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Abstract—Ordinal classification with a monotonicity constraint is a kind of classification tasks, in which the objects with better attribute

values should not be assigned to a worse decision class. Several learning algorithms have been proposed to handle this kind of tasks in

recent years. The rank entropy-based monotonic decision tree is very representative thanks to its better robustness and generalization.

Ensemble learning is an effective strategy to significantly improve the generalization ability of machine learning systems. The objective

of this work is to develop a method of fusing monotonic decision trees. In order to achieve this goal, we take two factors into account:

attribute reduction and fusing principle. Through introducing variable dominance rough sets, we firstly propose an attribute reduction

approach with rank-preservation for learning base classifiers, which can effectively avoid overfitting and improve classification

performance. Then, we establish a fusing principe based on maximal probability through combining the base classifiers, which is used

to further improve generalization ability of the learning system. The experimental analysis shows that the proposed fusing method can

significantly improve classification performance of the learning system constructed by monotonic decision trees.

Index Terms—Monotonic classification, rough sets, attribute reduction, decision tree, ensemble learning

Ç

1 INTRODUCTION

CLASSIFICATION model is one of important research
issues in machine learning and data mining. A classifi-

cation task is to learn a classifier from a given trained data
set with class labels, which can be used to predict the cate-
gories of unlabeled objects. From the viewpoint of con-
straints among attribute values, classification tasks can be
regarded as two types: nominal classification and ordinal
classification. Unlike no ordinal structure among different
decision values, for an ordinal classification task, the ordinal
relationship between different class labels should be taken
into account [40], [45]. Monotonic classification is a class of
special ordinal classification tasks, where the decision val-
ues are ordinal and discrete, and there are a monotonic con-
straint between attributes and decision classes [32]. A
monotonic constraint indicates that the objects with better
attribute values should not be assigned to a worse decision
class [19]. Monotonic classification is a kind of common
tasks, which have attracted increasing attention from
domains of data mining, knowledge discovery, pattern
recognition, intelligent decision making, and so on.

For a monotonic classification task, from a given training
set of objects with a monotonic constraint, its objective is to
learn and extract some decision rules for understanding
decisions and building an automatic decision model. To
address this issue, several relative researches have been
reported. These existing works on monotonic classification
can be roughly divided into two groups. One is to develop a

theoretic framework for monotonic classification, such as
the dominance rough set model [14], [15], [16], [21], [24],
[37], [38], [42], the qualitative decision theory [10] and the
ordinal entropy model [19], [20], and the other is to con-
struct algorithms for learning monotonic decision models
from objects [1], [2], [4], [11].

As one of attempts solving monotonic classification,
Greco et al. [14], [15], [16] proposed a dominance rough set
through introducing dominance relations into rough sets.
Rough sets have been proven to be an effective classification
method, which can be used to extract some decision rules
and construct a rule-based classifier [8], [22], [35], [36], [47],
[49]. Unlike other models of rough sets, the model of domi-
nance rough sets is used to extract ordinal decision rules for
monotonic classification. Since then, several researches have
been reported to generalize or employ this model in mono-
tonic classification. Shao and Zhang [42] extended the domi-
nance rough set to adapt the context of data sets with
missing data. Qian et al. [37], [38] addressed versions of
dominance rough sets in set-valued ordered information
systems and interval ordered information systems. Hu et al.
[21] introduced a fuzzy preference into rough sets for mono-
tonic classification with a fuzzy consistent constraint. As the
literature [16] reported, dominance rough sets often pro-
duce much larger classification boundary on some real-
world tasks, which make the decision algorithm constructed
by dominance rough sets as no or few consistent rules could
be extracted from data.

As to monotonic classification algorithms, some effective
results have been reported. Ben-David extended the classi-
cal decision tree algorithm to monotonic classification in
1995. Since then, a collection of decision tree algorithms
have been developed for this problem [6], [9], [12], [23], [33].
In addition, Ben-David [3] also extended the nearest neigh-
bor classifier to monotonic tasks and designed an ordinal
learning model (OLM). In 2003, Cao-Van and Baets [6] intro-
duced ordinal stochastic dominance learner (OSDL) based
on associated cumulative distribution. In 2008, Lievens et al.
[28] presented a probabilistic framework that served as the

� Y. H. Qian, H. Xu, J. Y. Liang, and J. T. Wang are with the School of Com-
puter and Information Technology, Shanxi University, Taiyuan 030006,
Shanxi Province, China.
E-mail: {jinchengqyh, xuh102}@126.com, ljy@sxu.edu.cn, jietingw@163.
com.

� B. Liu is with the Department of Computer Science, University of Illinois
at Chicago, Chicago, IL 60607. E-mail: liub@cs.uic.edu.

Manuscript received 3 Apr. 2014; revised 2 Mar. 2015; accepted 11 Mar. 2015.
Date of publication 3 May 2015; date of current version 8 Sept. 2015.
Recommended for acceptance by J. Bailey.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2015.2429133

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 10, OCTOBER 2015 2717

1041-4347� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



base of instance-based algorithms to solve the supervised
ranking problems. In addition, in 2008, Duivesteijn and
Feelders [11] proposed a modified nearest neighbor algo-
rithm for the construction of monotone classifiers from data
by monotonizing training data. Xia et al. [46] extended the
Gini impurity used in CART to ordinal classification, and
called it ranking impurity. Although the mentioned algo-
rithms above improve the performance of extracting ordinal
information, they can not ensure a monotonic decision tree
is learned from a training data set with a monotonic
constraint.

For classification tasks, in fact, we also need to consider
robustness of a classification algorithm and sensitivity for
noisy data. As we know, noise has great influence on
modeling monotonic classification tasks [5]. If the measures
used to evaluate quality of attributes in monotonic classifi-
cation are sensitive to noisy objects, the performance of the
trained classifier would be weak. An effective and robust
measure of attribute quality is required for monotonic clas-
sification. To reduce the influence of noisy data and obtain
decision rules with clear semantics, Hu et al. [19] designed a
robust and understandable algorithm (a rank entropy based
monotonic decision tree, just REMT) for monotonic classifi-
cation. The theoretic and experimental analysis showed that
the REMT algorithm can get monotonically consistent deci-
sion rules if objects in a training set are monotonically con-
sistent and its performance is also good when data are
contaminated with noise.

It is well known that ensemble learning can great improve
the generalization performance of a learning system. Ensem-
ble learning refers to first training a set of base classifiers
from data sets and then fusing these classifiers with a fusion
strategy for a given classification task or regression task [50],
[51]. In fact, fusing a set of the same base classifiers will not
yield any enhancement. The improvement comes from the
diversity among these base classifiers, which is because that
different base classifiers potentially offer complementary
information about the objects to be classified. It was reported
that the base classifiers should take both accurate and diverse
into account together for constructing a good ensemble sys-
tem [13], [26], [43].

Considering two merits of effectiveness and robustness
of REMT algorithm, the objective of this study is to develop
a fusing method of monotonic decision trees induced by the
REMT algorithm for further enhancing the generalization
performance of a monotonic classification system. As we
know, attribute reduction plays an important role in
improving classification performance and speeding up
training [17], [29]. Based on this consideration, we first pro-
pose an attribute reduction method with rank-preservation
property based on the variable dominance rough sets,
which is used to generate some monotonic attribute reducts
and learn base classifiers depicted by monotonic decision
trees. The size of an monotonic attribute reduct is usually
much shorter than that of the original attribute set, and the
corresponding monotonic decision tree induced by it may
have much better generalization ability. Through adjusting
values of the parameter b in the variable dominance rough
set, various monotonic attribute reducts from the original
data set can be obtained, which are used to learn different
base classifiers. This satisfies the diversity among base

classifiers in ensemble learning. Then, we propose a fusing
principe for combining the base classifiers based on the idea
of maximal probability, which is used to further improve
generalization ability of the monotonic classification system.
The results show the effectiveness of the proposed method
from two viewpoints of the classification accuracy and the
mean absolute error. The contributions of this work is two
folds. One is to propose an attribute reduction method for a
monotonic classification task. The other is to develop a fus-
ing strategy for fusing monotonic decision trees induced by
the REMT algorithm. These two folds all can improve
the performance of a monotonic classification system
constructed by monotonic decision trees.

The rest of the paper is organized as follows. The pre-
liminaries on dominance rough sets and monotonic deci-
sion trees are introduced in Section 2. In Section 3, we
propose an attribute reduction method for monotonic clas-
sification and discuss some of its properties. In Section 4,
we first give the algorithm of how to generate multiple
monotonic attribute reducts (be used to learn multiple base
classifiers), and then develop a fusing principle based on
maximal probability (FPBMP) to combine the base decision
trees. Section 5 gives a series of experimental analyses for
showing the performance of the proposed method in this
paper. Finally, Section 6 concludes this paper with some
remarks and discussions.

2 PRELIMINARIES ON DOMINANCE ROUGH SETS

AND MONOTONIC DECISION TREES

Let U ¼ fx1; x2; . . . ; xng be a set of objects,A a set of attributes
to describe the objects, d is a decision attribute, and D a finite
ordinal set of decisions. With every attribute a 2 A, a set of its
values Va is associated. The value of xi under an attribute
a 2 A or d is denoted by vðxi; aÞ or vðxi; dÞ, respectively. The
ordinal relation between objects in terms of the attribute a or d
is denoted by �, and x �a y or x �d y means that x is at least
as good as (outranks) y with respect to the attribute a or d
respectively. In the following, without any loss of generality,
we consider a condition attribute having a numerical domain,
that is, Va � R (R denotes the set of real numbers) and being
of type gain, that is, x �a y, vðx; aÞ5vðy; aÞ (according to
increasing preference) or x �a y, vðx; aÞ4vðy; aÞ (according
to decreasing preference), where a 2 A, x; y 2 U . For a subset
of attributes B � A, we define x �B y, 8a 2 B;vðx;
aÞ5vðy; aÞ. In other words, x is at least as good as y with
respect to all attributes inB.

In a given set of objects, we say that x dominates y with

respect to B � A if x �B y, and denoted by xR5
B y. That is

R5
B ¼ fðx; yÞ 2 U � U jx �B yg.

Obviously, if ðx; yÞ 2 R5
B , then x dominates y with

respect to B. A predicting rule is a function
f : U ! D,

which assigns a class label inD to each object in U . A mono-
tonically ordinal classification function should satisfy the
following constraint:

x � y) fðxÞ � fðyÞ; 8x; y 2 U .

Definition 1. LetDT ¼ ðU;A [ fdgÞ be a decision table, B � A.
If 8x; y 2 U , x �B y, then x �d y, we say DT is B-monotoni-
cally consistent.
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Dominance rough set is an effective method to deal with
monotonic classification, which can extract a family of ordi-
nal decision rules from a given ordinal data set. In the fol-
lowing, we review several notations to be used throughout
this paper.

Let DT ¼ ðU;A [ fdgÞ be a decision table, B � A,
B ¼ B1 [B2, where B1 be the attribute set according to
increasing preference, and B2 the attribute set according to
decreasing preference. The granules of knowledge [31], [39],

[48] induced by the dominance relation R5
B are the set of

objects dominating x, i.e.,

½x�5B ¼ fy 2 U j vðy; a1Þ5vðx; a1Þð8a1 2 B1Þ and
vðy; a2Þ4vðx; a2Þð8a2 2 B2Þg

¼ fy 2 U j ðy; xÞ 2 R5
B g

and the set of objects dominated by x,

½x�4B ¼ fy 2 U j vðy; a1Þ4vðx; a1Þð8a1 2 B1Þ and
vðy; a2Þ5vðx; a2Þð8a2 2 B2Þg

¼ fy 2 U j ðx; yÞ 2 R5
B g,

which are called the B-dominating set and the B-dominated
set with respect to x 2 U , respectively.

For simplicity and without any loss of generality, in the
following we only consider condition attributes with an
increasing preference.

The following property can be easily concluded [14], [15],
[37], [38].

Property 1. Let R5
B be a dominance relation, then

1) R5
B is reflexive, transitive and unsymmetric, so it is

not an equivalence relation;
2) if C � B � A, then R5

A � R5
B � R5

C ;

3) if C � B � A, then ½x�5A � ½x�5B � ½x�5C ;

4) if xj 2 ½xi�5B , then ½xj�5B � ½xi�5B and ½xi�5B ¼
S

f½xj�5B : xj 2 ½xi�5B g;
5) ½xi�5B ¼ ½xj�5B iff vðxi; aÞ ¼ vðxj; aÞð8a 2 BÞ;
6) ô ¼ f½x�5B jx 2 Ug constitutes a covering of U .

For any X � U and B � A, the lower and upper approxi-

mations of X with respect to the dominance relation R5
B are

defined as follows:

R5
B ðXÞ ¼ fx 2 U j ½x�5B � Xg;

R5
B ðXÞ ¼ fx 2 U j ½x�5B \X 6¼ �g:

The model defined above is called a dominance rough set,
introduced by the literature [14]. This model was widely
discussed and applied in recent years [21], [37], [38], [42].
Let d�i be a subset of objects whose decisions are equal to or

better than di, then we say that each object of R5
B ðd�i Þ is con-

sistently equal to or better than di.
However, the decision boundary regions in some of real

applications are often so large that an effective decision
model can not be constructed by dominance rough sets, in
which there exist too many inconsistent samples in a given
data set. In addition, dominance rough sets are heavily sen-
sitive to noisy samples, in which several mislabeled objects
might completely change the trained decision models as Hu
et al. pointed out in the literature [19]. To address this issue,
Hu et al. proposed [19] a rank entropy-based decision
tree for monotonic classification. This rank entropy has

better robustness than Shannon’s information entropy [41]
for monotonic classification. In what follows, we review
some of its relative concepts.

To characterize the ordinal structure in monotonic classi-
fication, Hu et al. [19] introduced a rank entropy method to
measure the ordinal consistency between random variables,
which includes the following four definitions.

Definition 2. Given DT ¼ ðU;A [ fdgÞ, B � A. The rank
entropy of the system with respect to B is defined as

RH�B ðUÞ ¼ �
1

n

Xn
i¼1

log
j½xi��Bj
n

: (1)

Definition 3. Given DT ¼ ðU;A [ fdgÞ, B � A, C � A. The
rank joint entropy of the set U with respect to B and C is
defined as

RH�B[CðUÞ ¼ �
1

n

Xn
i¼1

log
j½xi��B \ ½xi��C j

n
: (2)

Definition 4. Given DT ¼ ðU;A [ fdgÞ, B � A, C � A. If C is
known, the rank conditional entropy of the set U with respect
to B is defined as

RH�BjCðUÞ ¼ �
1

n

Xn
i¼1

log
j½xi��B \ ½xi��C j
j½xi��C j

: (3)

Definition 5. Let DT ¼ ðU;A [ fdgÞ be a decision table, B an
arbitrary attribute. The rank mutual information of the set U
with respect to B and fdg is defined as

RMI�ðB; fdgÞ ¼ � 1

n

Xn
i¼1

log
j½xi��Bj � j½xi��fdgj

n� j½xi��B \ ½xi��fdgj
: (4)

Monotonic decision trees are a class of specific decision
trees which assign dominating decision to the objects char-
acterized by better feature values in the case of monotonic
classification [4]. Through combining the above rank mutual
information and the diagram of the classical decision tree,
Hu et al. [19] proposed a rank entropy-based decision tree
for monotonic classification, which is better than existing
monotonic decision trees in most cases in terms of mean
absolute error. The entropy-based decision tree is con-
structed by the following algorithm.

Regarding labeling rule L, for an unseen object, accord-
ing to its attribute values, we can match a path from the
root node of the monotonic decision tree to a certain leaf
node. Through this leaf node, the label of the unseen object
can be determined by the following rule [19]:

1) If all of samples in a leaf node belong to the same
class, we give the class label of this leaf node to the
object;

2) Otherwise, if the samples in the leaf node belong to
multiple classes, there are the following two cases:

2.1) If the number of classes in the leaf node is an odd
number, we assign the median class to the object.
For example, if the samples in an leaf node come
from Classes 1, 2 and 3, respectively, we label the
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unseen object with Class 2 if it belongs to this leaf
node.

2.2) If the number of classes in the leaf node is an
even number, there are two median classes in
this leaf node. Then if the current node is a
left branch of its parent node, we assign the
worse class to this node; otherwise, we assign
the better class to it.

Algorithm 1. Rank entropy based monotonic decision
tree [19]

Input: criteria: attributes of objects;
decision: class labels of objects;
": stopping criterion;

Output: a monotonic decision tree T .
(1) generate the root node.
(2) if the number of objects is 1 or all objects are from the same

class, the branch stops growing.
(3) otherwise,

for each attribute ai,
for each cj 2 Vai ,
divide objects into two subsets according to cj
if vðai; xÞ 	 cj, then put x into one subset,
else put x into the other subset.
denote ai with respect to cj by aiðcjÞ.

compute RMIcj ¼ RMI�ðfaiðcjÞg; fdgÞ.
end j.
c
j ¼ argmaxj RMIcj .

end i.
(4) select the best attribute a and the corresponding point:

c
 ¼ argmaximaxjRMI�ðfaiðcjÞg; fdgÞ.
(5) if RMI�ðfag; fdgÞ < ", then stop.
(6) build a new node and split objects with a and c
.
(7) Recursively produce new splits according to the above pro-

cedure until stopping criterion is satisfied.
(8) end.

3 ATTRIBUTE REDUCTION FOR MONOTONIC

CLASSIFICATION

In machine learning, attribute reduction (feature selec-
tion) is an effective method for improving classification
performance and avoiding overfitting [7], [20], [27], [34],
[44]. For a monotonic classification task, monotonicity
constraints between attributes and decisions should be
taken into account. However, most of existing techniques
are not able to discover and represent the ordinal struc-
tures in monotonic data sets. Hence, they can not be
well applied for monotonic classification. In this section,
we aim to develop an attribute reduction approach to
monotonic classification, which will be used to train base
monotonic decision trees in next section.

Attribute reduction aims to retain the discriminatory
power of original features in rough set theory, which has
been proven effective for improving the classification
performance of a rough classifier. From this point of
view, we want to develop the corresponding attribute
reduction method. An ordinal attribute reduct should
satisfy the same monotonic constraint as the original set
of attributes, with which the rank among objects can be
kept unchanged.

LetDT ¼ ðU;A [ fdgÞ be an ordinal decision table, where
d a decision attribute with an overall preference of objects.
Denoted by

R5
fdg ¼ fðx; yÞ : vðx; dÞ5vðy; dÞg;

R5
fdg is a dominance relation determined by the decision

attribute d. If R5
A � R5

fdg, then DT is called monotonic con-

sistent; otherwise it is monotonic inconsistent. In the follow-
ing, we give the formal definition of a monotonic attribute
reduct.

Definition 6. LetDT ¼ ðU;A [ fdgÞ be an ordinal decision table

and B � A. If R5
B � R5

fdg and R5
C 6� R5

fdg for any C � B,

then we call B a monotonic attribute reduct ofDT .

We denote byD
 ¼ fðx; yÞ : vðx; dÞ < vðy; dÞg, and

Dis
ðx; yÞ ¼ fa 2 A : ðx; yÞ =2 R5
fagg; ðx; yÞ =2 D
;

�; ðx; yÞ 2 D
:

�
Dis
ðx; yÞ is called an ordinal discernibility set between x
and y, and Dis
 ¼ ðDis
ðx; yÞ : x; y 2 UÞ is called an ordinal
discernibility matrix for the decision table.

Similarly to the classical attribute reduction [30], [42], the
discernibility matrix based can be employed for obtaining all
of ordered attribute reducts from an ordinal decision table.

Although the above method can obtain all monotonic
attribute reducts of an ordinal decision table, its time com-
plexity is exponential, which can not be used to learn from
large-scale data sets. To solve this problem, in what follows,
we develop another ordinal attribute reduction with a heu-
ristic strategy although a reduct obtained by it may be a
pseudo monotonic attribute reduct [34].

We continue to use the framework of dominance rough
sets in this part. We first introduce a variable parameter b to
loosen the condition of a dominance rough set, such that the
rough set is less sensitive to noisy objects. Based on this
view, for a monotonic classification task, we give an
updated version of a dominance rough set, in which a set to

be approximated is an upward union d�i ¼
S

j	iDj, where

Dj 2 U=fdg ¼ fD1; D2; . . . ; Drg that are ordered, that is, for
all i; j 	 r if i � j, then the objects from Di are preferred to
the objects fromDj.

Definition 7. GivenDT ¼ ðU;A [ fdgÞ and B � A, di is a deci-
sion value of d. As to monotonic classification, the variable

upward lower and upper approximations of d�i are defined as

R5
B ðd�i Þ ¼ x 2 U j j½x�

5
B \ d�i j
j½x�5B j

� 1� b

( )
;

R5
B ðd�i Þ ¼ x 2 U j j½x�

5
B \ d�i j
j½x�5B j

� b

( )
;

where 0 	 b 	 0:5.

The following region

BNDb
Bðd�i Þ ¼ R5

B ðd�i Þ �R5
B ðd�i Þ
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is called the upward boundary region of di in terms of attri-
bute set B. The monotonic dependency of d with respect to
B is formally defined as

g
b
BðdÞ ¼

jU � S t
i¼1BNDb

Bðd�i Þj
jU j :

If the decision tableDT is monotonically consistent in terms

of B, then BNDb
Bðd�i Þ ¼ �.

Based on the above monotonic dependency, we can
define a coefficient as the significance of attribute a in B rel-
ative to the decision attribute d. Given DT ¼ ðU;A [ fdgÞ,
8a 2 B � A, and di a decision value of d, the inner
significance of a in B relative to d is formally defined by

Sigbinnerða;B; dÞ ¼ g
b
BðdÞ � g

b
B�fagðdÞ: (5)

This measure can be used to determine the core attributes of

A. When Sigbinnerða;B; dÞ > 0, as the rough set area classical
defined [34], we say a is a core attribute in this decision
table. Accordingly, 8a 2 A�B, we define the outer signifi-
cance of awith respect to B as

Sigbouterða;B; dÞ ¼ g
b
B[fagðdÞ � g

b
BðdÞ: (6)

This measure is used to select an attribute in a forward attri-
bute reduction.

Through using these two attribute significance measures,
one can design a monotonic attribute reduction approach
with a heuristic strategy as follows.

In this algorithm, through introducing a variable parame-
ter b to loosen the condition of a monotonic attribute reduct,
such that the searched monotonic attribute reduct has better
robustness for noisy objects. In addition, due to the size of a
monotonic attribute reduct is much shorter than that of the
original attribute set, and hence the base monotonic decision
tree induced by the monotonic attribute reduct will have
much smaller length and much fewer nodes, which usually
possessesmuch better generalization ability.

4 FUSING MONOTONIC DECISION TREES

The studies have shown that ensemble learning can signifi-
cantly improve the generalization ability ofmachine learning
systems. In this section, we propose an ensemble strategy by
fusingmultiple different monotonic decision trees.

In ensemble learning, there are two basic issues [50], [51]:
learning multiple classifiers and a fusing strategy, where
the former aims to provide some different base classifiers,
and the latter is to give an effective ensemble method for
obtaining much better generalization performance. In gen-
eral, diversity among the base classifiers is known to be an
important factor for improving generalization performance
in ensemble learning.

For fusing monotonic decision trees, we need to learn
various base classifiers with much bigger diversity. To solve
this problem, we select multiple attribute subsets from the
original attribute set of a given data set, in which each attri-
bute subset should be an attribute reduct that preserves the
monotonic consistent of the original data set. The diversity
in ensemble learning can be satisfied by the corresponding

base monotonic decision trees induced by different mono-
tonic attribute reducts.

To obtain multiple monotonic attribute reducts, through
loosening the condition of maximal significance in each
loop, we can continue to use Algorithm 2 with the second
maximal significance. For a given parameter b in variable
dominance rough sets, we can generate multiple monotonic
attribute reducts from a given date set. Based on the idea of
Algorithm 3 in the literature [18], the algorithm can be
similarly depicted as follows.

Algorithm 2. Computing a monotonic attribute reduct
with a forward searching strategy

Input: a decision tableDT ¼ ðU;A [ fdgÞ and the parameter b;
Output: a monotonic attribute reduct B of A.
(1) Compute core Core of A using Sigbinner [34].
(2) B Core.
(3) 8a 2 A�B, compute SIGb

outerða;B; dÞ;
if SIGb

outerðaj; B; dÞ ¼ maxifSIGb
outerðai; B; dÞg,

B B [ fajg,
until 8ai, SIGb

outerðai; B; dÞ ¼ 0.
(4) return B and end.

Algorithm 3. Backward reduction for searching multiple
ordinal reducts

Input: a decision tableDT ¼ ðU;A [ fdgÞ and a value of param-
eter b;
Output: a set of ordinal reducts.
(1) compute core attributes Core of A using Sigbinner.
(2) B A� Core.
(3) B
  sorted B in the ascending order in terms of

gðaÞ ¼ g
b
BðdÞ þ jU=fagj

jU j , where U=fag is a partition
of U induced by the attribute a.

(4) P 
  B
 [ Core.
(5) find a reduct RED0 from P 
 with Algorithm 2.
(6) K  RED0 � Core.
(7) RED �.
(8) for i ¼ 1 to jKj

P 
  P 
 � faig;
find a reduct REDi from P 
 by Algorithm 2;
if REDi 62 RED, then RED REDþREDi;
P 
  P 
 [ faig.

(9) return RED ¼ fRED0; RED1; . . . ; REDNg.

The algorithm can produce a set of monotonic attribute
reducts satisfying monotonic consistent with respect to the
parameter b. These different ordinal reducts lay a founda-
tion for constructing complementary monotonic decision
trees.

Let F ¼ fT1; T2; . . . ; TNg be a monotonic decision forest
learned by RED ¼ fRED1; RED2; . . . ; REDNg in the train-
ing set, and decisions w ¼ fw1; w2; . . . ; wsg. Denote the label
of an object x obtained by the monotonic decision tree Ti by
TiðxÞ. Given an object x in the test set, we determine the
class label of x by the following fusing principle.

Fusing principle based on maximal probability:

1) for every Ti in F , given an object x, if the label TiðxÞ
is the same decisions wj for each i, then give x the
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label wj, otherwise compute the probability Pij of x
belonging to the decision class wj;

2) compute PjðxÞ ¼ 1
N

PN
i¼1 Pij as the probability of x

belonging to the decision class wj;
3) give x the label w0, where

w0 : P0ðxÞ ¼ maxfPjðxÞ; 1 	 j 	 sg:

Based on the above fusing principle FPBMP, we give an
algorithm of fusing monotonic decision trees, which is as
follows.

Now, we explain the working mechanism of the fusing
principle for fusing monotonic decision trees. It can be
understood by an illustrative example. We generate an
artificial data set with three classes, in which there are
39 objects and 12 attributes, as shown in Table 1.

In this data set, objects x1 to x27 are treated as the training
set of constructing a monotonic decision tree, and objects x28

to x39 are looked forward as the test set of evaluating the
performance of a monotonic decision tree.

To show the difference between method of signing class
labels in REMT and that in monotonic decision trees used in
the proposed fusing principle, we first construct a mono-
tonic decision tree using REMT with the parameter " ¼ 0:01
as Fig. 1.

Now, we learn monotonic decision trees used in the pro-
posed fusing principle. Through Algorithm 3, one can
obtain two ordinal attribute reducts:

RED1 ¼ fg; i; c; ag and RED2 ¼ fh; j; g; f; c; ig:

Using these two monotonic attribute reducts, we can learn
two monotonic decision trees with REMT (" ¼ 0:01), in
which the decision of each leaf node is labeled by a family
of probabilities of the node belonging to every class. These
two ordinal decision trees are shown as sub-figures (a) and
(b) in Fig. 2.

In what follows, we consider the decision of each of
objects x28, x38 and x39 in the test set. Their decisions
induced by the monotonic decision tree in Fig. 1 and those
induced by the proposed method in this study are listed in
Table 2, respectively.

Through computing, we have that:

1) for x28, the output of T1 and that of T2 are all L3, it is
labeled as class L3;

2) for x38, P1 ¼ ðP11 þ P21Þ=2 ¼ ð0:6þ 0Þ=2 ¼ 0:3 and
P2 ¼ ðP12 þ P22Þ=2 ¼ ð0:4þ 1Þ=2 ¼ 0:7, it is labeled
as class L2;

3) for x39, the output of T1 and that of T2 are all L2, it is
labeled as class L2;

TABLE 1
An Artificial Data Set with 12 Features,

Where 39 Objects are Divided into Three Classes

Data sets a b c d e f g h i g k l d

x1 4 5 2 3 3 3 5 4 5 5 4 5 3
x2 3 5 1 1 2 2 5 3 5 5 3 5 3
x3 2 3 2 1 2 4 5 2 5 4 3 4 3
x4 3 4 3 2 2 2 5 3 5 5 3 5 3
x5 3 5 2 3 4 4 5 4 4 5 3 5 3
x6 3 4 3 3 2 4 4 2 4 3 1 3 3
x7 2 5 1 1 3 4 4 3 4 4 3 4 3
x8 1 1 2 1 1 3 4 2 4 4 1 4 3
x9 2 3 2 1 1 2 4 4 4 4 2 5 3
x10 2 3 4 3 1 5 4 2 4 3 2 3 3
x11 2 2 2 1 1 4 4 4 4 4 2 4 3
x12 2 1 3 1 1 3 5 2 4 2 1 3 3
x13 2 1 1 1 1 3 2 2 4 4 2 3 2
x14 2 1 2 1 1 2 4 3 3 2 1 2 2
x15 1 1 1 1 1 1 3 2 4 4 2 3 2
x16 2 2 2 1 1 3 3 2 4 4 2 3 2
x17 2 2 1 1 1 3 2 2 4 4 2 3 2
x18 1 1 4 1 3 1 2 2 3 3 1 2 2
x19 1 1 2 1 1 1 3 3 4 4 2 3 1
x20 3 5 2 1 1 1 3 2 3 4 1 3 1
x21 2 2 1 1 1 1 3 3 3 4 3 4 1
x22 2 1 1 1 1 1 2 2 3 4 3 4 1
x23 1 1 2 1 1 1 2 1 4 3 1 2 1
x24 1 1 3 1 2 1 2 1 3 3 2 3 1
x25 1 1 1 1 1 1 2 2 4 4 2 3 1
x26 1 1 3 1 1 1 1 1 4 3 1 3 1
x27 2 1 1 1 1 1 1 1 2 1 1 2 1

x28 2 2 2 2 1 3 5 3 5 4 2 4 3
x29 3 5 3 3 3 2 5 3 4 4 3 4 3
x30 1 1 4 1 2 3 5 2 4 4 1 4 3
x31 3 4 2 1 2 2 4 2 4 4 1 4 3
x32 3 3 4 4 3 4 4 2 4 4 1 3 3
x33 2 1 1 1 4 3 4 2 4 4 3 3 3
x34 2 1 2 1 1 3 4 2 4 4 2 4 3
x35 2 1 2 1 1 5 4 2 4 4 2 4 3
x36 1 1 3 1 2 1 3 4 4 4 3 4 2
x37 2 1 2 1 1 3 2 2 4 4 2 4 2
x38 3 4 4 3 2 3 3 4 4 4 3 4 2
x39 3 1 3 3 1 2 2 3 4 4 2 3 2

Fig. 1. Monotonic decision tree trained with REMT.
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The corresponding decisions of x28; x38; x39 are equivalent to

their real decisions L3, L2 and L2. However, their decisions

induced by REMT are L2, L3 and L1, respectively. This

means that the proposed FREMT has better decision perfor-

mance than REMT for these two objects. It deserves to point

out that decisions of x28; x38; x39 induced by Reduct2 with

REMT are respectively L3, L1 and L2, which are also much

closer to real decisions than REMT.

From the above example, we can say that the proposed
FREMT may effectively improve the decision performance
of the REMT algorithm for monotonic classification. Even if
only one ordinal attribute reduct, the monotonic decision
tree induced by it with REMT also may have much better
generalization.

5 EXPERIMENTAL ANALYSIS

The rank entropy-based decision tree is an effective decision
model for monotonic classification. In order to show the
effectiveness of the proposed fusing algorithm, in this sec-
tion, we will compare the proposed algorithm with the rank
entropy-based ordinal decision tree on real-world classifica-
tion tasks.

In order to test how our fusing approach behaves in real-
world applications, we employed 10 data sets, which are
shown as Table 3. In this table, Student score is a real-world
data set including 512 students coming from Software Engi-
neering (the class of 2010) in Shanxi University and their
scores of 25 courses (features), where 122, 269 and 121 stu-
dents are evaluated as excellent, good and bad, respectively.
Its label distribution is shown as Fig. 5a.

For the student score data set, it is a natural monotonic
classification problem. For the first nine data sets, before
training the base monotonic decision trees, we need to pre-
process these data sets to suit the proposed fusing ordinal
decision tree algorithm. As Hu et al. said [19], because we

use ascending rank mutual information as the splitting rule,
we assume that larger rank value should come from larger
feature values, called increasing monotonicity. In practice,
we may confront the case that the worse feature value
should get the better ranks. This called decreasing monoto-
nicity. To uniformly deal with, we have to transform the
problem of decreasing monotonicity to an increasing mono-
tonicity classification task. There are several solutions to
this objective. In this experimental analysis, if decreasing
monotonicity happens, we will compute reciprocal of attri-
bute values. In order to compare the performance when
data sets are monotonic, we relabeled the objects so as to
generate monotonic training sets. In this experiment, we
revised the labels of some objects and generated monotone
training data sets by the monotonization algorithm in the lit-
erature [25].

Firstly, we observe the performance of a base monotonic
decision tree induced by the proposed attribute reduction
algorithm. For each data set, we used 10-fold cross validation
technique, in which 90 percent of the data set is used as the
training set and the remained objects are used as the test set.

Fig. 2. Monotonic decision trees trained with two feature subsets obtained by feature selection algorithm.

TABLE 2
Difference between REMT and FREMT about the Data Set in Table 1

Objects Real decisions Decisons with REMT Decisions with Reduct 2 Decisons with T1 Decisons with T2 Decisons with FREMT

x28 L3 L2 L3 L3 L3 L3
x38 L2 L3 L1 P11 ¼ 0:6; P12 ¼ 0:4 P22 ¼ 1 L2
x39 L2 L1 L2 L2 L2 L2

TABLE 3
Nine Data Sets in the Experimental Analysis

Data sets Num. of
objects

Num. of
features

Num. of
classes

Adult 500 15 2
Bankruptyrisk 39 13 3
Wine 1,599 12 2
Squash 50 25 3
Car 1,727 7 4
German 1,000 21 2
Australian 690 15 2
Autompg 392 8 4
Swd 3,240 11 3
Student score 512 25 3
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We here use the classification accuracy and the mean
absolute loss to verify the performance of the trained model
of each base ordinal decision tree. The classification accu-
racy for evaluating the performance of a classifier is com-
puted as

AC ¼ 1

n

Xn
i¼1
ðbyi � yiÞ; (7)

in which if byi ¼ yi, then byi � yi ¼ 1, otherwise byi � yi ¼ 0.
And, the mean absolute error is calculated as

MAE ¼ 1

n

Xn
i¼1
jbyi � yij; (8)

where n is the number of objects in the test set, byi is the out-
put of the algorithm and yi is the real output of the ith
object.

In the experimental analysis, let " ¼ 0:01 and b vary from
0.00 to 0.16 with a step length 0.02. Based on 10-fold cross
validation technique, the average performances of the clas-
sification accuracy and the mean absolute loss are computed
and shown in Figs. 3 and 4, respectively.

From the curves in Fig. 3, we see that most of base ordi-
nal decision trees possess much higher classification accura-
cies than REMT in most cases, except the data set Autompg.
Moreover, regarding the curves in Fig. 4, it can be seen that
most of base ordinal decision trees have much lower mean
absolute loss than REMT in most cases, except the data set
Swd. In addition, we also can see the classification accura-
cies (or the mean absolute loss) of these base monotonic
decision trees are often different each other, which can sat-
isfy the diversity constraint in ensemble learning.

In what follows, we verify the performance of the fus-
ing ordinal decision trees induced by sub monotonic deci-
sion trees. Given b varying from 0.00 to 0.16 with a step
length 0.02, we firstly compute attribute reducts from
original data sets, then use these attribute reducts to learn
every sub monotonic decision tree with REMT, where
" ¼ 0:01, and finally fusing these decision trees according
to Algorithm 4.

For each data set, we still used 10-fold cross validation
technique. The classification accuracy and the mean abso-
lute loss are used to verify the performance of the fusing
monotonic decision trees. The experimental results are
listed in Table 4.

Fig. 3. The average value of classification accuracies of every group of base monotonic decision trees.
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Algorithm 4. Fusing rank entropy based monotonic
decision trees (FREMT)

Input: a decision table DT ¼ ðU;A [ fdgÞ, the parameters
b ¼ fb1;b2; . . . ;bmg and an object x depicted by A;
Output: a decision of object x.
(1) from i ¼ 1 tom

finding all ordinal reducts with Algorithm 3
REDi ¼ fRED0; RED1; . . . ; REDNi

g
(2) RED S m

i¼1REDi

(3) for REDj 2 RED, learn a tree Tj with REMT.
(4) F  fT1; T2; . . . ; TNg.
(5) determine the class label of x by F with FPBMP.
(6) end.

Table 4 presents the classification accuracy and the mean
absolute loss yielded with two learning algorithms FREMT
and REMT. It can be seen from Table 4 that for each data
set, FREMT are consistently better than REMT for both AC
and MAE. It deserves to point out that FREMT can signifi-
cantly improve the generalization ability of REMT for these
nine monotonic classification tasks. If we adopt a selective
ensemble strategy, the fusing monotonic decision forest will

possess much better generalization performance. We will
follow it with interest in further work.

Remark 1. In fact, the parameter b also plays an important
role in terms of tuning the performances of the FREMT
algorithm. Different choices of b might produce differ-
ent trees to combine in the ensemble. This can be
induced to two reasons: the value of the parameter b

itself and its step length. The latter is used to deter-
mine the number of different decision trees to fuse.
The former is used to loose the condition of a mono-
tonic attribute reduct. For a fixed step, bigger b may
mean more decision trees and much better diversity
among them. In fact, it is difficult to specify optimal
values of b, which might be chosen by cross-validation.
However, it is beyond the scope of this paper. We omit
its detailed discussion here.

In what follows, we conclude the advantages of the pro-
posed fusing principle FPBMP and analyze their reasons.

� Most of base monotonic decision trees induced by
ordinal attribute reducts have better generalization
ability themselves.

Fig. 4. The average value of mean absolute losses of every group of base monotonic decision trees.
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As we know, attribute reduction has been proven
effective in improving classification performance
and avoiding overfitting. A monotonic attribute
reduct can satisfy the same monotonic constraint as
the original set of attributes, which can preserve the
rank among objects unchanged. The size of an
obtained monotonic attribute reduct is much smaller
than that of the original attribute set, and hence the
base monotonic decision tree induced by the ordinal
attribute reduct will have much smaller length and
much fewer nodes, which usually possesses much
better generalization ability. In addition, we set a
variable parameter b to loosen the condition of a
monotonic attribute reduct, such that the sensitivity
of the learned base monotonic decision tree is
reduced for noise. Therefore, most of base monotonic
decision trees will have better generalization ability
than the monotonic decision tree induced by the
original attribute set in a given data set.

� The base monotonic decision trees satisfy the diver-
sity requirements in ensemble learning.

Diversity among the individual learners is deemed
to be a key issue in ensemble learning, which can sig-
nificantly improve the generalization ability of
machine learning systems. In this study, the diversity
among base monotonic decision trees can be guaran-
teed by the diversity among monotonic attribute
reducts from the original attribute set. In general, dif-
ferentmonotonic attribute reductswould learn differ-
ent monotonic decision trees. This implies that one
can learnmuchmore decision rules from the different
ordinal decision trees, which would provide much
better predictive ability for unlabeled objects.

� The learning system fused by FPBMP significantly
improve the generalization ability of monotonic deci-
sion trees.

The success of the fusing principle is attributed to two
factors. On one hand, when the outputs of a tested object in
different base monotonic decision trees are equal to each
other, its final label will be assigned as this output. On the
other hand, when these outputs of the object are inconsis-
tent each other, we accumulate the evidences that it belongs
to different classes in all base ordinal decision trees, and
assign it to the class with the maximal probability. In fact,
its rationality also can be understood by Example 1. This
may be a more reasonable ensemble solution than a simple
majority vote strategy, which can be safely used to fuse
monotonic decision trees.

Remark 2. From the above discussions, we know that each
of base monotonic decision trees is induced on a different
subset of features. When the number of features is small,
the number of possible different base trees in the forest
may be small too. This would affect the performance of
the FPBMP algorithm. Nonetheless, this problem might
be solved through adding randomness in the decision
tree induction procedure. However, it is beyond the
scope of this paper, which can be followed with interest
in further work.

6 CONCLUSIONS AND FURTHER WORK

Ordinal classification is a kind of special classification tasks,
in which a monotonicity constraint is considered as the fun-
damental assumption. This assumption argues that the
objects with better attribute values should not be assigned
to a worse decision class. In recent years, several learning

Fig. 5. Label distribution and base monotonic decision trees on the student score data set.

TABLE 4
Comparison on Classification Accuracy and Mean Absolute Loss

Data sets Number of base decision trees AC of FREMT AC of REMT MAE of FREMT MAE of REMT

Adult 36 0:774
 0:001 0:604
 0:016 0:226
 0:001 0:396
 0:016
Bankruptyrisk 27 0:858
 0:025 0:650
 0:036 0:142
 0:025 0:350
 0:036
Wine 14 0:626
 0:001 0:465
 0:004 0:374
 0:001 0:535
 0:004
Squash 68 0:740
 0:008 0:580
 0:060 0:260
 0:008 0:480
 0:066
Car 12 0:871
 0:000 0:817
 0:001 0:148
 0:000 0:203
 0:001
German 45 0:711
 0:001 0:529
 0:001 0:289
 0:001 0:471
 0:001
Australian 47 0:735
 0:002 0:586
 0:003 0:265
 0:002 0:414
 0:003
Autompg 27 0:594
 0:005 0:528
 0:003 0:431
 0:008 0:513
 0:004
Swd 14 0:683
 0:001 0:581
 0:001 0:341
 0:001 0:451
 0:001
Student score 77 0:851
 0:003 0:752
 0:002 0:149
 0:003 0:248
 0:002
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algorithms have been proposed to handle this kind of spe-
cial tasks. The rank entropy-based ordinal decision tree is
very representative thanks to its better ability of robust and
generalization. To further improve the generalization ability
of a machine learning system based on ordinal decision
trees, in this paper, we aim to investigate how to fuse ordi-
nal decision trees from the viewpoint of ensemble learning.
To address this issue, we have taken two factors into
account: attribute reduction and fusing principle. Firstly,
we have introduced an attribute reduction method with
rank-preservation property based on the variable domi-
nance rough sets, which is used to generate some monotonic
attribute reducts and learn base classifiers depicted by
monotonic decision trees. In general, the size of an ordinal
attribute reduct is much shorter than that of the original
attribute set, and the corresponding monotonic decision
tree induced by it may have much better generalization abil-
ity. This may ensure that each of these base classifiers is a
stronger learner. Through adjusting values of the parameter
b in variable dominance rough sets, we can obtain various
monotonic attribute reducts from the original data set,
which can be used to learn different base classifiers. This
can satisfy the diversity among base classifiers in ensemble
learning. Then, based on the idea of maximal probability,
we have established a fusing principe for combining the
base classifiers, which is used to further improve generaliza-
tion ability of the learning system. Finally, we have verified
the performance of the method proposed in this study
through employing nine real data sets. The experimental
analysis shows that the proposed fusing method can signifi-
cantly improve classification performance of monotonic
decision trees.

It deserves to point out that sometimes the learning sys-
tem fusing all trained base classifiers may cause overfitting.
Selective ensemble learning could further enhance the per-
formance of the learning system. Hence, it is an important
problem that how to select base monotonic decision trees so
that the fused learning systempossesses as well performance
as possible.Wewill work on this problem in the future.
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