1; x3; x4; x8; x12g;U0B[fa3g ¼

POSU0

B[fa3gðDÞ [ NEGU0

B[fa3gðDÞ ¼ fx2; x7; x8; x6; x13g and POSU
B[fa3g ¼

fx2; x5; x7; x8; x12; x10; x14g.
Therefore, Sigouter

PR ða2;B;C;D;U
0Þ ¼ jU0B[fa2g �U0Bj ¼ jfx1;x4;x8gj ¼

3, Sigouter
PR ða2;B;C;D;UÞ ¼ jPOSU

B[fa2gj � jPOSU
B j ¼ jfx1;x3;x4;x8;x12gj ¼

5;Sigouterða3;B;C;D;U
0Þ ¼ jU0B[fa3g �U0Bj ¼ jfx2;x7;x8gj ¼ 3,
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Sigouterða3; B; C; D; UÞ ¼ jPOSU
B[fa3gj � jPOSU

B j ¼ jfx2; x5; x7; x8; x12;

x10;x14gj ¼ 7.
From the above analysis, we can find out that Sigouter

ða2;B;C;D;U
0Þ ¼ Sigouterða3;B;C;D;U

0Þ, but Sigouterða 2;B;C;D;UÞ <
Sigouterða3;B;C;D;UÞ. It is evident that the sequence of attributes’
outer significance values cannot be remained after a decision table is
simplified.

To reduce the redundancy attributes in the simplified decision
table, Xu et al. [53] designed an attribute reduction algorithm in
the sense of positive region. For the convenience of comparing
the algorithm in [53] with other algorithms in this paper, we add
the step of computing core into it and rewrite it in the following
algorithm.

Algorithm 3. Attribute reduction algorithm based on simplified
decision tables in the sense of positive region (AR-ST-PR)

Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: Compute DT 0 ¼ ðU0;C [ DÞ by simplifying the decision

table DT;
Step 2: red Ø;// red is the pool to conserve the selected

attributes;

Step 3: Compute Siginner
PR ðak;C;D

0;U0Þ; k 6 jCj;
Step 4: Put ak into red, where Siginner

PR ðak;C;D
0;U0CÞ > 0;// These

attributes form the core of the given decision table
Step 5: i 1 and U01  U0;

Step 6: While jPOSU0i
redðDÞj– jPOSU0i

C ðDÞj,

Do {Compute the positive region POSU0i
redðDÞ,

U0iþ1 ¼ U0i � POSU0i
redðDÞ [ NEGU0i

redðDÞ,
red red [ fa0g, where Sigouter

PR ða0; red;C;D;U0iþ1Þ
¼maxfSigouter

PR ðak; red;C;D;U0iþ1Þ; ak 2 C � redg,
i iþ 1;

Step 7: return red and end.
Table 3
The decision table compacted from Table 1.

a1 a2 a3 a4 d0 d1 d2 d3

x1 1 1 1 1 2 0 0 0
x2 2 2 2 1 0 2 0 0
x4 1 3 1 3 1 0 0 0
x6 3 1 2 1 1 2 0 0
x7 2 2 3 2 0 0 3 0
x8 2 3 1 2 0 0 0 2
x13 4 3 4 2 0 1 1 0
Through adding the step of simplifying decision table (Step 1),
Algorithm 3 works on a smaller scale of objects than Algorithm
2, which can significantly reduce its consuming time of computing
reduct. Based on the Ref. [53], we review the time complexity of
Algorithm 3. The time complexity of Step 1 is OðjCjjUjÞ. The com-
plexity of Step 3 is OðjU0 jjCjðjCj � 1ÞÞ. The time complexity of Step
5 is Oð

P
i¼1jCjjU

0
ijðjCj � iþ 1ÞÞ. And the time complexity of other

steps is constant. Therefore, the time complexity of Algorithm 3

is OðjU0jjCjðjCj � 1Þ þ
PjCj

i¼1jU
0
ijðjCj � iþ 1ÞÞ. However, the algorithm

cannot generate the same reduct as Algorithms 1 and 2 do because
of the problem pointed out in Example 3.2. To solve this problem,
we propose the compacted decision table in the following
definition.

Definition 3.6. Given a decision table DT ¼ ðU;C [ DÞ;U=C ¼
f½x01�C ; ½x02�C ; . . . ; ½x0m�Cg;D ¼ fdg, Vd ¼ fvd1

; vd2
; . . . ;vdn

g, then the
compacted decision table is defined as DT 00 ¼ ðU0;C [ D0Þ, where
U0 ¼ fx01; x02; . . . ; x0mg;D

0 ¼ fd1; d2; . . . ; dng, and f ðx0j; diÞ ¼ jfxjf ðx; dÞ ¼
vdi

; x 2 ½x0j�Cgj.

The following example will give a concrete compacted decision
table.

Example 3.3. Give a decision table DT ¼ ðU;C [ DÞ (Shown as
Table 1), U ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12; x13; x14; x15g,
U=C ¼ ffx1; x3g; fx2; x5g; fx4g; fx6; x9; x11g; fx7; x10; x14g; fx8; x12g;
fx13; x15gg, Vd ¼ f0; 1; 2; 3g. Then, based on the definition of the
compacted decision table, we have that U0C ¼ fx1; x2; x4; x6; x7;

x8; x13g; f ðx1; d0Þ ¼ jfxjf ðx; dÞ ¼ 0; x 2 ½x1�Cgj ¼ 2. Similarly, we
have f ðx1; d1Þ ¼ f ðx1; d2Þ ¼ f ðx1; d3Þ ¼ 0; f ðx2; d2Þ ¼ 2; f ðx1; d1Þ ¼
f ðx2;d3Þ ¼ f ðx2;d4Þ ¼ 0; f ðx4;d1Þ ¼ 1; f ðx4;d2Þ ¼ f ðx4;d3Þ ¼ f ðx4;d4Þ ¼
0, f ðx6;d1Þ ¼ 1; f ðx6; d2Þ ¼ 2; f ðx6; d3Þ ¼ f ðx6; d4Þ ¼ 0,
f ðx7; d1Þ ¼ f ðx7; d2Þ ¼ 0; f ðx7; d3Þ ¼ 2; f ðx7; d4Þ ¼ 1, f ðx8; d1Þ
¼ f ðx8; d2Þ ¼ f ðx8; d3Þ ¼ 0; f ðx8; d4Þ ¼ 2, f ðx13; d1Þ ¼ 0; f ðx13; d2Þ
¼ 1; f ðx13; d3Þ ¼ 1, and f ðx13; d4Þ ¼ 0.

Thus, we can obtain the compacted version of Table 1, i.e.
Table 3.

Based on the proposed compacted decision table, the positive
region, which is the basis of inner significance and outer signifi-
cance, is given as follow.

Definition 3.7. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0;C [ D0Þ;U=C ¼ f½x01�C ; ½x02�C ; . . . ; ½x0m�Cg,
then the positive region of D with respect to C is defined as

POSU0

B ðD
0Þ ¼ fx 2 XjX 2 U0=B ^ X # U0POS ^ jfdi 2 D0jf ðX; diÞ – 0gj
¼ 1g;

where U0POS ¼ fx0ij½x0i�C 2 POSU
C ðDÞg, and f ðX;diÞ ¼

P
x0

j
2Xf ðx0j;diÞ.

Based on the positive region in a compacted decision table, we
define the inner and the outer attribute significance in the follow-
ing definition.

Definition 3.8. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0;C [ D0Þ, then the inner significance of
an attribute a 2 C is

Siginner
PR ða;C;D

0;U0Þ ¼
X

x0
j
2POSU0

C ðD
0 Þ

X
di2D0

f ðx0j;diÞ �
X

x0
j
2POSU0

C�fagðD
0 Þ

X
di2D0

f ðx0j;diÞ:

Inner significance is the basis of computing the core, which is
also the key step in the process of computing a reduct in a com-
pacted decision table.
Definition 3.9. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0;C [ D0Þ, then the outer significance of
an attribute a 2 C � B is

Sigouter
PR ða;B;C;D

0;U0Þ ¼
X

x0
j
2POSU0

B[fagðD
0 Þ

X
di2D0

f ðx0j;diÞ

�
X

x0
j
2POSU0

B ðD
0 Þ

X
di2D0

f ðx0j;diÞ:

To analyze how the sequence of attributes’ inner and outer sig-
nificance values will change after a decision table is compacted, we
will introduce two theorems, which are based on the following
lemma.
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Lemma 3.1. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ, B # C, thenX
x0

j
2POSU0

B ðD
0 Þ

X
di2D0

f ðx0j;diÞ ¼ jPOSU
B ðDÞj:
Proof. In order to prove the theorem, we suppose that
U ¼ fx1; x2; . . . ; xng, POSU

C ðDÞ ¼ f½x01�C [ ½x02�C [ 	 	 	 [ ½x0u�Cg; U=C ¼
f½x01�C ; ½x02�C ; . . . ; ½x0m�Cg;U

0 ¼ fx01; x02; . . . ; x0mg.

Then, from the definition of positive region in the compacted
decision table, we have thatX
x0

j
2POSU0

B ðD
0Þ

X
di2D0

f ðx0j;diÞ ¼
X

x0
j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

X
di2D0

f ðx0j;diÞ

¼
X

x0
j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

j½x0j�C j:

Furthermore, from the existing condition B # C, we can obtain
that U=B 
 U=C. Thus, without any lose of generalization, we
suppose that POSU

C ðDÞ ¼ f½x01�C [ ½x02�C [ 	 	 	 [ ½x0u�Cg, U0POS ¼ fx01; x02;
. . . ; x0ug; ½x0p�B ¼ ½x

0
p�C [ ½x

0
q�C ; ½x

0
i�B ¼ ½x0i�C for i 2 ½1;m�; i – p; q. To prove

the lemma, there are four cases should be considered in the
following.

(1) ½x0p�C 2 POSU
C ðDÞ, ½x0q�C 2 POSU

C ðDÞ and @ð½x0p�CÞ ¼ @ð½x
0
q�CÞ.

From the existing condition, it is easy to know that
fx0j 2 XjX 2 U0=B ^ X 2 U0POS ^ jfdi 2 D0jf ðX; diÞ – 0gj ¼ 1g ¼
U0POS ¼ fx01; x02; . . . ; x0ug. Thus,
X
x0

j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

j½x0j�C j

¼
X

x0
j
2U0POS

j½x0j�C j ¼
X

j¼½1;u�;j–p;q

j½x0j�C j þ j½x
0
p�C j þ j½x

0
q�C j

¼
X

j¼½1;u�;j–p;q

j½x0j�Bj þ j½x
0
p�Bj ¼ jPOSU

B ðDÞj:
(2) ½x0p�C 2 POSU
C ðDÞ, ½x0q�C 2 POSU

C ðDÞ and @ð½x0p�CÞ– @ð½x0q�CÞ.
From the existing condition, it is easy to know that
fx0j 2 XjX 2 U0C=B ^ X 2 U0POS ^ jfdi 2 D0jf ðX; diÞ – 0gj ¼ 1g ¼
U0POS � fxp; xqg. Thus,
X
x0

j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

j½x0j�C j

¼
X

x0
j
2ðU0POS�fx

0
p ;x
0
qgÞ

j½x0j�C j ¼
X

j¼½1;u�;j–p;q

j½x0j�C j ¼
X

j¼½1;u�;j–p;q

j½x0j�Bj

¼ jPOSU
B ðDÞj:
(3) ½x0p�C R POSU
C ðDÞ, ½x0q�C 2 POSU

C ðDÞ.
From the existing condition, it is easy to know that
fx0j 2 XjX 2 U0C=B ^ X 2 U0POS ^ jX=Dj ¼ 1g ¼ U0POSC

� fxqg.
Thus, by the similar method with Case(2), we have that
X
x0

j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

j½x0j�C j ¼ jPOSU
B ðDÞj:
(4) ½x0p�C R POSU
C ðDÞ, ½x0q�C R POSU

C ðDÞ.
From the existing condition, it is easy to know that
fx0j 2 XjX 2 U0C=B ^ X 2 U0POS ^ jX=Dj ¼ 1g ¼ U0POSC

. Thus, by
the similar method with Case(1), we have that
X
x0

j
2X^X2U0=B^X # U0POS^jfdi2D0 jf ðX;diÞ–0gj¼1

j½x0j�C j ¼ jPOSU
B ðDÞj:
In all, based on the above analysis, we conclude thatX
x0

j
2POSU0

B ðD
0Þ

X
di2D0

f ðx0j;diÞ ¼ jPOSU
B ðDÞj: �
To illustrate Lemma 3.1, we employ the following example.

Example 3.4. Based on Tables 1 and 3, we suppose B ¼ fa1g, and can
obtain that the equivalent classes in the decision table shown as
Table 1 is U=B ¼ ffx 1; x3; x4g; fx2; x5; x7; x8; x10; x12; x14g;
fx6; x9; x11g; fx13; x15gg, and the partition of universe in the
compacted Table 1 (shown as Table 3) is U0=B ¼ ffx1; x4g;
fx2; x7; x8g; fx6g; fx13gg. Furthermore, it easy to know that

P
x0

j
2POSU0

B

ðD0Þ
P

di2D0 f ðx0j; diÞ ¼
P

di2D0 f ðx1; diÞ þ
P

di2D0 f ðx4; diÞ ¼ 2þ 1 ¼ 3, and

jPOSU
B ðDÞj ¼ jfx1; x3; x4gj ¼ 3, i.e.

P
x0

j
2POSU0

B ðD
0Þ
P

di2D0 f ðx0j; diÞ ¼

jPOSU
B ðDÞj.

To demonstrate the sequence preserving of attributes’ inner sig-
nificance and outer significance that are defined based on positive
region is unchanged after a decision table is compacted, we intro-
duce the following two theorems.

Theorem 3.1. Given a decision table DT ¼ ðU;C [ DÞ and its com-

pacted version DT 00 ¼ ðU0;C [ D0Þ. If Siginner
PR ða;C;D0;U0Þ > Siginner

PR

ðb;C;D0;U0Þ, then

Siginner
PR ða;C;D;UÞ > Siginner

PR ðb;C;D;UÞ;

where, a; b 2 C.

The theorem is easy to be proved by means of Lemma 3.1.

Theorem 3.2. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ, B # C. If

Sigouter
PR ða;B;C;D0;U0 � U0BÞ > Sigouter

PR ðb;B; C;D0;U0 � U0BÞ, then

Sigouter
PR ða;B;C;D;UÞ > Sigouter

PR ðb;B;C;D;UÞ;

where U0B ¼ POSU0

B ðD
0Þ [ NEGU0

B ðD
0Þ.
Proof. From the existing condition, it is evident that U0B=ðB[
fagÞ � U0B=B. Thus, we have that fx 2 XjX 2 U0B=ðB [ fagÞ^
X # U0POS^ jX=Dj ¼ 1g ¼ fy 2 YjY 2 U0B=B ^ Y # U0POS ^ jY=Dj ¼ 1g.

Similarly, from U0B=ðB [ fbgÞ � U0B=B, we obtain that fx 2 XjX 2
U0B=ðB[ fbgÞ ^ X # U0POS ^ jX=Dj ¼ 1g ¼ fy 2 YjY 2 U0B=B^ Y # U0POS^
jY=Dj ¼ 1g.

Therefore, it is easy to know that

fx 2 XjX 2 U0B=ðB [ fagÞ ^ X # U0POS ^ jX=Dj ¼ 1g ¼ fx 2 XjX
2 U0B=ðB [ fbgÞ ^ X # U0POS ^ jX=Dj ¼ 1g:

From the above equation and the existing condition, we have that

Sigouter
PR ða;B;C;D

0;U0 � U0BÞ > Sigouter
PR ðb;B;C;D

0;U0 � U0BÞ

() jPOSU0�U0B
B[fag ðD

0Þj � jPOSU0�U0B
B ðD0Þj > jPOSU0�U0B

B[fbg ðD
0Þj � jPOSU0�U0B

B ðD0Þj

() jPOSU0�U0B
B[fag ðD

0Þj > jPOSU0�U0B
B[fbg ðD

0Þj
() fx 2 XjX 2 U0=ðB [ fagÞ ^ X # U0POS ^ jX=Dj ¼ 1g

� fx 2 XjX 2 U0B=ðB [ fagÞ ^ X # U0POS ^ jX=Dj ¼ 1g
> fx 2 XjX 2 U0=ðB [ fbgÞ ^ X # U0POS ^ jX=Dj ¼ 1g
� fx 2 XjX 2 U0B=ðB [ fbgÞ ^ X # U0POS ^ jX=Dj ¼ 1g

() fx 2 XjX 2 U0=ðB [ fagÞ ^ X # U0POS ^ jX=Dj ¼ 1g
> fx 2 XjX 2 U0=ðB [ fbgÞ ^ X # U0POS ^ jX=Dj ¼ 1g

()
X

x0
j
2POSU0

B[fagðD
0 Þ

X
di2D0

f ðx0j;diÞ >
X

x0
j
2POSU0

B[fbgðD
0Þ

X
di2D0

f ðx0j;diÞ:
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Furthermore, by the conclusion of Lemma 3.1, we have thatX
x0

j
2POSU0

B[fagðD
0 Þ

X
di2D0

f ðx0j; diÞ >
X

x0
j
2POSU0

B[fbgðD
0Þ

X
di2D0

f ðx0j;diÞ

() jPOSU
B[fagðDÞj > jPOSU

B[fbgðDÞj

() jPOSU
B[fagðDÞj � jPOSU

B ðDÞj > jPOSU
B[fbgðDÞj � jPOSU

B ðDÞj
() Sigouter

PR ða;B;C;D;UÞ > Sigouter
PR ðb; B;C;D;UÞ:

Therefore, we have that Sigouter
PR ða;B;C;D;UÞ> Sigouter

PR ðb;B;C;D;UÞ
if Sigouter

PR ða;B;C;D
0;U0 �U0BÞ> Sigouter

PR ðb;B;C;D
0;U0 �U0BÞ. h

Based on the results of Theorems 3.1 and 3.2, we design a new
attribute reduction algorithm.

Algorithm 4. Attribute reduction algorithm based on compacted
decision tables in the sense of positive region (AR-CT-PR)
Ta
Th
Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: Compute DT 00 ¼ ðU0;C [ D0Þ by compacting the decision

table DT;
Step 2: red Ø;// red is the pool to conserve the selected

attributes;

Step 3: Compute Siginner
PR ðak;C;D

0;U0Þ; k 6 jCj;
Step 4: Put ak into red, where Siginner

PR ðak;C;D
0;U0Þ > 0;// These

attributes form the core of the given decision table;
Step 5: i 1 and U01  U0;

Step 6: While jPOSU0i
redðD

0Þj ¼ 0,

Do {Compute the positive region POSU0i
redðD

0Þ,

U0iþ1 ¼ U0i � POSU0i
redðD

0Þ [ NEGU0i
redðD

0Þ,
red red [ fa0g, where Sigouter

PR ða0; red;C;D0;U0iþ1Þ
¼maxfSigouter

PR ðak; red;C;D0;U0iþ1Þ; ak 2 C � redg,
i iþ 1;

Step 7: return red and end.
Furthermore, we analyze the time complexity of Algorithm 4.
Because the process of constructing the compacted table is in fact
identical to the one of partitioning the universe U with all condi-
tion attribute and the time complexity of computing partition is
OðjCjjUjÞ [53], we have that their time complexity of Step 1 is

OðjCjjUjÞ. In step 3, Siginner
PR ðak;C;D

0;U0Þ is computed on the com-
pacted decision table DT 00. Thus the complexity of this step is
OðjU0jjCjðjCj � 1ÞÞ. In Step 5, through progressively adding an
attribute with the maximal significance into the candidate reduct
in each iteration, a reduct can eventually be found. The time
complexity of this step is Oð

P
i¼1jCjjU

0
ijðjCj � iþ 1ÞÞ. And the time

complexity of other steps is constant. Therefore, the time

complexity of Algorithm 4 is OðjU0jjCjðjCj � 1Þ þ
PjCj

i¼1jU
0
ij

ðjCj � iþ 1ÞÞ. Comparison with the complexity of Algorithm 2,
the difference between the universe U in a decision table and
the universe U0 in its compacted version is key point. Therefore,
ble 4
e comparison between the time complexities of Algorithms 2–4.

Algorithm Step1 Step3

Algorithm 2 Constant OðjUjjCjðjCj � 1ÞÞ
Algorithm 3 OðjCjjUjÞ OðjU0 jjCjðjCj � 1ÞÞ
Algorithm 4 OðjCjjUjÞ OðjU0 jjCjðjCj � 1ÞÞ
the smaller the ratio of between U0 and U is, the less
time-consuming of Algorithm 3 is. To illustrate these differences,
the time complexity of each step in Algorithms 2–4 is shown as
Table 4.
4. Shannon entropy and complement entropy attribute
reduction based on compacted decision tables

From the analysis in the above section, we can see that the
simplified decision table discards some decision values of objects,
which results in not being able to compute the items jXij and
jXij \ jYjj in the expression of entropies. Therefore, Shannon
entropy and complement entropy cannot be computed by means
of a simplified decision table. To solve this problem, in this sec-
tion, we propose Shannon condition entropy and complement
condition entropy for a compacted decision table and design
the corresponding attribute reduction algorithms.

4.1. Shannon entropy attribute reduction for a compacted decision
table

In this subsection, we first define the Shannon entropy, inner
significance and outer significance for a compacted decision table.
Furthermore, some theorems, which ensure that sequence preserv-
ing of attribute’s inner significance and outer significance defined
by Shannon entropy after a decision table is compacted, are pro-
posed. Finally, an effective attribute reduction algorithm is
designed for a compacted decision table.

Definition 4.1. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0;C [ D0Þ;B # C;U0=B ¼ fX01;X

0
2; . . . ;X0lg,

then the Shannon condition entropy in the compacted decision
table is defined as

HU0 ðD0jBÞ ¼ �
Xm0
j¼1

Pn0

i¼1f ðX0j;diÞ
jU0j

Xn0

i¼1

f ðX 0j; diÞPn0
i¼1f ðX0j;diÞ

log
f ðX0j;diÞPn0
i¼1f ðX0j;diÞ

;

where f ðX 0j; diÞ ¼
P

x0
k
2X0j

f ðx0k; diÞ;m0 ¼ jU0=Bj and n0 ¼ jD0j.

To analyze how the sequence of attribute’s inner significance
and outer significance values will change after a decision table
being compacted, we employ three theorems, which is basis on
the following lemma.

Lemma 4.1. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ;B # C, then

HUðDjBÞ ¼ jU
0j
jUj H

U0 ðD0jBÞ:
Proof. From the definition of the compacted decision table, it is
easy to know that U=C ¼ f½xj1 �C ; ½xj2 �C ; . . . ; ½xjm �Cg;Xi ¼ ½xji �C ;U

0 ¼
fx01; x02; . . . ; x0mg; x0j 2 ½xij �C . Let m ¼ jU=Bj;n ¼ jU=Dj;m0 ¼ jU0=Bj and

n0 ¼ jD0j. It is obvious that m ¼ m0 and n ¼ n0. Without any loss of
generalization, by the definition of a compacted decision table,
we suppose that U=B ¼ fX1;X2; . . . ;Xlg;U0=B ¼ fX 01;X

0
2; . . . ;X0lg and

x0k 2 X0j () ½x0k�C 2 Xj. Then, we obtain that
Step5 Other steps

Oð
P

i¼1jCjjUijðjCj � iþ 1ÞÞ Constant
Oð
P

i¼1jCjjU
0
ijðjCj � iþ 1ÞÞ Constant

Oð
P

i¼1jCjjU
0
ijðjCj � iþ 1ÞÞ Constant



268 W. Wei et al. / Knowledge-Based Systems 86 (2015) 261–277
f ðX 0j; diÞ ¼
X
x0

k
2X0j

f ðx0k;diÞ ¼
X
x0

k
2X0j

jfxjf ðx;dÞ ¼ vdi
; x 2 ½x0k�Cgj

¼
X
x0

k
2X0j

j½x0k�C \ Yij ¼ jXj \ Yij; and
Xn0

i¼1

f ðX0j;diÞ ¼ jXjj:

And, by means of Definition 3.1, we have that

HUðDjBÞ ¼ �
Xm

j¼1

jXjj
jUj
Xn

i¼1

jXj \ Yij
jXjj

log
jXj \ Yij
jXjj

¼ �
Xm0
j¼1

Pn0

i¼1f ðX 0j; diÞ
jUj

Xn0

i¼1

f ðX0j;diÞPn0
i¼1f ðX 0j; diÞ

log
f ðX 0j; diÞPn0
i¼1f ðX 0j;diÞ

¼ jU
0j
jUj H

U0 ðD0jBÞ;

where m ¼ jU=Bj;n ¼ jU=Dj;m0 ¼ jU0=Bj and n0 ¼ jD0j. h

From the lemma, we can see that relationship between the
value of Shannon entropy in a decision table and the one in its
compacted version. To better illustrate the Lemma 4.1, based on
Tables 1 and 3, we give the following example.

Example 4.1. Based on Tables 1 and 3, we suppose B ¼ fa1g, and
can obtain that U=B ¼ ffx1; x3; x4g; fx2; x5; x7; x8; x10; x12; x14g;
fx6; x9; x11g; fx13; x15gg, and the partition of universe in the com-
pacted Table 1 (shown as Table 3) is U0=B ¼ ffx1; x4g; fx2; x7; x8g;
fx6g; fx13gg. By Definition 4.1, we have that

HUðDjBÞ ¼ �
Xm

i¼1

jXij
jUj
Xn

j¼1

jXi \ Yjj
jXij

log
jXi \ Yjj
jXij

¼ � 3
15

3
3

log
3
3
þ 0

3
log

0
3
þ 0

3
log

0
3
þ 0

3
log

0
3

� �

� 7
15

0
7

log
0
7
þ 2

7
log

2
7
þ 2

7
log

2
7
þ 3

7
log

3
7

� �

� 3
15

1
3

log
1
3
þ 2

3
log

2
3
þ 0

3
log

0
3
þ 0

3
log

0
3

� �

� 2
15

0
2

log
0
2
þ 1

2
log

1
2
þ 1

2
log

1
2
þ 0

2
log

0
2

� �
:

HU0 ðD0jBÞ ¼ �
Xm0
j¼1

Pn0

i¼1f ðX 0j; diÞ
jU0j

Xn0

i¼1

f ðX 0j; diÞPn0
i¼1f ðX 0j;diÞ

log
f ðX 0j; diÞPn0
i¼1f ðX0j;diÞ

¼ �3
7

3
3

log
3
3
þ 0

3
log

0
3
þ 0

3
log

0
3
þ 0

3
log

0
3

� �

� 7
7

0
7

log
0
7
þ 2

7
log

2
7
þ 2

7
log

2
7
þ 3

7
log

3
7

� �

� 3
7

1
3

log
1
3
þ 2

3
log

2
3
þ 0

3
log

0
3
þ 0

3
log

0
3

� �

� 2
7

0
2

log
0
2
þ 1

2
log

1
2
þ 1

2
log

1
2
þ 0

2
log

0
2

� �
:

Therefore, we have that HUðDjBÞ ¼ 7
15 HU0 ðD0jBÞ.

Base on the conclusions in Lemma 4.1, we investigate the
change mechanism of shannon entropy for the compacted decision
table in which the current positive region is removed. The follow-
ing theorem gives the concrete analysis.

Theorem 4.1. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ;B # C, then

HUðDjBÞ ¼ jU
0 � U00Bj
jUj HU0�U00B ðD0jBÞ;

where U00BðDÞ ¼ POSU0

B ðD
0Þ.
Proof. From the definition of the compacted decision table, it is
easy to know that U=C ¼ f½xj1 �C ; ½xj2 �C ; . . . ; ½xjm �Cg;Xi ¼ ½xji �C ;
U0 ¼ fx01; x02; . . . ; x0mg; x0j 2 ½xij �C . Without any loss of generalization,

we suppose that U=B ¼ fX1;X2; . . . ;Xlg;U0=B ¼ fX 01;X
0
2; . . . ;X0lg and

x0k 2 X 0j () ½x0k�C 2 Xj; POSU0

B ðD
0Þ ¼ fX01;X2; . . . ;X0ug;u 6 m.

From the definition of the positive region in the compacted
decision table, we have that fdi 2 D0jf ðX0j; diÞ – 0gj ¼ 1 for

8X0j 2 POSU0

B ðD
0Þ. Thus, it is obvious that for 8X0j 2 POSU0

B ðD0Þ;
9dp 2 D0, such that f ðX0j; dpÞ ¼

Pn
i¼1f ðX0j; diÞ, and f ðX0j; diÞ ¼ 0 for

8di – dp. Therefore, we have that
Pn

i¼1
f ðX0j ;diÞPn

i¼1
f ðX0j ;diÞ

log
f ðX0j ;diÞPn

i¼1
f ðX0j ;diÞ

¼ 0,

for X0j 2 POSU0

B ðD
0Þ. And, by means of Definition 4.1 and Lemma 4.1,

we have that

HUðDjBÞ ¼ jU
0j
jUj H

U0 ðD0jBÞ

¼�jU
0j
jUj

Xm

j¼uþ1

Pn
i¼1f ðX0j;diÞ
jU0j

Xn

i¼1

f ðX0j;diÞPn
i¼1f ðX0j;diÞ

log
f ðX0j;diÞPn
i¼1f ðX0j;diÞ

¼�jU
0 �U00Bj
jUj

Xm

i¼uþ1

Pn
i¼1f ðX0j;diÞ
jU0 �U00Bj

Xn

i¼1

f ðX0j;diÞPn
i¼1f ðX0j;diÞ

log
f ðX0j;diÞPn
i¼1f ðX0j;diÞ

¼ jU
0 �U00Bj
jUj HU0�U00B ðD0jBÞ: �

From the theorem, we can see that the value of Shannon condi-
tion entropy for a decision table is proportional to the one for its
compacted version, which is the basis of constructing effective
attribute reduction algorithm on compacted decision tables. To
better illustrate Theorem 4.1, we give the following example.
Example 4.2. (Continued from Example 4.1) Based on Table 3, we

have U00B ¼ POSU0

B ðD
0Þ ¼ fx1; x4g and U0 � U00B ¼ fx2; x6; x7; x8; x13g.

Then,

HU0�U00BðD0jBÞ ¼ �
Xm0
j¼1

Pn0

i¼1f ðX0j;diÞ
jU0 � U00Bj

Xn0

i¼1

f ðX 0j; diÞPn0
i¼1f ðX0j;diÞ

log
f ðX0j;diÞPn0
i¼1f ðX0j;diÞ

¼ �7
5

0
7

log
0
7
þ 2

7
log

2
7
þ 2

7
log

2
7
þ 3

7
log

3
7

� �

� 3
5

1
3

log
1
3
þ 2

3
log

2
3
þ 0

3
log

0
3
þ 0

3
log

0
3

� �

� 2
5

0
2

log
0
2
þ 1

2
log

1
2
þ 1

2
log

1
2
þ 0

2
log

0
2

� �
:

Combination with the result of HUðDjBÞ in Example 4.1, we have

that HUðDjBÞ ¼ 5
15 HU0�U00B ðD0jBÞ.

Lemma 4.1 and Theorem 4.1 are the basis of the following
Theorems 4.2 and 4.3. Based on Shannon condition entropy in a
compacted decision table, we will definite the inner significance
and investigate its change mechanism.

Definition 4.2. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 0 ¼ ðU0; C [ D0Þ, then the inner significance of
8a 2 C is

Siginner
H ða;C;D0;U0Þ ¼ HU0 ðD0jC � fagÞ � HU0 ðD0jCÞ:

The inner significance is the basis of computing the core for a
compacted decision table.
Theorem 4.2. Given a decision table DT ¼ ðU;C [ DÞ and its com-

pacted version DT 00 ¼ ðU0;C [ D0Þ. If Siginner
H ða;C;D0;U0Þ > Siginner

H

ðb;C;D0;U0Þ, then Siginner
H ða; C;D;UÞ > Siginner

H ðb;C;D;UÞ.
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This theorem is easy to be prove by means of Theorem 4.1, and
ensures that the core obtained from a decision table is identical to
the one from its compacted version. The conclusion provides the
theoretical foundation of computing core for Algorithm 5.

Furthermore, in the compacted decision table, the outer attri-
bute significance defined by Shannon entropy and its change
mechanism will be given as follows.

Definition 4.3. Given a decision table DT ¼ ðU;C [ DÞ, and its
compacted version DT 00 ¼ ðU0;C [ D0Þ, B # C, then the significance of
8a 2 ðC � BÞ is

Sigouter
H ða;B;C;D0;U0Þ ¼ HU0 ðD0jBÞ � HU0 ðD0jB [ fagÞ:

Based on Definition 4.3, we investigate the change mechanism
of outer significance in the following theorem.
Theorem 4.3. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ; a; b 2 C � B and B � C. If

Sigouter
H ða;B;C;D0;U0 � U00BÞ > Sigouter

H ðb;B;C;D0;U0 � U00BÞ, then

Sigouter
H ða;B;C;D;UÞ > Sigouter

H ðb;B;C;D;UÞ.
Proof. From the existing condition and Theorem 4.1, we have that

Sigouter
H ða;B;C;D0;U0 � U00BÞ ¼ HU0�U00BðD0jBÞ � HU0�U00B ðD0jB [ fagÞ

¼ jUj
jU0 � U00Bj

ðHUðDjBÞ � HUðDjB [ fagÞÞ

¼ jUj
jU0 � U00Bj

Sigouter
H ða;B;C;D;UÞ:

In similar, we obtain that Sigouter
H ðb;B; C;D0;U0 � U00BÞ

¼ jUj
jU0�U00B j

Sigouter
H ðb; B;C;D;UÞ. Therefore,

Sigouter
H ða;B;C;D0;U0 � U00BÞ > Sigouter

H ðb; B;C;D0;U0

� U00BÞ () Sigouter
H ða;B;C;D;UÞ

> Sigouter
H ðb; B;C;D;UÞ: �

From Theorem 4.3, we can see that the sequence of attributes’
outer significance defined by Shannon entropy is unchanged after
a decision table is compacted, which ensures that the results of
attribute reduction in its compacted version is identical to the ones
in a decision table. To better illustrate the theorem, we give the fol-
lowing example.

Example 4.3. (Continued from Example 3.4 and 4.2) Based on
Tables 1 and 3, we obtain the partitions U=fa1g ¼ ffx1; x3; x4g;
fx2; x5; x7; x8; x10; x12; x14g; fx6; x9; x11g; fx13; x15gg; U=fa1; a2g ¼
ffx1; x3g; fx4g; fx2; x5; x7; x10; x14g; fx8; x12g; fx6; x9; x11g; fx13; x15gg;
U=fa1;a3g ¼ ffx1;x3;x4g;fx2;x5g;fx7;x10;x14g; fx8;x12g;fx6;x9;x11g;
fx13;x15gg;U0=fa1g ¼ ffx1;x4g;fx2;x7;x8g;fx6g;fx13gg;U0=fa1;a2g ¼
ffx1g; fx4g; fx2; x7g; fx8g; fx6g; fx13gg and U0=fa1; a3g ¼ ffx1; x4g;
fx2g; fx7g; fx8g; fx6g; fx13gg. From Example 3.4, we have B ¼ fa1g
and U0 � U00B ¼ fx2; x6; x7; x8; x13g.

By computing, we have

HUðDjBÞ ¼ 0:3141; HUðDjB [ fa2gÞ ¼ 0:1929; HUðDjB [ fa3gÞ

¼ 0:0954; HU0�U00B ðD0jBÞ ¼ 0:9423; HU0�U00B ðD0jB [ fa2gÞ

¼ 0:5786 and HUðDjB [ fa3gÞ ¼ 0:2863:

Furthermore, by the definition of outer significance, we have
Sigouter
H ða2;B;C;D;UÞ ¼ HUðDjBÞ � HUðDjB [ fa2gÞ

¼ 0:3141� 0:1929 ¼ 0:1212:

Sigouter
H ða3;B;C;D;UÞ ¼ HUðDjBÞ � HUðDjB [ fa3gÞ

¼ 0:3141� 0:0954 ¼ 0:2187:

Therefore, Sigouter
H ða2;B; C;D;UÞ < Sigouter

H ða3;B;C;D;UÞ.
Similarly, we have

Sigouter
H ða2;B;C;D

0;U0 � U00BÞ ¼ HU0�U00B ðD0jBÞ � HU0�U00BðD0jB [ fa2gÞ
¼ 0:9423� 0:5786 ¼ 0:3637:

Sigouter
H ða3;B;C;D

0;U0 � U00BÞ ¼ HU0�U00B ðD0jBÞ � HU0�U00BðD0jB [ fa3gÞ
¼ 0:9423� 0:2863 ¼ 0:6560:

Therefore,
Sigouter

H ða2;B; C;D
0;U0 � U00BÞ < Sigouter

H ða3;B;C;D
0;U0 � U00BÞ.

Based on the conclusions about shannon condition entropy and
outer significance for a compacted decision table, we design an
attribute reduction algorithm as follow.

Algorithm 5. Attribute reduction algorithm based on compacted
decision tables in the sense of Shannon entropy (AR-CT-SCE)
Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: Compute DT 00 ¼ ðU0; C [ D0Þ by compacting the decision

table DT;
Step 2: red Ø;// red is the pool to conserve the selected

attributes;

Step 3: Compute Siginner
SCE ðak;C;D

0;U0Þ; k 6 jCj;
Step 4: Put ak into red, where Siginner

SCE ðak; C;D
0;U0Þ > 0;// These

attributes form the core of the given decision table;
Step 5: i 1 and U01  U0;

Step 6: While HUðDjCÞ ¼ jU
0
i�U00red j
jUj HU0i�U00red ðD0jredÞ

Do {Compute the positive region POSU0i
redðD

0Þ,

U0iþ1 ¼ U0i� POSU0i
redðD

0Þ,
red red[ fa0g, where Sigouter

SCE ða0; red;C;D0;U0iþ1Þ ¼
maxfSigouter

SCE ðak; red;C;D0;U0iþ1Þ; ak 2 C � redg,
i iþ 1;

Step 7: return red and end.

This algorithm is similar to Algorithm 4, except for the inner
significance, outer significance and the stop criterion being defined
based on Shannon condition entropy. Thus, the time complexity of
Algorithm 5 is equal to the one of Algorithm 4, and we omit its
analysis here.
4.2. Complement entropy attribute reduction for compacted decision
tables

In this subsection, we first define the complement entropy,
inner significance and outer significance for a compacted decision
table. Furthermore, some theorems are proposed to ensure that the
sequence of attribute’s inner significance and outer significance
defined by complement entropy is unchanged after a decision table
is compacted. Finally, an effective attribute reduction algorithm is
designed for a compacted decision table.
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Definition 4.4. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0; C [ D0Þ, then the complement
entropy for a compacted decision table is defined as

EU0 ðD0jCÞ ¼
Xm0
j¼1

Xn0

i¼1

f ðX0j;diÞ
jUj

Pn0

i¼1f ðX0j;diÞ � f ðX0j;diÞ
jUj ;

where f ðX0j;diÞ ¼
P

x0
k
2X0j

f ðx0k;diÞ;m0 ¼ jU0=Bj and n0 ¼ jD0j.

Sequently, we investigate the relationship between comple-
ment entropy in a decision table and that in its compacted version,
which is the basis of designing an attribute reduction algorithm
based on a compacted decision table. The following lemma and
theorems will be employed to solve the issue.

Lemma 4.2. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ;B # C, then

EUðDjBÞ ¼ jU
0j2

jUj2
EU0 ðD0jBÞ:

We omit the proof of Lemma 4.2, because it is similar with the
one of Lemma 4.1. To better illustrate the Lemma 4.2, we give the
following example.
Example 4.4. Based on Tables 1 and 3, we suppose B ¼ fa1g, and
can obtain that U=B ¼ ffx1; x3; x4g; fx2; x5; x7; x8; x10; x12; x14g;
fx6; x9; x11g; fx13; x15gg, and the partition of universe in the com-
pacted Table 1 (shown as Table 3) is U0=B ¼ ffx1; x4g; fx2; x7; x8g;
fx6g; fx13gg. By Definition 4.4, we have that

EUðDjBÞ ¼
Xm

i¼1

Xn

j¼1

jYj \ Xij
jUj

jYc
j � Xc

i j
jUj

¼
Xm

i¼1

Xn

j¼1

jYj \ Xij
jUj

jXi � Xi \ Yjj
jUj

¼ 1
152 3� 0þ 0� 3þ 0� 3þ 0� 3ð Þ

þ 1

152 0� 7þ 2� 5þ 2� 5þ 3� 4ð Þ

� 1
152 1� 2þ 1� 1þ 0� 3þ 0� 3ð Þ

þ 1
152 0� 2þ 1� 1þ 1� 1þ 0� 2ð Þ; and

EU0 ðD0jBÞ ¼
Xm0
j¼1

Xn0

i¼1

f ðX 0j; diÞ
jU0j

Pn0

i¼1f ðX 0j; diÞ � f ðX 0j; diÞ
jU0j

¼ 1
72 3� 0þ 0� 3þ 0� 3þ 0� 3ð Þ

þ 1
72 0� 7þ 2� 5þ 2� 5þ 3� 4ð Þ

þ 1
72 1� 2þ 1� 1þ 0� 3þ 0� 3ð Þ

þ 1
72 0� 2þ 1� 1þ 1� 1þ 0� 2ð Þ:

Therefore, we have that EUðDjBÞ ¼ 72

152 EU0 ðD0jBÞ.

Base on the results in Lemma 4.2, we investigate the change of
complement entropy for a compacted decision table when the cur-
rent positive region is removed from it. The following theorem
gives a concrete analysis.
Theorem 4.4. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ, then
EUðDjBÞ ¼ jU
0 � U00Bj

2

jUj2
EU0�U00B ðD0jBÞ:

We omit the proof of Theorem 4.4, because it is very similar
with the one of Theorem 4.1.
Example 4.5. (Continued from Example 4.1) Based on Table 3 and

Definition 3.7, we have U00B ¼ POSU0

B ðD
0Þ ¼ fx1; x4g. Thus

U0 � U00B ¼ fx2; x6; x7; x8; x13g. Then,
EU0 ðD0jCÞ ¼
Xm0
j¼1

Xn0

i¼1

f ðX0j;diÞ
jU0j

Pn0

i¼1f ðX0j;diÞ � f ðX0j;diÞ
jU0j

¼ 1
72 0� 7þ 2� 5þ 2� 5þ 3� 4ð Þ

þ 1
72 1� 2þ 1� 1þ 0� 3þ 0� 3ð Þ

þ 1
72 0� 2þ 1� 1þ 1� 1þ 0� 2ð Þ:

Combination with the result of EUðDjBÞ in Example 4.4, we have that

EUðDjBÞ ¼ 52

152 EU0�U00B ðD0jBÞ.

Based on the complement condition entropy proposed above,
the inner attribute significant in the sense of complement entropy
and its change mechanism are given as follows.

Definition 4.5. Given a decision table DT ¼ ðU;C [ DÞ, and its
compacted version DT 0 ¼ ðU0; C [ D0Þ, then the inner significance of
8a 2 C is
Siginner
E ða;C;D0;U0Þ ¼ EU0 ðD0jC � fagÞ � EU0 ðD0jCÞ:

For a compacted decision table, the inner attribute significance
is the basis of computing the core of condition attributes with
respect to decision attributes. Therefore, it is important to investi-
gate the change mechanism of inner significance.
Theorem 4.5. Given a decision table DT ¼ ðU;C [ DÞ and its com-

pacted version DT 00 ¼ ðU0;C [ D0Þ; a; b 2 C. If Siginner
H ða;C;D0;

U0Þ > Siginner
H ðb;C;D0;U0Þ, then Siginner

H ða;C;D;UÞ > Siginner
H ðb;C;D;UÞ.
This theorem is easy to be proved by Lemma 4.2, and ensures
that the core in the sense of complement entropy obtained from
a decision table is equal to the one from its compacted version.
This theorem provides the theoretical foundation of computing
core in Algorithm 6.

Furthermore, we define the outer significance in the sense of
complement entropy, which is the basis of determining which
attribute is added into the candidate reduct in each iteration of
attribute reduction algorithms.

Definition 4.6. Given a decision table DT ¼ ðU;C [ DÞ and its
compacted version DT 00 ¼ ðU0;C [ D0Þ; a; b 2 C � B B � C, then the
outer significance of 8a 2 ðC � BÞ is
Sigouter
E ða;B;C;D0;U0Þ ¼ EU0 ðD0jCÞ � EU0 ðD0jC [ fagÞ:

Based on the definition, we investigate the change mechanism
of outer attribute significance after a decision table is compacted.
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Theorem 4.6. Given a decision table DT ¼ ðU;C [ DÞ and its com-
pacted version DT 00 ¼ ðU0;C [ D0Þ, U=B � U=C. If

Sigouterða;B;C;D0;U0Þ > Sigouterðb; B;C;D0;U0Þ, then Sigouter

ða;B;C;D;UÞ > Sigouterðb;B;C;D;UÞ.

We omit the proof of this theorem, because it is similar with the
one of Theorem 4.3.

From this theorem, we can obtain the sequence preserving of
attribute significance in the sense of complement entropy after a
decision table is compacted, which ensures that the reducts
obtained from a compacted decision table is identical to those
obtained from its original version.

Based on the theoretical results mentioned above, we design an
attribute reduction algorithm (called as Algorithm 6: Attribute
reduction algorithm for a compacted decision table in the sense
of complement condition entropy (AR-CT-CCE)). The algorithm is
similar with Algorithms 4 and 5, but the inner significance, outer
significance and stop criterion are replaced by those in the sense
of complement entropy. Thus, we omit the description of
Algorithm AR-CT-CCE. Because the time complexity of Algorithm
6 is identical to the one of Algorithm 4, we also omit its analysis
here.

5. Experimental analysis

To verify the theoretical results mentioned above, in this sec-
tion, we carry out several comparative experiments between
ACC-PR, AR-ST-PR and AR-CT-PR, between ACC-SCE and
AR-CT-SCE, and between ACC-CCE and AR-CT-CCE. The hardware
used in these experiments is a personal computer equipped with
Table 6
The comparison of the reducts obtained by Algorithms ACC-PR and AR-ST-P

Data sets Reducts obtained by ACC-PR

Cancer 6,3,5,1
Letter 4,8,15,9,11,13,12,10,16,3,14
Monks 1,2,3,4,5,6
Spect 1,3,4,7,8,9,10,13,14,16,19,20,21,22,6,5
HVWNT 1,38
Wine lis 10,13,7,2
Ticdata2000 2,5,43,44,47,55,59,68,80,83,31,18,

9,39,54,49,64,57,28,61,48,63,45,58
Molecula 50,38,30,35,29,24,26,58,18,11
Kr-vs-kp 1,3,4,5,6,7,10,12,13,15,16,17,18,20,21

23,24,25,26,27,28,30,31,33,34,35,36,1
Mushroom 5,20,3

Table 5
The description of experimental data sets.

Data sets Preprocessing Number of
objects

Number of
attributes

Number of
classes

1 Cancer – 683 9 2
2 Letter – 20,000 16 26
3 Monks – 1711 6 2
4 Spect – 267 22 2
5 HVWNT Discretization 600 99 5
6 Wine_lis Discretization 178 13 3
7 Ticdata2000 Discretization 5822 85 2
8 Molecula – 3190 60 3
9 Kr-vs-kp – 3196 36 2

10 Mushroom Deleting
missing
values

5644 22 2

11 BlogData_T Discretization 13,099 280 2
12 GFE Discretization 27,936 300 2

⁄HVWNT represents the data set ‘Hill Valley without noise Testing’, BlogData_T
represents the top quarter of data set ‘BlogData Train’, and GFE represents the data
set ‘Grammatical facial expression’.
Intel Core i3 and 2 GB Memory, and the operation system and soft-
ware are Windows 7 and C#, respectively. Twelve data sets in UCI
repository of machine learning databases are employed in experi-
ments and shown in Table 5 in which the size of data sets, the
dimension of the data sets and the number of decision value of
every data set vary widely. In addition, to meet the needs of the
experiment, we covert the incomplete data sets into the complete
ones, and also discretize the numerical data sets.

5.1. Experiments about ACC-PR, AR-ST-PR and AR-CT-PR

We carry out the experiments on first ten data sets in Table 5 to
compare ACC-PR with AR-ST-PR, and the results are shown in
Table 6. From this table, we can see that the bold figures 12;13
in the reduct of ‘letter’ are different from 13;12 in the reduct of
the simplified ‘letter’, and the phenomenon also appears in data
sets ‘Spect’, ‘Wine_lis’, ‘Ticdata2000’ and ‘Molecula’, which indi-
cates that the reducts obtained from a simplified decision table is
different from the ones obtained from its original version.

Table 7 shows the concrete process of running ACC-PR and
AR-CT-PR on the data set Ticdata2000. The profile of Ticdata2000
is given in the first row of Table 7 (Row ‘Initialization’), in which
Column ‘Att’ represents attribute, Column ‘U’ represents universe,
Column ‘POS’ represents positive region, Column ‘NEG’ represents
negative region, and Column ‘Time’ represents the time of reading
data. The second row in Table 7 shows the profile of the compacted
Ticdata2000 and the consuming time of compacting Ticdata2000,
and the columns about ACC-PR in this row are Null because
ACC-PR has no the step. The third row in Table 7 shows the con-
suming time of finding core by means of ACC-PR and AR-CT-PR.
The rows from Loop1 to Loop14 show in each loop, the profiles
of ticdata2000 and the compacted ticdata2000 and the consuming
time of ACC-PR and AR-CT-PR, respectively. From the Table 7, we
can see that the number of objects (5158) in the compacted
Ticdata2000 is less than the one (5822) in Ticdata2000, and thus
the consuming time of finding the core and the reduct by
AR-CT-PR is correspondingly less than the one by ACC-PR. The
experimental results indicate that AR-CT-PR is more efficient than
ACC-PR if a decision can be significantly compacted.

Furthermore, Table 8 lists the experimental results of running
ACC-PR and AR-CT-PR on all data sets in Table 5. In Table 8,
Column ‘Algorithm’ represents the employed algorithm, Column
‘Object’ represents the numbers of objects in a data set and the
one in its compacted version, Column ‘Ratio_C’ represents the ratio
of the compacted data sets and the original data sets, Columns
‘Ini_T’, ‘Com_T’, ‘Cor_T’ and ‘Red_T’ represent the time of reading
data, the time of compacting data, the time of computing core and
the time of computing reduct, Column ‘Total_T’ is the sum of them,
and Column ‘Ratio_T’ represents the ratio of the consuming time of
ACC-PR and the one of AR-CT-PR. From the Table 8, we can see that
R.

Reducts obtained by AR-ST-PR

6,3,5,1
4,8,15,9,11,12,13,10,16,3,14
1,2,3,4,5,6
1,3,4,8,9,10,13,16,19,20,22,11,2,21,5,7,14
1,38
10,7,13,2
2,5,43,44,47,55,59,68,80,83,31,18,
9,39,54,49,64,28,57,61,45,48,58,63
50,38,30,35,29,24,26,19,18,2

, 1,3,4,5,6,7,10,12,13,15,16,17,18,20,21,
1,9 23,24,25,26,27,28,30,31,33,34,35,36,11,9

5,20,3



Table 7
The process of running ACC-PR and AR-CT-PR on the dataset Ticdata2000.

ACC-PR AR-CT-PR

Att U POS NEG Time Att U POS NEG Time

Initialization 85 5822 5701 121 0.2132 85 5822 5701 121 0.2132
Com-table – – – – – 85 5158 5107 51 2.4960
Core 10 5822 5701 121 204.0536 10 5158 5107 50 160.6959
Loop 1 11 2292 2171 121 4.6748 11 1906 1856 44 3.6504
Loop 2 12 893 772 121 1.1024 12 702 658 23 0.8112
Loop 3 13 337 216 121 0.2652 13 213 190 13 0.1664
Loop 4 14 214 93 121 0.1560 14 97 84 8 0.0728
Loop 5 15 190 69 121 0.1456 15 70 62 5 0.0520
Loop 6 16 167 46 121 0.1248 16 47 42 3 0.0364
Loop 7 17 155 34 121 0.1144 17 34 31 1 0.0260
Loop 8 18 146 25 121 0.1248 18 24 23 1 0.0208
Loop 9 19 140 19 121 0.1144 19 18 17 0 0.0156
Loop 10 20 135 14 121 0.1196 20 12 12 0 0.0156
Loop 11 21 131 10 121 0.1144 21 8 8 0 0.0104
Loop 12 22 128 7 121 0.1092 22 6 6 0 0.0052
Loop 13 23 125 4 121 0.1196 23 4 4 0 0.0052
Loop 14 24 123 2 121 0.1144 24 2 2 0 0.0052

Total time 211.6664 168.2983

⁄ ‘–’ represents Null.

Table 8
The comparative experiments about ACC-PR and AR-CT-PR on the data sets in Table 5.

Dataset Algorithm Object Ratio_C (%) Cor/Red Ini_T Com_T Cor_T Red_T Total_T Ratio_T (%)

Cancer ACC-PR 683 100.00 1/4 0.0052 – 0.0676 0.0208 0.0936 100.00
AR-CT-PR 449 65.74 1/4 0.0052 0.0104 0.0312 0.0156 0.0624 66.67

Letter ACC-PR 20,000 100.00 3/11 0.1091 – 25.3040 10.0308 35.4439 100.00
AR-CT-PR 18,659 93.30 3/11 0.1091 1.5132 18.9852 8.6112 29.2187 82.44

Monks ACC-PR 1711 100.00 6/6 0.0047 – 0.1352 0.0000 0.1399 100.00
AR-CT-PR 432 25.25 6/6 0.0047 0.0052 0.0233 0.0000 0.0332 23.73

Spect ACC-PR 267 100.00 14/16 0.0033 – 0.1397 0.0127 0.1557 100.00
AR-CT-PR 219 82.02 14/16 0.0033 0.0104 0.0983 0.0020 0.1140 73.22

HVWNT ACC-PR 600 100.00 0/2 0.0294 – 5.8276 0.1040 5.9610 100.00
AR-CT-PR 78 13.00 0/2 0.0294 0.0897 0.4166 0.0223 0.5590 9.38

Wine-lis ACC-PR 178 100.00 1/4 0.0020 – 0.0323 0.0090 0.0433 100.00
AR-CT-PR 126 70.79 1/4 0.0020 0.0052 0.0200 0.0027 0.0299 69.05

Ticdata2000 ACC-PR 5822 100.00 10/24 0.2132 – 204.0536 7.3996 211.6664 100.00
AR-CT-PR 5158 88.59 10/24 0.2132 2.4960 160.6959 4.8932 168.2983 79.51

Molecular ACC-PR 3190 100.00 0/10 0.0780 – 21.6372 7.0876 28.8028 100.00
AR-CT-PR 3005 94.20 0/10 0.0780 0.3692 19.1880 7.0148 26.6500 92.53

Kr-vs-kp ACC-PR 3196 100.00 27/29 0.0400 – 14.7829 0.0052 14.8281 100.00
AR-CT-PR 3196 100.00 27/29 0.0400 0.4400 14.7829 0.0052 15.2681 102.97

Mushroom ACC-PR 5644 100.00 0/3 0.0533 – 11.7412 1.6276 13.4221 100.00
AR-CT-PR 5644 100.00 0/3 0.0533 0.6117 11.7412 1.6276 14.0338 104.56

BlogData_T ACC-PR 13,099 100.00 0/90 0.9516 – 32945.1473 225.6699 33171.7688 100.00
AR-CT-PR 8771 66.96 0/90 0.9516 118.6858 5853.0885 145.7193 6118.4452 18.44

GFE ACC-PR 27,936 100.00 183/204 2.4960 – 202971.4707 11310.6804 214284.6471 100.00
AR-CT-PR 18,156 64.99 183/204 2.4960 767.9113 83720.5454 244.6396 84735.5923 39.54
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the consuming time of AR-CT-PR is much less than the one of con-
suming time of ACC-PR on the most of the data sets in Table 5.
However, AR-CT-PR consumes more time than ACC-PR on the two
data sets Kr-vs-kp and Mushroom, which is caused by the reason
that AR-CT-PR need the time to compact data though these data sets
are unchanged after being compacted. It is should be pointed that we
can see based on result in Table 8, the ratio of the time consuming of
ACC-PR and AR-CT-PR has some correlation with the ratio of the size
of a data set and that of its compacted version.

5.2. Experiments about ACC-SCE and AR-CT-SCE

The comparative experiments between Algorithm ACC-SCE
and Algorithm AR-CT-SCE on the data sets in Table 5 are listed
in Tables 9 and 10. Table 9 shows the concrete process of
running ACC-SCE and AR-CT-SCE on data set Ticdata2000. In
Table 9, the first row (Row ‘Initialization’) indicates the profile
of Ticdata2000, which exhibits the information of attribute
(Column ‘Att’), universe (Column ‘U’), positive region (Column
‘POS’), negative region (Column ‘NEG’), and the time of reading
Ticdata2000 (Column ‘Time’); the second row shows the profile
of the compacted Ticdata2000 and the consuming time of
compacting Ticdata2000, and the columns about ACC-SCE in this
row are Null because there is on the step in ACC-SCE; the third
row shows the profiles of Ticdata2000 and the compacted
Ticdata2000 after deleting the positive region of core with
respect to decision attribute, and the consuming time of comput-
ing core by ACC-SCE and AR-CT-SCE. The rows between Loop1



Table 9
The process of running ACC-SCE and AR-CT-SCE on the dataset Ticdata2000.

ACC-SCE AR-CT-SCE

Att U POS NEG Time Att U POS NEG Time

Initialization 85 5822 5701 121 0.2132 85 5822 5701 51 0.2132
Com-table – – – – – 85 5158 5107 51 2.4960
Core 10 2292 2171 121 208.1096 10 1907 1856 51 164.7675
Loop 1 11 893 772 121 4.8932 11 709 658 51 3.6816
Loop 2 12 337 216 121 1.1804 12 241 190 51 0.8372
Loop 3 13 214 93 121 0.2808 13 135 84 51 0.1612
Loop 4 14 190 69 121 0.1664 14 113 62 51 0.0780
Loop 5 15 167 46 121 0.1456 15 93 42 51 0.0468
Loop 6 16 155 34 121 0.1404 16 82 31 51 0.0416
Loop 7 17 146 25 121 0.1248 17 74 23 51 0.0260
Loop 8 18 140 19 121 0.1248 18 68 17 51 0.0260
Loop 9 19 135 14 121 0.1248 19 63 12 51 0.0156
Loop 10 20 131 10 121 0.1196 20 59 8 51 0.0156
Loop 11 21 128 7 121 0.1248 21 57 6 51 0.0156
Loop 12 22 125 4 121 0.1196 22 55 4 51 0.0052
Loop 13 23 123 2 121 0.1248 23 53 2 51 0.0052
Loop 14 24 121 0 121 0.1196 24 51 0 51 0.0052

Total time 216.1124 172.4375

Table 10
The comparative experiments about ACC-SCE and AR-CT-SCE on the data sets in Table 5.

Dataset Algorithm Object Ratio_C (%) Cor/Red Ini_T Com_T Cor_T Red_T Total_T Ratio_T (%)

Cancer ACC-SCE 683 100.00 1/4 0.0052 – 0.0710 0.0233 0.0995 100.00
AR-CT-SCE 449 65.74 1/4 0.0052 0.0104 0.0383 0.0157 0.0696 69.95

Letter ACC-SCE 20,000 100.00 3/11 0.1091 – 24.3238 9.7500 34.1829 100.00
AR-CT-SCE 18,659 93.30 3/11 0.1091 1.5132 19.3752 8.3938 29.3913 85.98

Monks ACC-SCE 1711 100.00 6/6 0.0047 – 0.1327 0.0000 0.1374 100.00
AR-CT-SCE 432 25.25 6/6 0.0047 0.0052 0.0203 0.0000 0.0302 21.98

Spect ACC-SCE 267 100.00 14/16 0.0033 – 0.1147 0.0120 0.1300 100.00
AR-CT-SCE 219 82.02 14/16 0.0033 0.0083 0.0917 0.0017 0.1050 80.77

HVWNT ACC-SCE 600 100.00 0/2 0.0294 – 6.0843 0.4163 6.5300 100.00
AR-CT-SCE 78 13.00 0/2 0.0294 0.0897 0.4370 0.0430 0.5591 9.17

Wine-lis ACC-SCE 178 100.00 1/4 0.0020 – 0.0340 0.0107 0.0467 100.00
AR-CT-SCE 126 70.79 1/4 0.0020 0.0052 0.0233 0.0053 0.0358 76.66

Ticdata2000 ACC-SCE 5822 100.00 10/24 0.2132 – 208.1096 7.7896 216.1124 100.00
AR-CT-SCE 5158 88.59 10/24 0.2132 2.4960 164.7675 4.9608 172.4375 79.79

Molecular ACC-SCE 3190 100.00 0/11 0.0780 – 23.4272 7.6874 31.1926 100.00
AR-CT-SCE 3005 94.20 0/11 0.0780 0.3692 19.5794 6.7906 26.8172 85.97

Kr-vs-kp ACC-SCE 3196 100.00 27/29 0.0400 – 15.2685 0.0087 15.3172 100.00
AR-CT-SCE 3196 100.00 27/29 0.0400 0.4400 15.2685 0.0087 15.7572 102.87

Mushroom ACC-SCE 5644 100.00 0/4 0.0533 – 12.7507 4.1062 16.9102 100.00
AR-CT-SCE 5644 100.00 0/4 0.0533 0.6117 12.7507 4.1062 17.5219 103.61

BlogData_T ACC-PR 13,099 100.00 0/14 0.9516 – 29256.3127 206.5131 29463.7774 100.00
AR-CT-PR 8771 66.96 0/14 0.9516 118.6858 5883.9605 45.6206 6049.2185 20.53

GFE ACC-SCE 27,936 100.00 183/204 2.4960 – 240439.2682 11035.2007 251476.9649 100.00
AR-CT-SCE 18,156 64.99 183/204 2.4960 767.9113 98933.9096 239.0860 99943.4029 39.74
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and Loop14 show in each loop, the profiles of Ticdata2000 and
the compacted Ticdata2000 and the consuming time of
ACC-SCE and AR-CT-SCE. From Table 9, we can see that the
number of objects (5158) in the compacted Ticdata2000 is less
than the one (5822) in Ticdata2000, meanwhile the time of
computing core and reduct by AR-CT-SCE is much less than
the one by ACC-SCE. These experimental results indicate that
AR-CT-SCE is more efficient than ACC-SCE, if a decision can be
significantly compacted.

Furthermore, the comparison of running ACC-SCE and
AR-CT-SCE on all data sets in Table 5 is listed in Table 10. In this
table, Column ‘Algorithm’ represents the employed algorithms,
Column ‘Object’ represents the number of objects in the original
and the compacted data sets, Column ‘Ratio_C’ shows the ratio of
the number of objects in the compacted data sets and the one in
its original version, Columns ‘Ini_T’, ‘Com_T’, ‘Cor_T’ and ‘Red_T’
represent the read time, the time of compacting data sets, the time
of computing core and the time of computing reduct respectively,
Column ‘Total_T’ represents the sum of them, Column ‘Ratio_T’
represents the ratio of the consuming time of running ACC-SCE
and the one of running AR-CT-SCE. From Table 10, we can see that
the consuming time of finding reducts by AR-CT-SCE is much less
than the one by ACC-SCE on the most of the data sets in Table 5.
However, for data sets Kr-vs-kp and Mushroom, AR-CT-SCE con-
sumes more than the one of running ACC-SCE, because these two
data sets are unchanged after the two data sets are compacted. It
is should be pointed that we can see based on result in Table 10,
the ratio of the time consuming of ACC-SCE and AR-CT-SCE has
some correlation with the ratio of the size of a data set and that
of its compacted version.
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5.3. Experiments about ACC-CCE and AR-CT-CCE

In this section, Tables 11 and 12 show the experimental results
of the comparison between ACC-CCE and AR-CT-CCE on the data
sets in Table 5. Table 11 indicates the concrete process of running
ACC-CCE and AR-CT-CCE on the data set Ticdata2000. In Table 11,
the first row (Row ‘Initialization’) shows the initial status of
Ticdata2000, in which Column ‘Att’ represents attribute, Column
‘U’ represents universe, Column ‘POS’ represents positive region,
Column ‘NEG’ represents negative region, and Column ‘Time’ rep-
resents the time of reading Ticdata2000; the second row shows
the profile of the compacted Ticdata2000 and the consuming time
of compacting Ticdata2000, and the columns about ACC-CCE in this
row are Null because there is no the step of compacting data set in
Table 12
The comparative experiments about ACC-CCE and AR-CT-CCE on the data sets in Table 5.

Dataset Algorithm Object Ratio_C (%) Cor/Red Ini_T

Cancer ACC-CCE 683 100.00 1/4 0.0052
AR-CT-CCE 449 65.74 1/4 0.0052

Letter ACC-CCE 20,000 100.00 3/12 0.1091
AR-CT-CCE 18,659 93.30 3/12 0.1091

Monks ACC-CCE 1711 100.00 6/6 0.0047
AR-CT-CCE 432 25.25 6/6 0.0047

Spect ACC-CCE 267 100.00 14/16 0.0033
AR-CT-CCE 219 82.02 14/16 0.0033

HVWNT ACC-CCE 600 100.00 0/3 0.0294
AR-CT-CCE 78 13.00 0/3 0.0294

Wine-lis ACC-CCE 178 100.00 1/4 0.0020
AR-CT-CCE 126 70.79 1/4 0.0020

Ticdata2000 ACC-CCE 5822 100.00 10/24 0.2132
AR-CT-CCE 5158 88.59 10/24 0.2132

Molecular ACC-CCE 3190 100.00 0/10 0.0780
AR-CT-CCE 3005 94.20 0/10 0.0780

Kr-vs-kp ACC-CCE 3196 100.00 27/29 0.0400
AR-CT-CCE 3196 100.00 27/29 0.0400

Mushroom ACC-CCE 5644 100.00 0/4 0.0533
AR-CT-CCE 5644 100.00 0/4 0.0533

BlogData_T ACC-PR 13,099 100.00 0/14 0.9516
AR-CT-PR 8771 66.96 0/14 0.9516

GFE ACC-PR 27,936 100.00 183/204 2.4960
AR-CT-CCE 18,156 64.99 183/204 2.4960

Table 11
The process of running ACC-CCE and AR-CT-CCE on the dataset Ticdata2000.

ACC-CCE

Att U POS NEG Time

Initialization 85 5822 5701 121 0.2
Com-table – – – – –
Core 10 2292 2171 121 208.9
Loop 1 11 893 772 121 4.9
Loop 2 12 337 216 121 1.1
Loop 3 13 214 93 121 0.2
Loop 4 14 190 69 121 0.2
Loop 5 15 167 46 121 0.1
Loop 6 16 155 34 121 0.1
Loop 7 17 146 25 121 0.1
Loop 8 18 140 19 121 0.1
Loop 9 19 135 14 121 0.1
Loop 10 20 131 10 121 0.1
Loop 11 21 128 7 121 0.1
Loop 12 22 125 4 121 0.1
Loop 13 23 123 2 121 0.1
Loop 14 24 121 0 121 0.1

Total time 216.9
ACC-CCE; the third row shows the consuming time of computing
core by ACC-CCE and AR-CT-CCE; the rows between Loop1 and
Loop14 show in each loop, the profiles of Ticdata2000 and the
compacted Ticdata2000 and the consuming time of ACC-CCE and
AR-CT-CCE. From Table 11, we can see that the number of objects
(5158) in the compacted Ticdata2000 is less than the one (5822) in
Ticdata2000, and the time of computing core and reduct by means
of AR-CT-CCE is much less than the one by means of ACC-CCE. The
results indicate that AR-CT-CCE is more efficient than ACC-CCE if a
decision can be significantly compacted.

Furthermore, the experimental results of running ACC-CCE and
AR-CT-CCE on all data sets in Table 5 are listed in Table 12. In this
table, Column ‘Algorithm’ represents the employed algorithms,
Column ‘Object’ represents the number of objects in the original
Com_T Cor_T Red_T Total_T Ratio_T (%)

– 0.0713 0.0253 0.1018 100.00
0.0104 0.0383 0.0120 0.0659 60.96

– 24.0524 9.6816 33.8431 100.00
1.5132 19.0974 8.6600 29.3797 86.81

– 0.1410 0.0000 0.1457 100.00
0.0052 0.0200 0.0000 0.0299 20.52

– 0.1083 0.0123 0.1239 100.00
0.0083 0.0880 0.0017 0.1013 81.76

- 6.0056 0.4007 6.4357 100.00
0.0897 0.4370 0.0367 0.5928 9.21

- 0.0333 0.0097 0.0450 100.00
0.0052 0.0230 0.0047 0.0349 77.56

- 208.9198 7.8601 216.9931 100.00
2.4960 164.7675 5.0549 172.8006 79.63

– 22.8773 7.1311 30.0864 100.00
0.3692 20.5758 6.6440 27.6670 91.96

– 15.3958 0.0093 15.4451 100.00
0.4400 15.3958 0.0093 15.8851 102.84

– 12.6547 4.1039 16.8119 100.00
0.6117 12.6547 4.1039 17.4236 103.63

– 29730.0842 212.9091 29943.9449 100.00
118.6858 5880.9273 47.485,716 6048.0504 20.19

– 222024.0392 11231.7701 233258.3053 100.00
767.9113 81408.8343 263.1304 82442.3450 36.67

AR-CT-CCE

Att U POS NEG Time

036 85 5822 5701 51 0.2036
85 5158 5107 51 2.5024

198 10 1907 1856 51 165.0301
036 11 709 658 51 3.7603
705 12 241 190 51 0.8384
028 13 135 84 51 0.1895
874 14 113 62 51 0.0770
478 15 93 42 51 0.0489
331 16 82 31 51 0.0328
259 17 74 23 51 0.0298
249 18 68 17 51 0.0171
232 19 63 12 51 0.0157
351 20 59 8 51 0.0147
302 21 57 6 51 0.0104
314 22 55 4 51 0.0063
193 23 53 2 51 0.0127
249 24 51 0 51 0.0013

931 172.8006



Table 15
The comparative experiments about AR-mRMR-CCE and AR-CT-CCE on the data sets
in Table 5.

Dataset N-attribute AR-mRMR-PR AR-CT-PR

N-
reduct

T-reduct N-
reduct

T-reduct

Cancer 9 4 0.1100 4 0.0659
Letter 16 14 72.7031 11 29.3797
Monks 6 6 0.1290 6 0.0299
Spect 22 21 0.4250 16 0.1013
HVWNT 99 2 0.0450 2 0.5928
Wine-lis 13 8 0.2600 4 0.0349
Ticdata2000 85 82 1822.7658 24 172.8006
Molecular 60 13 20.6402 10 27.6670
Kr-vs-kp 36 35 25.6295 29 15.8851
Mushroom 22 9 7.1604 3 17.4236
BlogData_T 280 128 13452.3675 14 6048.0504
GFE 300 294 168997.1145 204 82442.3450

Table 13
The comparative experiments about AR-mRMR-PR and AR-CT-PR on the data sets in
Table 5.

Dataset N-attribute AR-mRMR-PR AR-CT-PR

N-
reduct

T-reduct N-
reduct

T-reduct

Cancer 9 4 0.2530 4 0.0624
Letter 16 14 84.1218 11 29.2187
Monks 6 6 0.1310 6 0.0332
Spect 22 21 0.4290 16 0.1140
HVWNT 99 2 0.3031 2 0.5590
Wine-lis 13 8 0.0624 4 0.0299
Ticdata2000 85 82 1796.006 24 168.2983
Molecular 60 13 22.4743 10 26.6500
Kr-vs-kp 36 35 26.9615 29 15.2681
Mushroom 22 9 6.9888 3 14.0338
BlogData_T 280 127 13464.1868 90 6118.4452
GFE 300 266 154539.3754 204 84735.5923

Table 14
The comparative experiments about AR-mRMR-SCE and AR-CT-SCE on the data sets in
Table 5.

Dataset N-attribute AR-mRMR-SCE AR-CT-SCE

N-
reduct

T-reduct N-
reduct

T-reduct

Cancer 9 4 0.1500 4 0.0696
Letter 16 14 72.6491 12 29.3913
Monks 6 6 0.1290 6 0.0302
Spect 22 21 0.4470 16 0.1050
HVWNT 99 2 0.2770 2 0.5591
Wine-lis 13 8 0.0440 4 0.0358
Ticdata2000 85 82 1842.3973 24 172.4375
Molecular 60 13 20.6622 11 26.8172
Kr-vs-kp 36 35 26.0074 29 15.7572
Mushroom 22 9 6.7704 3 17.5219
BlogData_T 280 128 13500.8465 14 6049.2185
GFE 300 294 169433.3550 204 99943.4029

W. Wei et al. / Knowledge-Based Systems 86 (2015) 261–277 275
and the compacted data sets, Column ‘Ratio_C’ shows the ratio of
the number of objects in the compacted data sets and the one in
its original version, Columns ‘Ini_T’, ‘Com_T’, ‘Cor_T’ and ‘Red_T’
represent the read time, the time of compacting data sets, the time
of computing core and the time of computing reduct respectively,
Column ‘Total_T’ represents the sum of them, Column ‘Ratio_T’
represents the ratio of the consuming time of running ACC-CCE
and the one of running AR-CT-CCE. From the Table 12, we can
see that the consuming time of AR-CT-CCE is much less than the
one of ACC-CCE on the most of the data sets in Table 5. However,
AR-CT-CCE consumes more time than ACC-CCE on data sets
Kr-vs-kp and Mushroom, which is caused by the reason that
AR-CT-SCE need to compact the two data sets but they are
unchanged after being compacted. It is should be pointed that
we can see based on result in Table 12, the ratio of the time con-
suming of ACC-CCE and AR-CT-CCE has some correlation with the
ratio of the size of a data set and that of its compacted version.

5.4. Comparative experiments between the attribute reduction
algorithm based on mRMR and our algorithms

To better indicate the effectiveness of our algorithms, in this
section, we will carry out the comparative experiment between
the attribute reduction algorithm based on mRMR (minimal-redun
dancy-maximal-relevance criterion) and our proposed algorithms.
In [32], the feature selection algorithm base on mRMR was pro-
posed, which is representative feature selection algorithm. The
algorithm aims at selecting the feature subset that can leads to
promising improvement on classification accuracy. Since this
paper focus on investigating the attribute reduction algorithms
that aim at preserving the discernibility of data sets in some sense
(for example, in the sense of positive region, Shannon entropy and
complement entropy), we need to modify the feature selection
algorithm in [32] to make it become comparable with our pro-
posed algorithms. The modified algorithm adapts the filter strat-
egy, forward greedy search, and the same stop criteria as those
in our algorithms, whose description is given as follow.

Algorithm 7. Attribute reduction algorithm based on mRMR
(AR-mRMR-D)
Input: Decision table DT ¼ ðU;C [ DÞ;
Output: One reduct red.
Step 1: red Ø;// red is the pool to conserve the selected

attributes;
Step 2: While EFU

Dðred;DÞ – EFU
DðC;DÞ Do// This provides a

stopping criterion
{red red [ fa0g, where ðIða0;DÞ � 1

m�1

P
ai2redIða0; aiÞÞ

¼ maxfðIðak;DÞ � 1
m�1

P
ai2redIðak; aiÞÞ; ak 2 C � redg};

Step 3: return red and end,

where Iðai; ajÞ ¼
Pm

i¼1

Pn
j¼1

jXi\Yj j
jUj log2

jXi\Yj j
jXi j

jUj
jYj j
; Xi 2 U=ai; Yj 2 U=aj;

EFU
DðB;DÞ ¼ EFU

DðC;DÞ is the stopping criterion, D ¼ fPR; SCE; CCEg.
For example, while the positive region is employed as the evalua-
tion function, EFU

PRðB;DÞ is equal to POSU
B ðDÞ and EFU

PRðC;DÞ is equal

to POSU
C ðDÞ.

The results of comparative experiments between AR-mRMR-PR
and AR-CT-PR, between AR-mRMR-SCE and AR-CT-SCE, and
between AR-mRMR-CCE and AR-CT-CCE are shown in Tables 13–
15, respectively. From Table 13, we can see that the reducts
obtained by Algorithm AR-CT-PR are more optimal than that of
Algorithm AR-mRMR-PR (from the perspective of the number of
attributes in the selected reducts), whilst the time consuming of
conducting Algorithm AR-CT-PR is shorter than that of conducting
Algorithm AR-mRMR-PR on the most of data sets (except for
HVWNT, Molecular and Mushroom). The similar experimental
results appear in the Tables 14 and 15, which indicate, in most
cases, the Algorithms AR-CT-SCE and AR-CT-CCE are also more
optimal than Algorithms AR-mRMR-SCE and AR-mRMR-CCE
respectively, in the aspect of the number of selected attributes
and time-consuming. However, it is should be pointed that our
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proposed Algorithms are only superior than that based on mRMR
from the perspective of acquiring reducts.
6. Conclusion

In this paper, we first pointed out that the attribute reduction
algorithm for a simplified decision table has two key faults as fol-
lows: (1) The reducts obtained from a simplified decision table are
different with the ones obtained from its original version; (2) The
reducts in the sense of shannon entropy and complement entropy
cannot be obtained from a simplified decision table. We further
found out that the reason that results in these two faults is essen-
tially the lose of the values on decision attributes while a decision
table is simplified. To solve these two issues, we proposed the com-
pacted table which preserves all the information coming from a
decision table. Several theorems are introduced to theoretically
demonstrate the sequence preserving of inner and outer signifi-
cance after a decision table is compacted, and three new attribute
reduction algorithms based on compacted decision tables are
designed to find the reducts in the sense of positive region,
Shannon entropy and complement entropy. Finally, we carried
out several numerical experiments to indicate the effectiveness
and efficiency of these proposed algorithms.
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