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Rough set theory is a relatively new mathematical tool for use in computer applications
in circumstances which are characterized by vagueness and uncertainty. In this paper,
we introduce the concepts of information entropy, rough entropy and knowledge granu-
lation in rough set theory, and establish the relationships among those concepts. These
results will be very helpful for understanding the essence of concept approximation and
establishing granular computing in rough set theory.
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1. Introduction

Rough set theory, introduced by Z.Pawlak[1,2], is a relatively new soft computing
tool for the analysis of a vague description of objects. The adjective vague, referring
to the quality of information, means inconsistency or ambiguity which follows from
information granulation. The rough sets philosophy is based on the assumption that
with every object of the universe there is associated a certain amount of information
(data, knowledge), expressed by means of some attributes used for object descrip-
tion. Objects having the same description are indiscernible (similar} with respect to
the available information. The indiscernibility relation thus generated constitutes
a mathematical basis of the rough set theory; it induces a partition of the universe
into blocks of indiscernible objects, called elementary sets, that can be used to build
knowledge about a real or abstract world. The use of the indiscernibility relation
results in information granulation.

The entropy of a system as defined by Shannon [3] gives a measure of uncertainty
about its actual structure. It has been a useful mechanism for characterizing the in-
formation content in various modes and applications in many diverse fields. Several
authors ({4-5]) have used Shannon’s entropy and its variants to measure uncertainty
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in rough set theory. A new definition for information entropy in rough set theory
is presented in [6]. Unlike the logarithmic behavior of Shannon entropy, the gain
function considered there possesses the complement nature. Especially, Wierman in
[7] presented a well justified measure of uncertainty, measure of granularity, along
with an axiomatic derivation. Its strong connections to the Shannon entropy and
the Hartley measure of uncertainty also lend strong support to its correctness and
applicability.

In this paper, we introduce the concepts of information entropy, rough entropy
and knowledge granulation in rough set theory, and establish the relationships
among those concepts. These results will be very helpful for understanding the
essence of concept approximation and establishing granular computing in rough set
theory.

2. Information entropy and knowledge granulation

Let K = (U, R) be an approximation space, where U: a non-empty, finite set called
the universe; R: a partition of U, or an equivalence relation (i.e., indiscernibility
relation) on U.

An approximation space K = (U, R) can be regarded as a knowledge base about
U.

Let

R= {R1,R2,"',Rm}- (]‘)
Of particular interest is the discrete partition,

RU) = {({z}lz e U}, (2)

and the indiscrete partition,

R(U) = {U}, (3)

or just R and R if there is no confusion as to the domain set involved.

Given a partition R, and a subset X C U, we can define a lower approximation
of X in U and a upper approximation of X in U by the following:

BX =| {Ri € RIR: C X}, (4)
and

RX =| J{R: € RIR;n X # 0}, (5)

Both lower and upper approximation are unions of some equivalence classes.
More precisely, the lower approximation RX is the union of those equivalence classes
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which are subsets of X. The upper approximation RX is the union of those equiv-
alence classes which have a non-empty intersection with X.

The R-positive region of X is POSg(X) = RX, the R-negative region of X is
NEGg(X) = U—~RX, and the boundary or R-borderline region of X is BNg(X) =
RX —RX. X is called R-definable if and only if RX = RX. Otherwise, RX # RX
and X is rough with respect to R.

Definition 2.1. ([7]) Let K = (U, R) be an approximation space, and R a partition
of U. A measure of uncertainty in rough set theory is defined by

o) = -3 tog, 17 ©

where G : R — [0,00) is a function from R, the set of all partitions of non-empty
finite sets, to the non-negative real number, and |U] is the cardinality of U. This
granularity measure, G, measures the uncertainty associated with the prediction of
outcomes where elements of each partition set R; are indistinguishable.

IfR = f%, then information measure of knowledge R achieves maximum value
log, |U].

If R = R, then information measure of knowledge R achieves minimum value 0.

Obviously, when R is a partition of U, or an equivalence relation on U, we have
that 0 < G(R) < log, |U].

Now we define a partial order on all partition sets of U. Let P and @ be partitions
of a finite set U, and we define the partition Q is coarser than the partition P (or
the partition P is finer than the partition @), P = @, between partitions by

P<Q&VYPeP3Q,€Q— P CQ, (7)

If P < Q and P # Q then we say that @ is strictly coarser than P (or P is
strictly finer than @) and write P < Q.

Proposition 1.1. ([7]) Let P and Q be two partitions of finite set U. If P < Q,
then G(Q) < G(P).

Proposition 1.1 states that information measure of knowledge increases as the
classes become smaller through finer partitioning.

If p = (p1,p2,-,Pn) is a finite probability distribution, then its Shannon en-
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tropy ( [3]) is given by

S(p) =— Y pilog, pi. (8)
i=1
Let
0 = R R
T T Tm - i ’
Sir Yl
J=1

and it turns out that p = (p1,p2,- -+, Pm) is a probability distribution on E. Hence

G(R) = 5(p). (9)

The Hartley measure ([8]) of uncertainty for finite set X is

H(X) = log, | X|. (10)

The relationship between the granularity measure and the Hartley measure is
as follows ([7]):

G(R)=H(U) - 2 tI};ilt H(R,). (11)

We introduce a new definition of information entropy in rough set theory as follows.

Definition 2.2.([6]) Let K = (U,R) be an approximation space, and R be a
partition of U. An information entropy of knowledge R for rough set theory is
defined by

E(R) — E |R1i |Rf| — E [RZ|(1 __ |Rll)7 (12)

where RY is the complement of R;, i.e., Bf = U — R;; LI%T! represents the probability

of equivalence class R; within the universe U; % denotes the probability of the
complement of R; within the universe U.

IfR= ]:2, then information entropy of knowledge R achieves maximum value
1-1/1U].

If R = R, then information entropy of knowledge R achieves minimum value 0.

Obviously, when R is a partition of U, or an equivalence relation on U, we have
that 0 < E(R) <1-1/|U}.

Proposition 2.1. ([6]) Let P and @ be two partitions of finite set U. If P < @),
then E(Q) < E(P).
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Proposition 2.1 states that information entropy of knowledge increases as the
classes become smaller through finer partitioning.

Definition 2.3. Let K = (U, R) be an approximation space, and R a partition
of U. Granulation of knowledge R is defined by

1 m
= —= > |R|? 13
GK(R) 1U[2;| il (13)
where Y |R;|? is the cardinality of the equivalence relation J (R; x R;) determined
=1 =1
by R.

fR= R, then granulation of knowledge R achieves minimum value [U|/|U]? =

/U],

If R = R, then granulation of knowledge R achieves maximum value |U|2/|U|? =

Obviously, when R is a partition of U, or an equivalence relation on U, we
have that 1/|U} < GK(R) < 1. Knowledge granulation can represent discernibility
ability of knowledge, the smaller GK(R) is , the stronger its discernibility ability.

Proposition 2.2. Let P and @ be two partitions of finite set U. If P < @, then
GK(P) < GK(Q).

Proof. Let P={P,Po,---, Py}, and Q = {Q1,Q2, -, @ }. Since P < Q, we
have that m > n and there exists a partition C = {C4,Cs,---,Cp} of {1,2,---,m}
such that
Qj = U Pi, j:1,2,"',7’L.
i€C
Hence

GK(Q) =

1Q;°
| U AP
1€C

(3 1B
i€C;

1

S
i
-

il
. 9.
INGENINSE

o
I
-

1
o
g
From m > n it follows that there exists Cj, € C such that |C;,| > 1. Therefore

(> IR > > IR

iEC’jO iECjO

(> IRpP= > AP

1€C;, 57 jo i€C;,5#50

I
M=

and



42 J. Liang & Z. Shi

Thus .
Z |Pi|* = GK(P).
ie.
GK(P) < GK(Q).
This completes the proof. O

Proposition 2.2 states that knowledge granulation decreases as the classes be-
come smaller through finer partitioning.

Proposition 2.3. Let K = (U, R) be an approximation space, and R be a
partition of U, then the relationship between the information entropy and knowledge
granulation is as follows:

E(R)=1- GK(R). (14)

Proof. Let R={Ry,Ry,---,Rn}, then

B(R) = Xl

This completes the proof. O

From proposition 2.2 we can obtain E(R) + GK(R) = 1, where 0 < E(R) <
1-1/[U] and 1/|U| < GK(R) <1

Example 2.1. Let U ={medium, small, little, tiny, big, large, huge, enormous }.
The equivalence relation R, i.e., a partition of U is defined as follows: R ={{medium},
{small, little, tiny}, {big, large} {huge, enormous}}. By computing, it follows that

ER) = X ||Ir21i|| (1- H%[!)

and

GE(R) = ofe 2 (R
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It is clear that E(R) + GK(R) =
3. Granularity measure and rough entropy

The concept of rough entropy has been introduced in rough sets, rough relational
databases and incomplete information systems [4,9]. Now we introduce a definition
of rough entropy of knowledge in approximate space.

Definition 3.1. Let K = (U, R) be an approximate space, and R a partition of
U. The rough entropy E,.(R) of knowledge R is defined by

Eo(R) = Z o (15)

where |R;|/|U| represents the probability of equivalence class R; within the universe
U, 1/|R;| denotes the probability of one of the values in equivalence class R;.

IfR= ]A%, then the rough entropy of knowledge R achieves minimum value 0.

If R = R, then the rough entropy of knowledge R achieves maximum value
log, |U].

Obviously, when R is a partition of U, or an equivalence relation on U, we have
that 0 < E.(R) <log:|U]|.

Proposition 3.1. Let P and @ be two partitions of finite set U. If P < @, then
E,(P) < E-(Q).

Proof. Let P={P P, -, P,}, and Q = {Q1,Q2, - -,Qn}. Since P < §, we
have that m > n and there exists a partition C = {C1,Cq,---,Cp} of {1,2,---,m}
such that

’LECj
Hence
o S 1
(@) 2 T 1082 7]
j:
= ﬁle 51 logy |Q;]
J:
= gy = | U Pllogy| U A
j=1 i€C; 1€C;
= %Z_)(Z | ;] logs( Z |7]))

1€C;
From m > n it follows that there exists C;;, € C such that |C},| > 1. Therefore

> |Pllogy( Y [P > D |Pilogs | P

1€C, 1€Cy, i€C;,
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and
ST Pflogy( Y. B> D |Pillog Pl
i€C;,j7jo 1€Cj,j7#70 i€Cy,5#40
Thus "
@ > L IBlle|P
_ o 1P
= ~ X orlmm
= ET(P)
ie.,

This completes the proof.

O

Proposition 3.1 states that the rough entropy of knowledge decreases as the
classes become smaller through finer partitioning.

Proposition 3.2.

Let K =

(U, R) be an approximate space, and R a partition of

U. Then the relationship between the granularity measure and the rough entropy
of knowledge is as follows :

Proof. Let R = {Ry, Ry, -

G(R) =

ie.,

This completes the proof.

G(R) + E,.(R) = loga2|U]|.

, R}, then

Y

| R;|

o]

|
NgE

log, 1
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- 1%logzlllzl—logﬂUD
-y Iz
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m
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i

i logy R |) -+ logs

1

oga|U|.

G(R) + Er(R) = logs|U].
]

Example 3.1. Continued from Example 2.1, by computing, it follows that

G(R) =

and

2l092 5 %1092%]

(16)
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E’I‘(R) = - Z; l{U_Lll 10g2 |I%11
= —lslogo} + §loga3 + §logag + §logas]
= 5+ 3loge3
It is clear that G(R) + E,(R) = 3 = loga|U|.

4. Conclusions

In this paper, the concepts of information entropy, rough entropy and knowledge
granulation in rough set theory have been introduced, their important properties are
given, the relationships among those concepts are established, and we have shown
that the relationship between the information entropy E(R) and the knowledge
granulation GK (R) of knowledge R is E(R) = 1—-GK(R), the relationship between
the granularity measure G(R) and the rough entropy E,(R) of knowledge R is
G(R) + E.(R) = logy|U|. These results will play a significance role in further
research on rough set theory.
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