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Abstract — For tree XML, constraints that specify

structural relationships among nodes or paths are very nat-

ural. In this paper, we introduce the concept of structural

integrity constraints for XML (XSICs), which specify path

implication, path cooccurrence, path mutual-exclusion, el-

ement obligatory inclusion and exclusive inclusion, and

define the syntax and semantics of XSICs. For reason-

ing about XSICs, we rewrite all the other constraints into

path implication constraints, and develop a sound and com-

plete set of inference rules for path implication constraints.

Meanwhile, we propose the concept of path implication clo-

sure. By using the path implication closure, we prove the

completeness of inference rules, and determine the impli-

cation decision about XSICs.
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I. Introduction

In databases, the integrity constraints have been proved useful

in making a good design, update anomaly prevention, and query

optimization[1,2], etc. For these problems, many scholars extend

schema formalisms for XML with the traditional integrity con-

straints, such as keys, foreign keys, functional dependencies[3−6].

These constraints prescribe the value relationships among related

nodes, but their structural relationships. Document type defini-

tions (DTDs)[7] and XML Schema[8] specify admissible elements,

attributes and element nesting, but they are inadequate to deal with

complex structural relationships between different paths or nodes.

However the structural relationships provide more opportunities for

optimizing path expressions. As an example, let us consider path

expression query /a/b[c][d/e]. If both c and e are not required child

of their respective parent, the query can not be minimized further.

However, if we know that the existence of /a/b/c requires the exis-

tence of /a/b/d/e, predicate d/e is redundant and can be removed

from the query; in contrast, if we know that the existence of /a/b/c

precludes /a/b/d/e, we can find the evaluation result of the query

empty without accessing the actual document. Hence, it is indis-

pensable to research on the constraints specifying the structural

relationships between different paths or nodes, which are named

Structural integrity constraints for XML (XSICs).

Related work. To date, there are only a few works about

XSICs. Refs.[9,10] studied edge constraints in semistructured data,

which can be see as the earliest XSICs. Ref.[11] proposed the con-

cept of Structural constraints for XML (XSCs), including path im-

plication, absence and cooccurrence, but they are defined based on

simple path expressions including /. Ref.[12] studied trees pattern

constraints, which extend XSCs with path expressions containing /,

//, [ ], *. However, they are very intricate in reasoning and prac-

tical applications. We extend XSCs with linear path expressions

including /, //, which are simple enough in efficient reasoning and

expressive enough for practical applications. Besides path impli-

cation, cooccurrence and mutual-exclusion, XSICs specify element

obligatory inclusion and exclusive inclusion. Ref.[11] studied logical

implication of XSCs by giving a set of inference rules for XSCs. In

contrast, we first give a set of inference rules for path implication

constraints to solve its implication, and then determine the impli-

cation decision about XSICs by using path implication closures.

In Ref.[13], element containment relationships are used to reason

about query terms formulated in PAT algebra. Since PAT algebra

is different from path expressions in the terms of expressiveness, the

concept of exclusivity is different from ours. This work makes the

following contributions.

• We define the syntax and semantics of XSICs based on lin-

ear path expressions, present the constraints rewriting technique to

integrate path constraints with element inclusion constraints.

• We introduce the concepts of sub-path and path implication

closure. Based on sub-path, we develop a set of inference rules for

path implication.

• We prove the completeness of inference rules, and determine

the implication decision about XSICs.

Organization. In Section II, we introduce basic notions about

XML documents and path expressions, and present the concept of

sub-path. Section III defines the syntax and semantics of XSICs,

and describes the constraints rewriting technique. Section IV

presents a set of inference rules for path implication and the con-

cept of path implication closure. With path implication closures,

we prove the completeness of inference rules and the implication

decision about XSICs. Section V concludes the paper and future

works.

II. Background

1. XML document trees

XML documents are often modeled as node-labeled trees. As

used in Ref.[4], we assume the existence of three pairwise disjoint

sets of labels: E of element types, A of attribute names, and a sin-

gleton set {S} denoting text type. An XML tree T has a set of
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nodes, denoted V , where each node v in V has a label, denoted

lab(v). A node v in V is called an element if lab(v) ∈ E, an at-

tribute if lab(v) ∈ A, and a text node if lab(v) = S. If a node v′ in

V is a sub-element or attribute of node v, v′ is called a child of v

and there is a directed edge from v to v′. Based on standard XML

semantics[14], the root node of an XML tree corresponds to the doc-

ument node. Fig.1 shows the tree of a sample XML document with

text nodes ommittied to keep the figure simple.

Fig. 1. A sample of XML document tree

Fig. 2. A sample of tree pattern

2. Path expressions and tree pattern

A path expression defines a way of navigating XML trees. This

paper focus on a set of XPath including /, //, [ ]. Expression Q can

be defined recursively by the following grammar:

Q ::= ε|/P |//P,

P ::= e|.|P/P |P//P |P [P ]|P [.//P ], e ∈ E ∪A

where ε is the empty path, . the current node, / parent-child nav-

igation, // ancestor-descendant navigation, expressions enclosed in

[ ] are called predicates.

Path expressions can be represented by tree patterns. For

example, Fig.2 shows the tree pattern of path expression “//pa-

per[.//section/paragraph]/title”, where single edges (child edges)

and double edges (descendant edges) correspond to / and // in the

original expression, respectively, and the output node is darkened.

A node v is called a child of node u if (u, v) is a child edge, and

a descendant if there exists a child or descendant edge (u, v), or a

sequence of edges from u to v. The root node # is introduced to

show that the original expression is an absolute path or a relative

one. The root node in tree patterns can match the root node of any

XML tree.

The path expressions starting with / are named absolute paths,

and others named relative paths. The path expressions without

predicates are called linear path expressions. We consider the lin-

ear path expressions without recursive elements which are used fre-

quently in practice. Thus every node type of a linear path expression

corresponds a node in its tree pattern. Therefore, when it comes to

linear path expression, we directly use ei to denote node v whose

type is ei, unless otherwise stated. P ∈ LP denotes that P is a lin-

ear path expression, nodes(P ) and last(P ) represent the node type

set and the last node type in P , respectively.

Definition 1 ∀P, Q ∈ LP , P = c1e1c2e2 · · · en, Q = c′1e′1c′2
e′2 · · · e′m, if m < n, ci = c′i and ei = e′i (i = 1, · · · , m), then Q is a

path prefix of P , denoted Q ≺ P . If m = n, then Q equals to P ,

denoted Q = P .

Note that ε is a path prefix of any path expression.

Definition 2 ∀P ∈ LP , P = c1e1c2e2 · · · cnen, if c2 = c3 · · ·
= cn = /, then P is called a simple path expression.

3. Sub-path and containment of path expressions

Definition 3 ∀P, Q ∈ LP , let Np and Nq be the set of nodes

in the tree patterns of P and Q, respectively. Q is a sub-path of P ,

denoted Q≺P , if and only if there exists a mapping f : Nq → Np,

such that:

(1) f preserves nodes types: ∀v ∈ Nq , if lab(v) = e, lab(f(v)) =

e;

(2) f preserves structural relationships: ∀u, v ∈ Nq , if (u, v) is

a child edge (resp., a descendant edge) in Q, f(v) is a child (resp.,

descendant) of f(u) in P .

If Q≺P and P is a simple path expression, P is named the

access path of Q, denoted acc(Q).

Definition 4 Let Q(T ) be the query results of path expres-

sion Q in XML tree T , if Q1(T ) ⊆ Q2(T ) holds for any document

tree T , then Q2 contains Q1, denoted Q1 ⊆ Q2.

Note that the concept of sub-path is distinct from query

containment. Given linear path expressions P and Q, P ⊆
Q if and only if Q≺P and last(Q) = last(P ). For

example, “/papers/paper//section” is a sub-path of “/pa-

pers/paper//section//paragraph”, but their query results are dis-

joint.

III. Structural Integrity Constraints for
XML

The integrity constraints, which specify the structural relation-

ships between different paths or nodes, are called structural integrity

constraints for XML (XSICs). we classify them into element-based

XSICs and path-based XSICs.

1. Path-based XSICs

Path-based XSICs specify the structural relationships between

two different paths, including path implication, path mutual-

exclusion and path cooccurrence, which are named path constraints.

Definition 5 ∀C, P, Q ∈ LP , u, v, v′ ∈ V , let r denote the

root node of XML tree T , and u[P ] the set of nodes reached by

following P from node u in T . T satisfies

(1) a path implication constraint C(P → Q), denoted T |=
C(P → Q), if and only if ∀u∀v(u ∈ r[C] ∧v ∈ u[P ] → ∃v′(v′ ∈
u[Q]));

(2) a path mutual-exclusion constraint C(P —∨ Q), denoted

T |= C(P—∨Q), if and only if ∀u∀v(u ∈ r[C] ∧v ∈ u[P ] → ¬∃v′(v′ ∈
u[Q])) and ∀u∀v(u ∈ r[C]∧ v ∈ u[Q] → ¬∃v′(v′ ∈ u[P ]));

(3) a path cooccurrence constraint C(P ↔ Q), denoted T |=
C(P ↔ Q), if and only if C(P → Q)∧ C(Q → P ); where:

• C is the context path which specifies the document sub-trees,

where path constraints must hold. Whenerver C = ε, the path

constraint holds in the whole document and ε can be omited;
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• P and Q, with C as their path prefix, are Left hand path

(LHP) and Right hand path (RHP) repectively. When |P | = |Q| =
|C|+ 1, the path constraints become the relationships between two

sibling nodes.

In other words, path implication C(P → Q) states that in all

document sub-trees determined by C, the existence of P requires

the existence of Q, and a path cooccurrence is a two-way path im-

plication. In contrast, path mutual-exclusion C(P —∨ Q) precludes

the existence of Q if P occurs, and vice versa[11]. Fig.3 shows the

relationships between paths specified by C(P ↔ Q), C(P —∨ Q),

C(P → Q), respectively.

Fig. 3. Path constraints illustration

Example 1 The following constraints are satisfied by the

XML tree in Fig.1.

ϕ1 : //paper → //paper/authors/author/name

ϕ2 : /papers/paper(title ↔ .//author/name)

ϕ3 : /papers/paper(type/jourpaper—∨ conference)

In real constraint examples, LHP and RHP are written rel-

ative paths with respect to C to simplify writing. For ex-

ample, ϕ2 is short for /papers/paper(/papers/ paper/title ↔
/papers/paper//author/name).

2. Element-based XSICs

Element-based XSICs specify implication, cooccurrence,

mutual-exclusion and structural containment relationships among

nodes. Since implication, cooccurrence and mutual-exclusion be-

tween nodes are special cases of path constraints, the section only

gives the definition of structural containment relationships between

nodes: element obligatory inclusion and exclusive inclusion, which

are named element inclusion constraints.

Definition 6 ∀P, Q ∈ LP , ei ∈ E, ej ∈ E ∪ A, u, v, v1,

v2 ∈ V , let r denote the root node of XML tree T , and u[P ] the set

of nodes reached by following P from node u in T . T satisfies

(1) an element obligatory inclusion ei ⇒ ej , denoted T |= ei ⇒
ej , if and only if ∀u(lab(u) = ei → ∃v(lab(v) = ej ∧ v ∈ u[P ]);

(2) an element exclusive inclusion ei 7→ ej , denoted T |=
ei 7→ ej , if and only if ∀u(lab(u) = ei ∧∃v1∃v2(v1 ∈ u[P ] ∧ v2 ∈
u[Q] ∧ lab(v1) = lab(v2) = ej) → acc(P ) = acc(Q)).

Example 2 The following constraints are satisfied by the

XML tree in Fig.1.

ϕ4 : paper 7→ author

ϕ5 : author ⇒ name

Theorem 1 ∀ei, ej ∈ E, ∀ek ∈ E ∪A, if ei ⇒ ej and ej ⇒ ek,

then ei ⇒ ek.

Theorem 1 states that element obligatory inclusions are transi-

tive.

3. Constraint rewriting

Path cooccurrence constraints are essentially two-way path im-

plication constraints, so C(P ↔ Q) is rewritten into C(P → Q)

and C(Q → P ). Based on the semantics of path mutual-exclusion,

C(P—∨Q) is rewritten into C(P → ¬Q) and C(Q → ¬P ), where ¬P

means not to exist P .

Given a set of linear path expressions B, for any linear path

expression P , P ∝ B if and only if there exists Q in B such that

P≺Q; ¬P ∝ B if and only if there exists ¬Q in B such that Q≺P .

Due to the interaction between path constraints and element

inclusion constraints, it is indispensable for reasoning about XSICs

to integrate path constraints with element inclusion constraints. In

database, the chase technique is used to rewrite a query to incor-

porate the effects of integrity constraints[2]. We develop a chase

technique to rewrite a given set of path constraints to integrate the

effects of element inclusion constraints.

Theorem 2 Let P = c1e1c2e2 · · · ckek, the following conclu-

sions hold:

(1) if ei 7→ ej and ei, ej ∈ nodes(P ) (i < j, i = 1, 2 · · · k − 1,

j = 2 · · · k), then c1e1 · · · ciei//ej · · · ckek → P ;

(2) if ek−1 ⇒ ek and ek−1, ek ∈ nodes(P ), then

c1e1c2e2 · · · ck−1ek−1 → P ;

(3) if ei ⇒ en and ei ∈ nodes(P )∧en /∈ nodes(P ) (i = 1, 2 · · · k),

then P → c1e1c2e2 · · · ciei//en.

It is obvious that the theorem holds from Definition 5 and 6.

The theorem states the chase technique to rewrite a set of path con-

straints with element inclusion constraints. We leave out the details

of the chase technique due to space limitations.

IV. Logical Implication of XSICs

In this section, we study the implication problem of XSICs.

Since all constraints are rewritten into path implication constraints,

the implication problem for XSICs focuses on the implication for

path implication constraints. Without loss of generality, we present

a set of inference rules for path implication constraints.

1. Inference rules for path implication

Let C, C′, P, Q, S ∈ LP , the inference rules for path implication

constraints are listed in Table 1.

Theorem 3 The set R of inference rules is sound for logical

implication of path implication constraints.

Given a set Σ of path implication constraints, the soundness

of the set R of inference rules means that any constraint deduced

from Σ using R must be implied by Σ, namely the inference rules

are correct. Let Tc be the set of sub-trees, tc a sub-tree specified by

path C, namely tc ∈ Tc, the proof of soundness is as follows.

Table 1. R: Rules for path implication

Rule 1: C(P → Q), C′ ≺ C ⇒ C′(P → Q)

Rule 2: C(P → Q), C′ ⊆ C ⇒ C′(P → Q)

Rule 3: ∀P, Q ∈ LP , Q≺P ⇒ P → Q

Rule 4: C(P → Q), C(Q → S) ⇒ C(P → S)

Rule 5: C(P → Q), C(Q → ¬S) ⇒ C(P → ¬S)

Rule 6: C(P → ¬Q), C(S → Q) ⇒ C(P → ¬S)

Rule 7: C(P → ¬Q), C≺C′ ⇒ C′(P → ¬Q)

Proof (1) Rule 1. If C′ ≺ C, then for any tc′ , there is a tc
such that tc is a sub-tree of tc′ . Since the existence of P requires

the existence of Q in all tc, so is it in tc′ (see Fig.4). Hence, the

rule is sound.

Fig. 4. Rule 1 illustration Fig. 5. Rule 2 illustration

(2) Rule 2. If C′ ⊆ C, then TC′ ⊆ TC , namely, for any tc′ ,
there is a tc such that tc = tc′ . Since the existence of P requires the
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existence of Q in all tc, so is it in tc′ (see Fig.5). Hence, the rule is

sound.

(3) Rule 3. This rule states that if there is a path in any XML

sub-tree, there also exists its sub-path in the same sub-tree. It fol-

lows from the concept of sub-path that the rule is sound.

(4) Rule 4 and 5. Rule 4 states the transitivity of path impli-

cation, and Rule 5 states the relationship between path implication

and path mutual-exclusion. It is clear from the semantics of path

implication.

(5) Rule 6. Suppose C(P → ¬S) is false, then there is at least

one tc, where there are P and S. Since C(S → Q), there are P and

Q in the tc, which contradict C(P → ¬Q). Hence, the supposition

does not hold.

(6) Rule 7. If C≺C′, there may be three relationships between

C and C′ in XML document trees.

① C ≺ C′: For any tc′ , there is a tc such that tc′ is a sub-tree

of tc. Hence, if the existence of P precludes the existence of Q in

tc, then so is it in tc′ (see Fig.6(a));

② Last(C′) = Last(C) : TC′ ⊆ TC , namely, for any tc′ , there

is a tc such that tc = tc′ . Hence, if the existence of P precludes

the existence of Q in tc, then so is it in tc′ (see Fig.6(b)). Hence,

C′(P → ¬Q) holds;

③ C 6≺ C′ and Last(C′) 6= Last(C): For any tc′ , there is a tc
such that tc′ is a sub-tree of tc. Since the existence of P precludes

the existence of Q in tc, then so is it in tc′ (see Fig.6(c)). Hence,

C′(P → ¬Q) holds.

Fig. 6. Rule 7 illustration

From the above stated, Rule 7 is sound.

2. Path implication closures

Definition 7 Given a set Σ of path implication constraints

and two linear path expressions C, P , the path implication closure

of P under Σ and C is defined as the minimal set of all path expres-

sions implied by P , denoted P+
(Σ,C)

or simply P+
(Σ)

if the context

path is ε, namely P+
(Σ,C)

= {X|C(P → X) can be deduced from Σ

with R, where X ∈ {Q,¬Q}}.
Let Σ denote the set of rewritten path constraints, and Ω the set

of element inclusion constraints, the algorithm to evaluate P+
(Σ,C)

is as follows.

Algorithm 1 ClosureComp(Σ, Ω, C, P )

Input non-empty Σ, Ω, and C, P ∈ LP

Output P+
(Σ,C)

/* initialization */

B = {P};
if (ei ⇒ ex ∈ closure(Ω) && ei ∈ nodes(P ))

if ei = last(P ) then B = {P//ex};
else B = B ∪ {c1e1c2e2 · · · ciei//ex};

/*computing B */

check each X ∈ B until all expressions are checked

for each ϕ : C′(P ′ → Q′) ∈ Σ

if (X == S) then

if (C ≺ C′||C = C′) then

if (P ′≺S && Q′ 6≺S) then B = B ∪ {Q′};/*Rule 1,3,4*/

else if (C′≺S && last(C′) /∈ nodes(C) − last(C) &&

P ′≺S) then

replace prefix C′ of Q′ with Cs; /*Cs is a sub-path of S

from its first node type to last(C′)*/
if (Q′ 6≺S) then B = B ∪ {Q′}; /*Rule 2,3,4*/

if (X == ¬S) then/* X == ¬S means that X is the linear

path of the form ¬S */

if (C ≺ C′||C = C′) then

if (S≺Q′) then B = B∪{¬P ′}; tag ¬P ′ with Cs; /*Rule

1,3,6*/

else if (C′≺S && last(C′) /∈ nodes(C) − last(C)) then

replace the prefix C′ of P ′ and Q′ with Cs;

if (S≺Q′) then B = B∪{¬P ′}; tag ¬P ′ with Cs; /*Rule

2,3,6*/

for each ϕ : C′(P ′ → ¬Q′) ∈ Σ

if (X == S) then /*Rule 3,5,7*/

if (C≺C′ && P ′≺S) then B = B ∪ {¬Q′};
else if (C′≺S && P ′≺S) then B = B ∪ {¬Q′}; tag ¬Q′

with Cs;

/*delete redundant path expressions from B */

for each P ∈ B

if (Q ∈ B && Q≺P ) then B = B − {Q}
for each ¬P ∈ B

if (¬Q ∈ B && P≺Q) then B = B − {Q}
return B

Example 3 Given a path constraint set Σ = {ϕ1, ϕ2, ϕ3}
from Example 1, let Ω = Φ, C = /papers/paper, and P =

/papers/paper/type/jourpaper, we show how to derive P+
(Σ,C)

based on the algorithm.

(1) Before running the algorithm, path cooccurrence and

mutual-exclusion constraints are rewritten into path implication

constraints.

ϕ2 ⇒
{

ϕ2 : /papers/paper(title → .//author/name)

ϕ′2 : /papers/paper(.//author/name → title)

ϕ3 ⇒
{

ϕ3 : /papers/paper(type/jourpaper → ¬conference)

ϕ′3 : /papers/paper(conference → ¬type/jourpaper)

(2) Since Ω = Φ, the algorithm initializes B to {P};
(3) Inside the double loop, the algorithm checks whether path

expressions in B imply RHP of path implication constraints in Σ.

When the algorithm runs the outer loop for the first time, P in B

is compared with every constraint in Σ. Since the context path of

ϕ1 is a path prefix of C and LHP of ϕ1 is a sub-path of P , its RHP

//paper/authors/author/name (denoted P1) is implied by P and

added to B in the first inner loop. With the same reason, RHP

¬/papers/paper/conference (denoted P2) of ϕ3 is added to B in

the second inner loop. For the second time, P1 in B is compared

with every constraint in Σ, and RHP /papers/paper/title (denoted

P3) of ϕ′2 is added to B. For the third time, P2 in B is compared

with every constraint in Σ, and no path is added to B. For the

fourth time, P3 in B is compared with every constraint in Σ, and

RHP /papers/paper//author/name (denoted P4) of ϕ2 is added to

B. Since P4 is a sub-path of P1, it is removed from B in the third

inner loop. Here, all path expressions in B have been checked, so

the double loop is ended. Therefore P+
(Σ,C)

= B = {P, P1, P2, P3}.
3. Completeness of inference rules

Lemma 1 ϕ : C(P → X) (X ∈ {Q,¬Q}) can be deduced

from Σ with R if and only if X ∝ P+
(Σ,C)

.

The correctness of the lemma can be directly derived from the

definition of P+
(Σ,C)

.

Lemma 2 Let X ∈ {Q,¬Q}, T be a XML tree, if P does

not occur in T , then for any path C and Q in T , T |= C(P → X)

holds; if C does not occur in T , then for any path P and Q in T ,

T |= C(P → X) holds.

Proof C(P → Q) (resp., C(P → ¬Q)) states that in all

sub-trees rooted at the nodes whose path matches C, the exis-

tence of path P requires (resp., precludes) the existence of path

Q. Thus when P does not occur in these sub-trees, it does not mat-

ter whether path Q occurs or not and what path Q occurs, hence
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C(P → Q) holds. With the same reason, when C does not occur in

T , C(P → Q) (resp., C(P → ¬Q)) also holds.

Theorem 4 The set R of inference rules is complete for logical

implication of path implication constraints.

Given a set Σ of path implication, the set R of reference rules

is complete if and only if for any constraint ϕ, if Σ |= ϕ, then ϕ

can be deduced from Σ with R. It follows from the inverse proposi-

tion equivalence that if constraint ϕ can’t be deduced from Σ, then

Σ 6|= ϕ. That is to say, there is at least one XML tree T such

that T |= Σ and T 6|= ϕ. In the following section, we prove the

completeness of R by using the path implication closure as a main

tool.

Proof Suppose that path constraint ϕ can’t be deduced from

Σ with R. Let ϕ = C(P → Q) or ϕ = C(P → ¬Q), we now prove

that there exists an XML tree T such that T |= Σ and T 6|= ϕ.

(1) We first construct an XML tree T , in which all path expres-

sions in P+
(Σ)

occur except for Q (resp., ¬Q).

Step 1 Divide P+
(Σ)

into two subsets: P+
(Σ)1

and P+
(Σ)2

, where

P+
(Σ)1

is the set of path expressions of the form Q, denoting path

expressions implied by P ; P+
(Σ)2

is the set of path expressions of the

form ¬Q, denoting path expressions precluded by P .

Step 2 Delete Q (resp., ¬Q) from P+
(Σ)1

(resp., P+
(Σ)2

) in the

following way:

• When ϕ = C(P → Q), search Q in P+
(Σ)1

. If Q is found, then

delete it, otherwise search Q′ such that Q≺Q′ in P+
(Σ)1

. If Q′ is

found, delete it;

• When ϕ = C(P → ¬Q), first search ¬Q in P+
(Σ)2

. If ¬Q

is found, then delete it, otherwise search ¬Q′ such that Q′≺Q in

P+
(Σ)2

. If ¬Q′ is found, then delete it. Then add Q to P+
(Σ)1

.

Step 3 Create the root node r of T , and connect path P to r

in the following way:

If P is an absolute path, as the root element node of XML tree

T , the first node of tree pattern P is connected to r; otherwise cre-

ate a root element node re, connect re to r, and connect the first

node of tree pattern P to re.

Step 4 For the other path expressions in P+
(Σ)1

, connect their

sub-paths, which are not in T , to the correct position of P in turn;

Step 5 If P+
(Σ)2

is not empty, then do the following for every

¬X in P+
(Σ)2

. First search the tag path of ¬X in T , and create a

copy T ′s of sub-tree Ts rooted at the node determined by the tag

path, then delete P (or P ′ such that P≺P ′) from T ′s, finally connect

tree pattern X to T ′s.
Remark When deleting P from T ′s, we don’t delete its path

prefix Cs to preserve the connectivity of T ′s (see Fig.7).

Step 6 If there are double edges in T , then translate the dou-

ble edges into single ones.

Example 4 Let Σ be the path constraint set from Example 3,

and given a path constraint ϕ = /papers/paper(type/jourpaper →
¬conference), construct an XML tree T such that T |= Σ but

T 6|= ϕ.

After step 1 and 2, P+
(Σ,C)1

= {/papers/paper/type/jour-

paper, /papers/paper/authors/author/name, /papers/paper/

conference, /papers/paper/title} and P+
(Σ,C)2

= Φ. XML tree

T is shown in Fig.8.

(2) We then prove that XML tree T satisfies Σ. In other

words, for any ψ ∈ Σ, T |= ψ holds. Let ψ = C′(P ′ → Q′) or

ψ = C′(P ′ → ¬Q′), the proof is as follows:

① If C′ or P ′ do not occur in T , it follows from Lemma 2 that

T |= ψ holds.

② If both C′ and P ′ occur in T , P ′ ∝ P+
(Σ)

. It follows from

Lemma 1 that (P → P ′) holds.

• For each ψ = C′(P ′ → Q′) ∈ Σ, ε ≺ C′ holds, it follows

from Rule 1 that P ′ → Q′. Based on Rule 4, we know P → Q′

holds, namely Q′ ∝ P+
(Σ)

holds. Hence, Q′ must occur in T , namely

T |= ψ.

Fig. 7. Illustration of deleting

P from T ′s
Fig. 8. XML tree for example 4

• For each ψ = C′(P ′ → ¬Q′) ∈ Σ, we prove XML tree T

satisfies ψ by contradiction.

Suppose T 6|= ψ, then at least in one of sub-trees specified by C′,
there exist both P ′ and Q′. If there is only one sub-tree specified

by C′ in T , it follows from the semantics of path implication that

C′(P ′ → Q′) holds. If there are two sub-trees specified by C′ in T ,

from the construction of T , we know that there exist P ′ and Q′ in

one sub-tree, and not exists P ′ in the other sub-tree. Based on the

semantics of path implication, C′(P ′ → Q′) holds. The conclusion

contradicts C′(P ′ → ¬Q′), hence the assumption does not hold,

namely T |= ψ.

(3) Finally, we prove that XML tree T does not satisfy ϕ. Sup-

pose T |= ϕ:

• When ϕ = C(P → Q), there exist both P and Q in the

sub-tree specified by C. Hence Q ∝ P+
(Σ)

;

• When ϕ = C(P → ¬Q), it follows from the construction of T

that there exists at least two sub-trees specified by C in T , and P oc-

curs in one sub-tree and Q in other sub-tree, namely, ¬Q ∝ P+
(Σ,C)

.

From Algorithm 1, we know P+
(Σ,C)

⊆ P+
(Σ)

holds, hence ¬Q ∝ P+
(Σ)

;

It follows from Lemma 1 that ϕ can be deduced from Σ with

R. This contradicts assumption “ϕ can not be deduced from Σ with

R”. Hence assumption T |= ϕ does not hold, namely T 6|= ϕ.

From the above stated, it follows that if ϕ can not be deduced

from Σ with R, ϕ must not be implied by Σ. Hence, the set R of

inference rules is complete.

4. Implication decision about XSICs

In the section, we show how the path implication closures are

used for checking whether a constraint is implied by a given con-

straint set Σ.

Theorem 5 Given path constraint C(X → Y ) (Y ∈
{Q,¬Q}), if X ∝ P+

(Σ,C)
, then Y ∝ P+

(Σ,C)
.

Proof If X ∝ P+
(Σ,C)

, then C(P → X). It follows from Rule

4 that C(P → Y ) holds, hence Y ∝ P+
(Σ,C)

.

For path constraints, one can directly check whether a new con-

straint is implied by a given constraint set based on the theorem.

But when it comes to element inclusion constraints, the check is a

little trickier.

(1) Element obligatory inclusion: Let ϕ = ei ⇒ ej , the check

technique is as follows:

Step 1 Search P that ei ∈ nodes(P ) holds in Σ. If P is not

found, then Σ |= ϕ; otherwise go to Step 2;

Step 2 Evaluate P+
(Σ,C)

;

Step 3 If //ei ∝ P+
(Σ,C)

holds, then Σ |= ϕ; otherwise Σ 6|= ϕ.

(2) Element exclusive inclusion: Let ϕ = ei 7→ ej , the check

technique is as follows:

Step 1 Search P that ej ∈ nodes(P ) holds in Σ. If P is not

found, then Σ |= ϕ; otherwise go to Step 2;

Step 2 Evaluate P+
(Σ,C)

;
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Step 3 If ei//ej ∝ P+
(Σ,C)

holds and there is only one path

expression Q such that ei//ej≺Q in P+
(Σ,C)

, then Σ |= ϕ; otherwise

Σ 6|= ϕ.

V. Conclusions and Future Works

Structural integrity constraints for XML, which specify the

structural relationships between different elements or paths, play an

important role in the path expression query optimization. In this

paper, we study the implication for XSICs as stand-alone schema

formalism. We show that the containment problem for linear path

expressions can be effectively decided using sub-path. Based on

this, we present a sound and complete set of inference rules. By

using path implication closures, we prove the completeness of the

reference rule set, and determine the implication decision problem

of XSICs.

Since XSICs play important roles in XML query optimization.

We are currently investigating how XSICs are used in minimizing

path expressions to improve the evaluation performance of path ex-

pressions. Furthermore, XSICs can be regarded as an extension of

DTDs. We will study how to extend DTDs with XSICs to obtain

a compact representation of path implication closures and optimize

path expression evaluation thoroughly.
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[13] K. Böhm, K. Aberer, M.T. Özsu and K. Grayer, “Query opti-

mization for structured documents based on knowledge on the

document type definition”, Proc. of IEEE Forum on Research

and Technology Advances in Digital Libraries, IEEE Computer

Society Press, Santa Barbara, USA, pp.196–205, 1998.

[14] XML Path Language (XPath) 2.0. W3C Recommendation,

www.w3c.org/TR/xpath20, Jan. 2007.

ZHANG Jianmei was born in

1970. She is an associate professor at

Changzhi University, and Ph.D. candi-

date at Shanxi University, China. She

received M.S. degree from Shanxi Uni-

versity in 2000. His research interests

include XML data management, query

processing and optimization. (Email:

jmzhang@sxu.edu.cn)

TAO Shiqun is a professor at Shanxi University, China,

and a supervisor of Ph.D. students. He received B.S. degree from

Beijing Institute of Technology in 1969. His research interests in-

clude databases theory, database query processing and optimization.

(Email: tsq@sxu.edu.cn)

LIANG Jiye is a professor at

Shanxi University, China, and a supervisor

of Ph.D. students. He received M.S. degree

and Ph.D. degree from Xi’an Jiaotong Uni-

versity in 1990 and 1998, respectively. His

research interests include data mining and

knowledge discovery in database. (Email:

ljy@sxu.edu.cn)


