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This article deals with approaches to attribute reductions in inconsistent incomplete decision table. The
main objective of this study is to extend a kind of attribute reductions called a lower approximation
reduct and an upper approximation reduct, which preserve the lower/upper approximation distribution
of a target decision. Several judgement theorems of a lower/upper approximation consistent set in incon-
sistent incomplete decision table are educed. Then, the discernibility matrices associated with the two
approximation reductions are examined as well, from which we can obtain approaches to attribute
reduction of an incomplete decision table in rough set theory.
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1. Introduction

Since the original exposition of the rough set theory (RST) by
Pawlak [20–22] as a method of set approximation, it has continued
to flourish as a tool for data mining and data analysis
[2,3,24,25,31,34]. One fundamental aspect of RST involves a search
for particular subsets of condition attributes that provide the same
information for classification purposes as the full set of available
attributes. Such subsets are called attribute reductions [5,6].

Attribute reduction is performed in information systems (ISs)
by means of the notion of a reduct based on a specialization of
the general notion of independence because of Marczewski [15].
Many types of knowledge reductions have been proposed in the
area of rough sets [1–4,9,10,14,16–19,26–30,32,33,35], each of
the reductions aimed at some basic requirements. It is required
to provide their consistent classification. In the real world, most
decision information systems (also called decision tables) are
inconsistent because of various factors such as noise in data, com-
pact representation, prediction capability, etc. To acquire brief
decision rules from an inconsistent decision table, knowledge
reductions are needed. The inconsistence of a system makes it
infeasible to induce a set of certain definite rules covering all sys-
tem objects with confidence 1. Hence, one has to resort to obtain
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rules from an inconsistent decision information system with confi-
dence less than 1 (usually called possible rules or probabilistic
rules). At present, rough set theory offers an unique approach for
generating such possible rules without a priori knowledge.

In recent years, more attention has been paid to knowledge
reduction in inconsistent systems in rough set research [9,10,
14,16,17,26,29,33,36]. b-reduct was studied in the variable preci-
sion rough set model proposed by Ziarko [32]. The notions of a-re-
duct and a-relative reduct for decision tables were defined. The a-
reduct allows the occurrence of additional inconsistency that is
controlled by means of a-parameter [19]. In [29], Slezak presented
an attribute reduction that preserves the class membership distri-
bution for all objects in the ISs. It was shown by Slezak that the
attribute reduction preserving the membership distribution is
equivalent to the attribute reduction preserving the value of gener-
alized inference measure function [29]. A generalized attribute
reduction also was introduced in [28] that allows the value of gen-
eralized inference measure function after the attribute reduction to
be different from the original one by user-specified threshold. Five
kinds of attribute reductions and the relationships among them in
inconsistent systems were investigated by Kryszkiewicz [9], Li [10]
and Mi [16]. By eliminating the rigorous conditions required by
distribution reduct, maximum distribution reduct was introduced
by Zhang et al. in [33]. Unlike possible reduct [18], maximum dis-
tribution reduct can derive decision rules that are compatible with
the original systems.

According to whether or not there are missing data (null val-
ues), information systems can be classified into two categories:
complete and incomplete. By an incomplete information system
we mean a system with missing data (null values). We do not
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consider the case of null value meaning inapplicable value. This
problem may be solved by adding a special symbol denoting inap-
plicable value to the attribute domains. In the paper we deal with
the problem of unknown values. In other words, a null value may
be some value in the domain of the corresponding attribute
[7,11–14,23,28]. For an incomplete information system, if we dis-
tinguish condition attributes and decision attributes, then we call
it an incomplete decision table. In the context of incomplete deci-
sion table, Leung and Li [11] proposed a so-called maximal consis-
tent block technique, which had been used to rule acquisition from
a consistent incomplete decision table. The maximal consistent
block technique can describe the minimal units for information
in incomplete information systems. In this paper, we concern on
how to acquire attribute reductions in inconsistent incomplete
decision tables. In recent years, some related researches have pre-
sented on attribute reductions in inconsistent incomplete decision
tables. Zhou and Huang [37] developed several reduction methods
in incomplete inconsistent decision tables, which are distribution
reduction, maximum distribution reduction and assignment reduc-
tion. Miao et al. [18] concluded three kinds of relative reducts, such
as region preservation reduct, decision preservation reduct and
relationship preservation reduct in the context of decision tables.
Unlike these existing works, in this study, we will employ the con-
sistent block technique for attribute reduction in inconsistent
incomplete information systems.

The main objective of this article is to introduce two concepts of
approximation reduction named as a lower approximation reduct
and an upper approximation reduct in inconsistent incomplete
decision tables, which preserves the lower approximation and
upper approximation of the decision classification in the context
of maximal consistent blocks. The rest is organized as follows.
Some preliminary concepts such as incomplete decision tables,
inconsistency and maximal consistent blocks are briefly reviewed
in Section 2. In Section 3, the notions of a lower approximation re-
duct and an upper approximation reduct are introduced to an
inconsistent incomplete decision table in the context of maximal
consistent blocks, and their some important properties are also ob-
tained. In Section 4, the approaches to the two approximation re-
ducts are provided and an illustrate example is employed to
examine their validity. We then conclude the paper with a sum-
mary in Section 5.
Table 1
The incomplete decision table about car [16].

Car Price Mileage Size Max-
Speed

d @d

u1 High Low Full Low Good fGoodg
u2 Low * Full Low Good fGoodg
u3 * * Compact Low poor fPoorg
u4 High * Full High Good fGood; excellentg
u5 * * Full High Excellent fGood; excellentg
u6 Low High Full * Good fGood; excellentg
2. Preliminaries

In this section, we briefly review several basic concepts, which
are incomplete decision tables, inconsistency and maximal consis-
tent blocks.

An information system is a pair S ¼ ðU;AÞ, where,

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) for every a 2 A, there is a mapping a; a : U ! Va, where Va is

called the value set of a.

Each subset of attributes P # A determines a binary indistin-
guishable relation INDðPÞ as follows:

INDðPÞ ¼ fðu; vÞ 2 U � Uj8a 2 P; aðuÞ ¼ aðvÞg:

It can be easily shown that INDðPÞis an equivalence relation on the
set U. For P # A, the relation INDðPÞ constitutes a partition of U,
which is denoted by U=INDðPÞ, just U=P.

It may happen that some of the attribute values for an object are
missing. For example, in medical information systems there may
exist a group of patients for which it is impossible to perform all
the required tests. These missing values can be represented by
the set of all possible values for the attribute or equivalence by
the domain of the attribute. To indicate such a situation, a distin-
guished value, a so-called null value is usually assigned to those
attributes.

If Va contains a null value for at least one attribute a 2 A, then S
is called an incomplete information system, otherwise it is com-
plete [7,8,11–14]. Further on, we will denote the null value by *.
Thus, if the value of an attribute a is missing, then the real value
must be from the set Va � f�g. Any domain value different from
‘‘*” will be called regular.

Let S ¼ ðU;AÞ be an information system, P # A an attribute set.
We define a binary relation on U as follows:

SIMðPÞ¼fðu;vÞ 2U�Uj8a2 P;aðuÞ¼ aðvÞ or aðuÞ¼ � or aðvÞ¼ �g:

In fact, SIMðPÞ is a tolerance relation on U, the concept of a tolerance
relation has a wide variety of applications in classification [11–
14,23]. It can be easily shown that SIMðPÞ ¼

T
a2PSIMðfagÞ:

Let SPðuÞ denote the set fv 2 Ujðu;vÞ 2 SIMðPÞg. SPðuÞ is the
maximal set of objects which are possibly indistinguishable by P
with u. Let U=SIMðPÞ denote the family sets fSPðuÞju 2 Ug, the clas-
sification or the knowledge induced by P. A member SPðuÞ from
U=SIMðPÞ will be called a tolerance class or a granule of informa-
tion. It should be noticed that the tolerance classes in U=SIMðPÞ
do not constitute a partition of U in general. They constitute a cover
of U, i.e., SPðuÞ– O for every u 2 U, and

S
u2USPðuÞ ¼ U.

An incomplete information system S ¼ ðU;C [ DÞ is called an
incomplete decision table if condition attributes and decision attri-
butes are distinguished, where C is the condition attribute set, and
D is the decision attribute set. For an incomplete decision table
S ¼ ðU;C [ DÞ, if SIMðCÞ# INDðDÞ, then we say the decision table
S is consistent, otherwise we say it is inconsistent.

Example 1. Consider descriptions of several cars in Table 1 [8].
This is an incomplete decision table, where U ¼ fu1;u2;u3;u4;

u5;u6g; C ¼ fa1; a2; a3; a4g with a1-Price, a2-Mileage, a3-Size, a4-
Max-Speed, and D ¼ fdg. By computing, it follows that:

U=SIMðCÞ ¼ fSCðu1Þ; SCðu2Þ; SCðu3Þ; SCðu4Þ; SCðu5Þ; SCðu6Þg;

where SCðu1Þ ¼ fu1g; SCðu2Þ ¼ fu2;u6g; SCðu3Þ ¼ fu3g; SCðu4Þ ¼ fu4;

u5g; SCðu5Þ ¼ fu4;u5;u6g; SCðu6Þ ¼ fu2;u5; u6g.

Note that the order pair ðu5;u4Þ 2 SIMðCÞ do not belong to the
indistinguishable relation INDðDÞ. Hence, it is obvious that S is an
inconsistent incomplete decision table. It is trivial to observe that
the value of the generalized decision @d for an object in an incom-
plete decision table is a superset of its generalized decision’s value
(see @d in Table 1).

However, tolerance classes are not the minimal units for
describing knowledge or information in an incomplete information
system or an incomplete decision table [2,11].

Let S ¼ ðU;AÞ be an information system, P # A an attribute set
and X # U a subset of objects. We say X is consistent with respect
to P if ðu;vÞ 2 SIMðPÞ for any u; v 2 X. If there does not exist a sub-
set Y # U such that X � Y , and Y is consistent with respect to P,
then X is called a maximal consistent block of P. Obviously, in a
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maximal consistent block, all objects are not indiscernible with
available information provided by a similarity relation [11].

Henceforth, we denote the set of all maximal consistent blocks
determined by P # A as MCP , and the set of all maximal consistent
blocks of P which includes some object u 2 U is denoted as MCPðuÞ.
It is obvious that X 2 MCP if and only if X ¼

T
u2XSPðuÞ [11]. In fact,

the set of all maximal consistent blocks MCP will degenerate into
the partition U=P induced by attribute set P in a complete informa-
tion system, i.e., MCP ¼ U=P.

Example 2. Computing all maximal consistent blocks of C in Table 1.
By computing, from Example 1, we have that

MCC ¼ ffu1g; fu2;u6g; fu3g; fu4; u5g; fu5; u6gg;

where MCC is the set of all maximal consistent blocks determined
by C on U.
3. Approximation reduction in inconsistent incomplete
decision tables

Attribute reduction is needed to simplify a decision table. The
approximation reduction proposed by Mi et al. is an important
kind of attribute reduction, which can be used to simplify an incon-
sistent complete decision table [17,34]. To date, however, there is
not any practical approach to attribute reduction in inconsistent
incomplete decision tables. In this section, we present the notions
of a lower approximation reduct and an upper approximation re-
duct in an inconsistent incomplete decision table and then deduce
their some important properties.

In order to introduce the notion of approximation reduction,
firstly, we redefine the consistency of an incomplete decision table
by using maximal consistent blocks.

Definition 1. Let S ¼ ðU;C [ DÞ be an incomplete decision table. If
for any maximal consistent block X 2 MCC , there exists a decision
class Y 2 U=INDðDÞ such that X # Y , then the decision table S is said
to be consistent, otherwise it is said to be inconsistent.

From the consistency of incomplete decision tables and Defi-
nition 1, one can prove the following Theorem 1.

Theorem 1. Let S ¼ ðU;C [ DÞ be an incomplete decision table. If
SIMðCÞ# INDðDÞ, then, for any maximal consistent block X 2 MCC,
there exists a decision class Y 2 U=INDðDÞ such that X # Y.

Proof. From the definition of maximal consistent blocks, we know
that X is consistent with respect to C if ðu; vÞ 2 SIMðCÞ for any
u;v 2 X. If SIMðCÞ# INDðDÞ, then we have that ðu;vÞ 2 INDðDÞ for
any ðu;vÞ 2 SIMðCÞ. In other words, there exists an equivalence
class ½u�D or ½v �D in U=INDðDÞ such that u; v 2 ½u�D and
u; v 2 ½v�D. Hence, from X ¼

T
u2XSCðuÞ [11], one can obtain that

u; v 2 ½u�D for any ðu;vÞ 2 X � X, i.e., X # ½u�D. Therefore, for any
maximal consistent block X 2 MCC , there exists a decision class
Y 2 U=INDðDÞ such that X # Y . This completes the proof. h

Let S ¼ ðU;AÞ be an incomplete information system, B # A and
X # U. In [11], the approximation operators aprB and aprB are de-
fined by

aprBðXÞ ¼
[
fY 2 MCBjY # Xg;

aprBðXÞ ¼
[
fY 2 MCBjY \ X – Øg:

Let S ¼ ðU;C [ DÞ be an incomplete decision table and B # C. De-
noted by U=INDðDÞ ¼ fD1;D2; . . . ;Drg. The lower and upper approx-
imation distribution functions with respect to B are defined as

aprBðDÞ ¼ ðaprBðD1Þ; aprBðD2Þ; . . . ; aprBðDrÞÞ;
aprBðDÞ ¼ ðaprBðD1Þ; aprBðD2Þ; . . . ; aprBðDrÞÞ:
By the lower and upper approximation distribution functions, we
then introduce the notions of a lower/upper approximation consis-
tent set and a lower/upper approximation reduct in incomplete
decision tables.

Definition 2. Let S ¼ ðU;C [ DÞ be an incomplete decision table
and B # C.

(1) If aprBðDÞ ¼ aprCðDÞ, we say that B is a lower approximation
consistent set of A. If B is a lower approximation consistent
set, and no proper subset of B is lower approximation consis-
tent, then B is called a lower approximation reduct of C.

(2) If aprBðDÞ ¼ aprCðDÞ, we say that B is an upper approxima-
tion consistent set of A. If B is a upper approximation consis-
tent set, and no proper subset of B is upper approximation
consistent, then B is called an upper approximation reduct
of C.
From the definition of the set approximation in the context of
maximal consistent blocks, it follows that the lower approximation
of a set must be contained by its upper approximation. Hence, it is
easy to prove that an upper approximation consistent set must be a
lower approximation consistent set. However, the converse rela-
tion is not true for inconsistent incomplete decision tables. In fact,
for a consistent incomplete decision table, we can obtain the fol-
lowing theorem.

Theorem 2. Let S ¼ ðU;C [ DÞ be a consistent incomplete decision
table and B # C. Then, B is a lower approximation consistent set iff B is
an upper approximation consistent set.

Proof. It is straightforward. h

Let S ¼ ðU;C [ DÞ be an incomplete decision table,
B # C;U=INDðDÞ ¼ fD1;D2; . . . ;Drg and X 2 MCB. For convenient
representation, denoted by

uBðuÞ ¼
Dj; if9j 6 r such that u 2 X;X # aprBðDjÞ;
Ø; otherwise:

�
gBðuÞ ¼ fDj : u 2 X;X # aprBðDjÞg:
Theorem 3. u and g have the following properties:

(1) aprBðDjÞ ¼
S
fu : uBðuÞ ¼ fDjg;u 2 Ug.

(2) aprBðDjÞ ¼
S
fu : Dj 2 gBðuÞ;u 2 Ug.
Proof. It is straightforward. h

In the following, we investigate some judgement methods of a
lower/upper approximation consistent set in an inconsistent
incomplete decision table.

Here, we define a partial relation in incomplete information sys-
tems. Let S ¼ ðU;AÞ be an incomplete information system,
P;Q # A; MCP ¼ fX1;X2; . . . ;Xmg and MCQ ¼ fY1;Y2; . . . ;Yng. A par-
tial relation v is defined as follows:

P v Q () for every Xi 2 MCP ; there exists Yj

2 MCQ such that Xi # Yj:

From the definition of partial relation v, it is easy to obtain the fol-
lowing lemma.

Lemma 1. Let S ¼ ðU;AÞ be an incomplete information system and
B # A, then MCA v MCB.
Theorem 4 (Judgement theorem of consistent set I). Let
S ¼ ðU;C [ DÞ be an incomplete decision table and B # C. Then,

(1) B is a lower approximation consistent set iff uBðuÞ ¼
uCðuÞ; 8u 2 U;
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(2) B is an upper approximation consistent set iff gBðuÞ ¼
gCðuÞ; 8u 2 U.
Proof. Suppose U=INDðDÞ ¼ fD1;D2; . . . ;Drg. Since B # C, from
Lemma 1, it follows that MCC v MCB.

(1) ‘‘)” If B is a lower approximation consistent set, then
aprBðDÞ ¼ aprCðDÞ, i.e., one has that aprBðDjÞ ¼ aprCðDjÞ;
j 6 r. Hence, for any u 2 Dj, if u 2 aprBðDjÞ, then u must
belong to aprCðDjÞ, i.e., uBðuÞ ¼ uCðuÞ ¼ fDjg; if u R aprBðDjÞ,
then u does not belong to aprCðDjÞ, i.e., uBðuÞ ¼ uCðuÞ ¼ Ø.
From U=INDðDÞ being a partition on the universe U, one
therefore has that uBðuÞ ¼ uCðuÞ; 8u 2 U.‘‘�” Suppose
uBðuÞ ¼ uCðuÞ; 8u 2 U. When uBðuÞ ¼ fDjg, there must exist
some X 2 MCBðuÞ such that X # Dj, i.e., X # aprBðDjÞ. And
since MCC v MCB, we know that there exist Y 2 MCCðuÞ such
that Y # X. Hence, Y # Dj and Y # aprCðDjÞ. Thus, u 2 aprCðDjÞ.
When uBðuÞ ¼ Ø, we suppose u 2 aprCðDjÞ and u R aprBðDjÞ.
In this situation, uBðuÞ ¼ Ø; uCðuÞ ¼ fDjg, i.e., uBðuÞ–
uCðuÞ. This yields a contradiction. Therefore, if u 2 aprCðDjÞ,
one must have u 2 aprBðDjÞ when uBðuÞ ¼ uCðuÞ. Hence, B
is a lower approximation consistent set if uBðuÞ ¼
uCðuÞ; 8u 2 U.

(2) ‘‘)” Denoted by TðuÞ ¼ fDk : u 2 aprBðDkÞ; u 2 U; Dk 2
U=INDðDÞg and T 0ðuÞ ¼ fDk : u 2 aprCðDkÞ; u 2 U; Dk 2
U=INDðDÞg. If B is an upper approximation consistent set,
then aprBðDÞ ¼ aprCðDÞ, i.e., one has that aprBðDjÞ ¼
aprCðDjÞ; j 6 r. Hence, TðuÞ ¼ T 0ðuÞ; 8u 2 U. Therefore, we
have that gBðuÞ ¼ gCðuÞ.‘‘�” Let gBðuÞ ¼ gCðuÞ; 8u 2 U. We
suppose that there exists D0 2 U=INDðDÞ such that
aprBðD0Þ – aprCðD0Þ. Since MCC v MCB, it follows that
aprCðD0Þ# aprBðD0Þ. Let u0 2 aprBðD0Þ and u0 R aprCðD0Þ, one
has that D0 2 gBðu0Þ and D0 R gCðu0Þ. Obviously,
gBðu0Þ – gCðu0Þ. This yields a contradiction. Hence, B is an
upper approximation consistent set if gBðuÞ ¼ gCðuÞ; 8u 2 U.
This completes the proof. h

Theorem 4 provides an approach to judge whether a subset of
condition attributes is a lower/upper approximation consistent
set or not.

Denoted by rðXCðuÞÞ ¼
S
fv : faðvÞ is regular; v 2 XðuÞ; a 2 Cg,

where XCðuÞ is a maximal consistent block under C containing u
and faðvÞ is the value of v under the attribute a. Here, rðXCðuÞÞ is
called a regular set of XCðuÞ.

Based these discussions, in the following we give another judge-
ment theorem of approximation consistent sets.

Theorem 5 (Judgement theorem of consistent set II). Let
S ¼ ðU;C [ DÞ be an incomplete decision table and B # C. Then,

(1) B is a lower approximation consistent set iff if u; v 2 U such
that uCðuÞ– uCðvÞ, then rðXBðuÞÞ \ rðXBðvÞÞ ¼ Ø when
rðXBðuÞÞ– rðXBðvÞÞ;

(2) B is an upper approximation consistent set iff if u; v 2 U such
that gCðuÞ – gCðuÞ, then rðXBðuÞÞ \ rðXBðvÞÞ ¼ Ø when
rðXBðuÞÞ– rðXBðvÞÞ.
Proof

(1) ‘‘)” If rðXBðuÞÞ \ rðXBðvÞÞ– Ø, one has that rðXBðuÞÞ ¼
rðXBðvÞÞ. So, XBðuÞ ¼ XBðvÞ. From the definition of u function,
it follows that uBðuÞ – uBðvÞ. The assumption that B is a
lower approximation consistent set implies that uBðuÞ ¼
uCðuÞ and uBðvÞ ¼ uCðvÞ. Therefore, uCðuÞ ¼ uCðvÞ. This
yields a contradiction. Hence, rðXBðuÞÞ \ rðXBðvÞÞ ¼ Ø when
rðXBðuÞÞ– rðXBðvÞÞ.‘‘�” From Lemma 1, we know that
MCC v MCB.If uCðuÞ ¼ Ø, then for any maximal consistent
block XCðuÞ 2 MCCðuÞ containing u, there exists some
XBðuÞ 2 MCBðuÞ such that XCðuÞ# XBðuÞ, thus, we have that
uBðuÞ ¼ Ø.If uCðuÞ ¼ fDjg, for some j 6 r, there exists a max-
imal consistent block XCðuÞ 2 MCCðuÞ such that XCðuÞ# Dj.
For any v 2 XBðuÞ, since rðXBðuÞÞ \ rðXBðvÞÞ– Ø, we have that
rðXBðuÞÞ ¼ rðXBðvÞÞ, i.e., XBðuÞ ¼ XBðvÞ. Hence, it follows from
the assumption that uCðuÞ ¼ uCðvÞ. Thus, XCðvÞ# Dj. There-
fore, v 2 Dj. So, one has that XBðuÞ# Dj. That is to say
uBðuÞ ¼ fDjg.Therefore, uCðuÞ ¼ uBðuÞ; 8u 2 U. By Theorem
4 we conclude that B is a lower approximation consistent
set.

(2) It is similar to the proof of (1).

This completes the proof. h

Theorem 5 provides another approach to judge whether a sub-
set of condition attributes is lower/upper approximation consistent
set or not.

Remark. As we know, if S is a complete decision table, then the
maximal consistent blocks induced by the condition attribute set C
will generate into the equivalence classes induced by C. In this
case, the regular set rðXCðuÞÞ of a maximal consistent block XCðuÞ
containing u is equivalent to the equivalence class ½u�C . Therefore,
the judgement approaches to lower/upper approximation consis-
tent set in Theorem 5 are also be used in a complete decision table.
4. Approaches to approximation reduction in inconsistent
incomplete decision tables

In this section, the approaches to the lower approximation re-
duct and the upper approximation reduct are provided and an
illustrate example is also employed to show their mechanisms.

Let S ¼ ðU;C [ DÞ be an incomplete decision table and
X;Y 2 MCC . In order to introduce the notions of a lower/upper
approximation discernibility attribute set, we denote

uCðXÞ ¼
Dj; if 9j 6 r such that X # Dj;Dj 2 U=INDðDÞ;
Ø; otherwise:

�
gCðXÞ ¼ fDj : X \ Dj – Øg:
and

D�1 ¼ fðX;YÞ : uCðXÞ– uCðYÞg;
D�2 ¼ fðX;YÞ : gCðXÞ – gCðYÞg:
where ðX;YÞ identifies with ðY;XÞ in D�l ; l 2 f1;2g.

From the above denotations, it is easy to see that the maximal
consistent blocks X; Y in D�1 cannot be included in the same deci-
sion class Dj 2 U=INDðDÞ, and the maximal consistent blocks X; Y
in D�2 cannot be included in the upper approximation of same deci-
sion class Dj 2 U=INDðDÞ.

Denoted by faðXÞ ¼ faðuÞ; a 2 C;X 2 U and u 2 rðXÞ, where rðXÞ
is the regular set of a maximal consistent block X. For a 2 C, we de-
note faðXÞ ¼ faðYÞ iff faðuÞ ¼ faðvÞ; u 2 rðXÞ; v 2 rðYÞ and a 2 C;
otherwise faðXÞ – f aðYÞ.

Based on these representations, we give the definitions of a low-
er approximation discernibility attribute set and an upper approx-
imation discernibility attribute set in the following.

Definition 3. Let S ¼ ðU;C [ DÞ be an incomplete decision table
and MCC ¼ fX1;X2; . . . ;Xmg. We denote

DlðXi;XjÞ ¼
fa 2 C : faðXiÞ– f aðXjÞg; ðXi;XjÞ 2 D�l ;

C; ðXi;XjÞ R D�l :

�
l 2 f1;2g;

then DlðXi;XjÞ; l 2 f1;2g, are called a lower approximation discern-
ibility attribute set and an upper approximation discernibility attri-
bute set, respectively.
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Based on the denotation in Definition 3, the below judgement
theorem of a consistent set can be also obtained.

Theorem 6 (Judgement theorem of consistent set III). Let
S ¼ ðU;C [ DÞ be an incomplete decision table and B # C. Then,

(1) B is a lower approximation consistent set iff B \ D1ðXi;XjÞ – Ø
for all ðXi;XjÞ 2 D�1;

(2) B is an upper approximation consistent set iff B \ D2ðXi;XjÞ – Ø
for all ðXi;XjÞ 2 D�2.
Table 2
The lower approximation discernibility matrix of the incomplete decision table about
cars.

Xi=Xj X1 X2 X3 X4 X5

X1 Ø fa1; a2; a3; a4g fa3g fa4g fa1; a2; a4g
X2 Ø fa3g fa1; a4g fa4g
X3 Ø fa3; a4g fa3; a4g
X4 Ø fa1; a2; a3; a4g
X5 Ø
Proof

(1) ‘‘)” Suppose B is a lower approximation consistent set. For
8ðXi;XjÞ 2 D�1, one can find u; v 2 U such that there exist
two maximal consistent blocks XCðuÞ; XCðvÞ with
Xi ¼ XCðuÞ and Xj ¼ XCðvÞ, then uCðuÞ– uCðvÞ. We obtain
by (1) in Theorem 5 that rðXBðuÞÞ \ rðXBðvÞÞ ¼ Ø when
rðXBðuÞÞ– rðXBðvÞÞ. Thus, there exists a0 2 B such that
fa0 ðuÞ – f a0

ðvÞ, i.e., fa0 ðXiÞ– f a0
ðXjÞ. It implies a0 2 D1ðXi;XjÞ.

Then, B \ D1ðXi;XjÞ – Ø.‘‘�” Conversely, if there exists
ðXi;XjÞ 2 D�1 such that B \ D1ðXi;XjÞ ¼ Ø, one can select
u; v 2 U and XCðuÞ; XCðvÞ satisfying Xi ¼ XCðuÞ; Xj ¼ XCðvÞ.
It should be noted that uCðuÞ – uCðvÞ. Then, for any a 2 B,
one has a R D1ðXi;XjÞ. Therefore, faðXiÞ ¼ faðXjÞ. Conse-
quently, faðuÞ ¼ faðvÞ for all a 2 B, which implies
XCðuÞ ¼ XCðvÞ. Thus, by (1) in Theorem 5 we conclude that
B is not a lower approximation consistent set. Hence, if
B \ D1ðXi;XjÞ– Ø for all ðXi;XjÞ 2 D�1, then B must be a lower
approximation consistent set.

(2) It is similar to the proof of (1).

This completes the proof. h

Theorem 6 provides an approach to approximation reduction in
inconsistent incomplete decision tables. It is also available for a
consistent incomplete decision table.

Definition 4. Let S ¼ ðU;C [ DÞ be an incomplete decision table,
Dl ¼ ðDlðXi;XjÞ; i; j 6 mÞ; l 2 f1;2g; Xi; Xj 2 MCC , are called lower
and upper approximation discernibility matrices, respectively.
Denoted by

Ml ¼
^ _

a : a 2 DlðXi;XjÞ
� �

: i; j 6 m
n o

¼
^ _

a : a 2 DlðXi;XjÞ
� �

: ðXi;XjÞ 2 D�l ; l 2 f1;2gð Þ
n o

:

Then, Mlðl 2 f1;2gÞ are, respectively, referred to as the lower
approximation and upper approximation discernibility functions.

Through the lower approximation and upper approximation
discernibility functions, we can design the approaches to the
lower/upper approximation reduct in an inconsistent incomplete
decision table as follows.

Theorem 7. Let S ¼ ðU;C [ DÞ be an incomplete decision table. The
minimal disjunctive normal form of each discernibility function
Ml ðl 2 f1;2gÞ is

Ml ¼
_t

k¼1

q̂k

s¼1

ais

 !
; ðl ¼ 1;2Þ:

Denoted by Blk ¼ fais : s ¼ 1;2; . . . ; qkg, and then
fBlk : k ¼ 1;2; . . . ; tg ðl ¼ 1;2Þ are, respectively, the set of all lower
and upper approximation reducts.

Proof. The proof is same as the idea of all minimal disjunctive nor-
mal form of each discernibility function in rough set theory. We
omit this proof in this paper. h
Theorem 7 provides practical approaches to some attribute
reductions in inconsistent incomplete decision tables.

In the following, an illustrative example is employed to analyze
the mechanisms of the approaches established in the present
research.

Example 3 (Continued from Example 1). Compute the lower
approximation reduct and upper approximation reduct of this
decision table (see Table 1).

By computing, it follows that:

MCC ¼ ffu1g; fu2;u6g; fu3g; fu4;u5g; fu5;u6gg;

We denote the maximal consistent blocks of objects by

X1 ¼ fu1g; X2 ¼ fu2;u6g; X3 ¼ fu3g; X4 ¼ fu4; u5g;
X5 ¼ fu5;u6g:

And, we denote the decision classes of objects by

D1 ¼ fu1;u2;u4;u6g; D2 ¼ fu3g; D3 ¼ fu5g:

At first, we compute the lower approximation reducts of this
incomplete decision table.

It can easily be calculated that

uCðX1Þ ¼ fD1g; uCðX2Þ ¼ fD1g; uCðX3Þ ¼ fD2g;
uCðX4Þ ¼ fØg; uCðX5Þ ¼ fØg:

Hence,

D�1 ¼ fðX1;X3Þ; ðX1;X4Þ; ðX1;X5Þ; ðX2;X3Þ; ðX2;X4Þ; ðX2;X5Þ;
ðX3;X4Þ; ðX3;X5Þg:

From Definitions 3 and 4, one can obtain the lower approximation
discernibility matrix. Because of its symmetry, it is only necessary
to write half of the discernibility matrix (see Table 2).

Therefore, it follows from Theorem 7 that:

M1 ¼ ða1 _ a2 _ a3 _ a4Þ ^ a3 ^ a4 ^ ða1 _ a2 _ a4Þ ^ ða1 _ a4Þ
^ ða3 _ a4Þ ^ fa1; a2; a3; a4g ¼ a3 ^ a4:

By Theorem 7, we conclude that fa3; a4g is the unique lower approx-
imation reduct of this incomplete decision table.

Then, we compute the upper approximation reducts of this
incomplete decision table.

It can easily be calculated that

gCðX1Þ ¼ fD1g; gCðX2Þ ¼ fD1g; gCðX3Þ ¼ fD2g;
gCðX4Þ ¼ fD1;D3g; gCðX5Þ ¼ fD1;D3g:

Thus,

D�2 ¼ fðX1;X3Þ; ðX1;X4Þ; ðX1;X5Þ; ðX2;X3Þ; ðX2;X4Þ; ðX2;X5Þ;
ðX3;X4Þ; ðX3;X5Þg:

From Definitions 3 and 4, one can obtain the upper approximation
discernibility matrix. Similar to Table 2, because of its symmetry we
only write half of the discernibility matrix (see Table 3).



Table 5
Lower approximation reducts.

Data sets Reduct
numbers

Features of the
shortest reduct

Features of the
longest reduct

1 Voting-
records

1 14 14

2 Soybean-
large

682 11 16

3 Spect 267 14 15
4 Zoo 101 8 9
5 Tic-tac-

toe
9 8 8
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Therefore, it follows from Theorem 7 that:

M2 ¼ ða1 _ a2 _ a3 _ a4Þ ^ a3 ^ a4 ^ ða1 _ a2 _ a4Þ ^ ða1 _ a4Þ
^ ða3 _ a4Þ ^ fa1; a2; a3; a4g ¼ a3 ^ a4:

By Theorem 7, we conclude that fa3; a4g is the unique upper
approximation reduct of the incomplete decision table.

In what follows, we analyze the relationship between the attri-
bute reduction method and other approaches of discernibility ma-
trix to reduce attributes within rough set theory. As we know,
discernibility matrix method can be used to find all attribute re-
ducts from an information systems or a decision table, which has
been widely applied in feature selection in rough set theory. Using
the framework, many discernibility matrix versions have been
developed, and each version is based on a special definition of dis-
cernibility attribute set for its corresponding definition of attribute
reduction. In this study, unlike each of existing approaches of dis-
cernibility matrix, we define two more different discernibility ma-
trix approaches through employing maximal consistent block
technique for acquiring lower/upper approximation discernibility
attribute set and obtaining lower/upper approximation reduction
from an inconsistent incomplete decision table.

Five data sets from the University of California at Irvine (UCI)
Machine Learning Repository are used in the empirical study. The
information about these five data sets is shown in Table 4. The
objective of these experiments is to show the power of the pro-
posed method to attribute reduction.

Table 5 displays the lower approximation reducts on five public
data sets. It can be seen from Table 5 that the voting-records has 1
reduct only, the soybean-large has 682 reducts, the spect has 267
reducts, the zoo has 101 reducts and the tic-tac-toe has 9 reducts.
These results show that the proposed discernibility matrix ap-
proach can obtain all lower/upper approximation attribute reducts,
but not a single reduct. It is deserved to point out that the time
consumption of discernibility matrix approach is very disappoint-
ing, and a heuristic strategy is always employed when dealing with
large-scale data sets.

By adopting the technique of maximal consistent blocks, a vari-
ety of discernibility functions in inconsistent incomplete decision
tables becomes simpler in the proposed approach. In a maximal
consistent block, all objects are not indiscernible with available
information provided by a similarity relation. Therefore, by using
maximal consistent blocks as units to construct discernibility
matrices, their size can be reduced. This means that the algorithms
for finding various approximation reducts requires smaller mem-
ory. Therefore, it makes the absorption law (used to simplify a dis-
Table 3
The upper approximation discernibility matrix of the incomplete decision table about
cars.

Xi=Xj X1 X2 X3 X4 X5

X1 Ø fa1; a2; a3; a4g fa3g fa4g fa1; a2; a4g
X2 Ø fa3g fa1; a4g fa4g
X3 Ø fa3; a4g fa3; a4g
X4 Ø fa1; a2; a3; a4g
X5 Ø

Table 4
Data description.

Data sets Samples Features Data type Classes

1 Voting-records 435 16 Incomplete 2
2 Soybean-large 307 35 Incomplete 19
3 Spect 267 22 Complete 2
4 Zoo 101 16 Complete 7
5 Tic-tac-toe 958 9 Complete 2
cernibility function for obtaining all prime implicants) more
efficient.

Remark. In this study, we develop an approach to find all the set
of all lower and upper approximation reducts based on discern-
ibility functions. But the process to calculate the disjunctive
normal form is an NP-hard problem. However, it cannot be easily
calculated by computer if there are hundreds and thousands
objects in a given data set. In fact, it cannot be applied in practical
applications. Therefore, more applicable approaches such as heu-
ristic algorithm is desirable. We will investigate this work in the
future.
5. Conclusions

To acquire brief decision rules from inconsistent incomplete
decision tables, attribute reductions in the condition part are
needed. This paper has introduced a kind of attribute reductions
called a lower/upper approximation reduct, which preserve the
lower/upper approximation distribution of the decision classes.
The judgement theorems and discernibility matrices associated
with the two reductions have been obtained. Then, the practical
approaches to lower/upper approximation reduct in inconsistent
incomplete decision tables have been provided as well. Finally,
an illustrative example has been employed to explain the mecha-
nism of this kind of attribution reduction methods. The proposed
method renders a set of simpler discernibility functions for finding
all approximation reducts of an inconsistent incomplete decision
table. Though the procedure is developed in the context of incon-
sistent incomplete decision tables, it is apparent that the method-
ology is also applicable to consistent decision tables and complete
decision tables.
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