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Abstract. Set approximation is a kernel concept in rough set theory.
In this paper, by introducing a notion of granulation order, positive ap-
proximation of a target set under a granulation order is defined in an
incomplete information system and its some useful properties are in-
vestigated. Unlike classical rough set theory, this approximation deals
with how to describe the structure of a rough set in incomplete informa-
tion systems. For a subset of the universe, its approximation accuracy is
monotonously increasing with a granulation order becoming longer. This
means that a proper family of granulations can be chosen for a target
concept approximation according to user requirements. Furthermore, an
algorithm based on the positive approximation, called MABPA II, is de-
signed for decision-rule extracting and a practical example is employed
to illustrate its mechanism.

Keywords: Information systems, granular computing, dynamic granu-
lation, rule extracting.

1 Introduction

Granulation is originally a physics concept, used to denote “average measure of
granules”. Physics granulation is fine partition of physics objects, while infor-
mation granulation is fine partition of information or knowledge in information
systems. Granular computing is an active area of current research in artificial
intelligence, and is a new concept and computing pattern for information pro-
cessing. It has been widely applied to many branches in artificial intelligence
field, such as problem solving, knowledge discovery, image processing, semantic
Web services.

As follows, for our further development, we briefly review some existing re-
sults about granular computing. In 1979, the problem of fuzzy information gran-
ule was introduced by Zadeh in [1]. Then, in [2-4] he introduced the concept of
granular computing, as a term with many meanings, covering all the research of
theory, methods, techniques and tools related to granulation. A general model
based on fuzzy set theory was proposed, and granules were defined and con-
structed basing on the concept of generalized constraints in [3]. Relationships
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among granules were represented in terms of fuzzy graphs or fuzzy if-then rules.
Pawlak [5] proposed that each equivalence class may be viewed as a granule
consisting of indistinguishable elements, also referred to as to an equivalence
granule. Some basic problems and methods such as logic framework, concept ap-
proximation, and consistent classification for granular computing were outlined
by Yao in [6]. The structure, modeling, and applications of granular computing
under some binary relations were discussed, and the granular computing meth-
ods based on fuzzy sets and rough sets were proposed by Lin in [7]. Quotient
space theory was extended to fuzzy quotient space theory based on fuzzy equiv-
alence relation by Zhang and Zhang in [8], providing a powerful mathematical
model and tools for granular computing. By using similarity between granules,
some basic issues on granular computing were discussed by Klir in [9]. Several
measures in information systems closely associated with granular computing,
such as granulation measure, information and rough entropy, as well as knowl-
edge granulation, were discussed by Liang in [10, 11]. Decision rule granules and
a granular language for logical reasoning based on rough set theory were studied
by Liu in [12]. In [13-15], Qian and Liang extended classical rough set model to
multi-granulations rough set model, which can overcome the rigorous condition
that any two attributes must be independent in rough set theory.

Rough set theory is an important model to research on granular computing.
Rough set theory, proposed by Pawlak [16], has become well established as a
mechanism for uncertainty management in a wide variety of applications related
to artificial intelligence. In recent years, several extensions of rough set model
have been proposed, such as variable precision rough set (VPRS) model [17],
rough set model based on tolerance relation [18], Bayesian rough set model [19],
fuzzy rough set model and rough fuzzy set model [20]. In the view of granular
computing, in these rough set models, a concept described by a set is always
characterized via the so-called upper and lower approximations under a static
granulation, and a static boundary region of the concept is induced by the upper
and lower approximations. However a concept described by using positive ap-
proximation is characterized via the variational upper and lower approximations
under dynamic granulation, which is an aspect of people’s comprehensive solv-
ing ability at some different granulation spaces [21]. The positive approximation
extends classical rough set, and enriches rough set theory and its application.
This paper aims to extend this approach to the rough set approximation under
dynamic granulation in incomplete information systems.

The rest of this paper is organized as follows: in Section 2, the concepts of
a granulation order and the positive approximation under dynamic granulation
in an incomplete information system are proposed. For any general concept of
the universe, its boundary region is changeable and the approximation accuracy
measure is monotonously increasing under a granulation order. This means that
a proper family of granulations can be chosen for a target concept approxima-
tion according to the requirements of users; in Section 3, an algorithm based
on positive approximation is designed to extract decision rules, which will be
helping for understanding the mechanism of positive approximation. An illus-
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trate example is employed to show how the algorithm MABPA II works as well.
Finally, Section 4 concludes whole paper.

2 Positive Approximation in Incomplete Information
Systems

In this section, we review some basic concepts such as incomplete information
systems, tolerance relation and partial relation of knowledge, introduce the no-
tion of positive approximation to describe the structure of a set approximation
in incomplete information systems, and investigate its some useful properties as
well.

An information system is a pair S = (U,A), where,
(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of attributes;
(3) for every a ∈ A, there is a mapping a, a : U → Va, where Va is called the

value set of a.
It may happen that some of the attribute values for an object are missing. For

example, in medical information systems there may exist a group of patients for
which it is impossible to perform all the required tests. These missing values can
be represented by the set of all possible values for the attribute or equivalence by
the domain of the attribute. To indicate such a situation, a distinguished value,
a so-called null value is usually assigned to those attributes.

If Va contains a null value for at least one attribute a ∈ A, then S is called an
incomplete information system, otherwise it is complete [18, 22]. Further on, we
will denote the null value by ∗. For example, Table 1 is an incomplete information
system.

Table 1. An incomplete information system about car

Car Price Mileage Size Max-Speed
u1 high low full low
u2 low * full low
u3 * * compact low
u4 high * full high
u5 * * full high
u6 low high full *

Let S = (U,A) be an information system, P ⊆ A an attribute set. We define
a binary relation on U as follows

SIM(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v) or a(u) = ∗ or a(v) = ∗}.
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In fact, SIM(P ) is a tolerance relation on U , the concept of a tolerance
relation has a wide variety of applications in classification [23, 24].

It can be easily shown that SIM(P ) =
⋂

a∈P SIM({a}).
Let SP (u) denote the set {v ∈ U |(u, v) ∈ SIM(P )}. SP (u) is the maximal

set of objects which are possibly indistinguishable by P with u.
Let U/SIM(P ) denote the family sets {SP (u)|u ∈ U}, the classification

or the knowledge induced by P . A member SP (u) from U/SIM(P ) will be
called a tolerance class or a granule of information. It should be noticed that
the tolerance classes in U/SIM(P ) do not constitute a partition of U in general.
They constitute a cover of U , i.e., SP (u) 6= Ø for every u ∈ U , and

⋃
u∈U SP (u) =

U .
Let S = (U,A) be an incomplete information system, we define a partial

relation ¹ (or º) on 2A as follows: we say that Q is coarser than P (or P is
finer than Q), denoted by P ¹ Q (or Q º P ), if and only if SP (ui) ⊆ SQ(ui) for
i ∈ {1, 2, · · · , |U |}. If P ¹ Q and P 6= Q, we say that Q is strictly coarser than
P (or P is strictly finer than Q) and denoted by P ≺ Q (or Q Â P ).

In fact, P ≺ Q ⇔ for i ∈ {1, 2, · · · , |U |}, we have that SP (ui) ⊆ SQ(ui), and
∃j ∈ {1, 2, · · · , |U |}, such that SP (uj) ⊂ SQ(uj).

Let S = (U,A) be an incomplete information system, X a subset of U and
P ⊆ A an attribute set. In the rough set model based on tolerance relation [14],
X is characterized by SIM(P )(X) and SIM(P )(X), where

SIM(P )(X) =
⋃
{Y ∈ U/SIM(P )|Y ⊆ X}, (1)

SIM(P )(X) =
⋃
{Y ∈ U/SIM(P )|Y

⋂
X 6= Ø}. (2)

In an incomplete information system, a cover U/SIM(P ) of U induced by the
tolerance relation SIM(P ), P ∈ 2A, provides a granulation world for describing
a concept X. So a sequence of attribute sets Pi ∈ 2A (i = 1, 2, · · · , n ) with P1 º
P2 º · · · º Pn can determine a sequence of granulation worlds, from the most
rough one to the most fine one. We define the upper and lower approximations
of a concept under a granulation order.

Definition 1. Let S = (U,A) be an incomplete information system, X a subset
of U and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º P2 º · · · º Pn

(Pi ∈ 2A), we define P-upper approximation PX and P-lower approximation
PX of X as follows:

P(X) = SIM(Pn)(X), (3)

P(X) =
n⋃

i=1

SIM(Pi)(Xi), (4)

where X1 = X and Xi = X −⋃i−1
k=1 SIM(Pk)(Xk) for i = 2, · · · , n.

bnP(X) = P(X)−P(X) is called P-boundary region of X, posP(X) = P(X)
is called P-positive region of X, and negP(X) = U −P(X) is called P-negative
region of X. Obviously, we have P(X) = posP(X) ∪ bnP(X).
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Definition 1 shows that a target concept is approached by the change of the
lower approximation P(X) and the upper approximation P(X).

From this definition, we have the following theorem.

Theorem 1. Let S = (U,A) be an incomplete information system, X a subset
of U and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º P2 º · · · º Pn

(Pi ∈ 2A). Let Pi = {P1, P2, · · · , Pi}. Then for Pi (i = 1, 2, · · · , n), we have that

Pi(X) ⊆ X ⊆ Pi(X), (5)

P1(X) ⊆ P2(X) ⊆ · · · ⊆ Pn(X). (6)

Proof. The proof follows directly from Definition 1.

Theorem 1 states that the lower approximation enlarges as the granulation
order become longer through adding attribute subsets, which help to describe
exactly a target concept.

In [25] , the approximation measure αR(X) was originally introduced by Z.
Pawlak for classical lower and upper approximation, where αR(X) = |RX|

|RX| (X 6=
Ø). Here we introduce the concept to the positive approximation in order to
describe the uncertainty of a target concept under a granulation order.

Definition 2. Let S = (U,A) be an incomplete information system, X a subset
of U and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º P2 º · · · º Pn

(Pi ∈ 2A). The approximation measure αP(X) is defined as

αP(X) =
|P(X)|
|P(X)| , (7)

where X 6= Ø.

Theorem 2. Let S = (U,A) be an incomplete information system, X a subset
of U and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º P2 º · · · º Pn

(Pi ∈ 2A). Let Pi = {P1, P2, · · · , Pi}, then

αP1
(X) ≤ αP2

(X) ≤ · · · ≤ αPn
(X). (8)

Proof. The proof follows directly from Theorem 1 and Definition 2.

Theorem 2 states that the approximation measure αP(X) increases as the
granulation order become longer through adding attribute subsets.

In order to illustrate the essence that positive approximation is mainly con-
centrated on the change of the construction of the target concept X (tolerance
classes in lower approximation of X with respect to P) in incomplete informa-
tion systems, we can re-define P-positive approximation of X by using some
tolerance classes on U .

Therefore, the structure of P-upper approximation P(X) and P-lower ap-
proximation P(X) of P-positive approximation of X can be represented as fol-
lows
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[P(X)] = {SPn
(u) | SPn

(u) ∩X 6= Ø, u ∈ U}, (9)

[P(X)] = {SPi
(u) | SPi

(u) ⊆ Xi, i ≤ n, u ∈ U}, (10)

where X1 = X, Xi = X −⋃i−1
k=1 SIM(Pk)(Xk) for i = 2, · · · , n, and [·] denotes

the structure of a rough approximation.
In the following, we show how positive approximation in an incomplete in-

formation system works by an illustrate example.

Example 1. Support S = (U,A) be an incomplete information system, where
U = {u1, u2, u3, u4, u5, u6}, P, Q ⊆ A two attribute sets, X = {u1, u2, u3, u5, u6},
SIM(P ) = {{u1, u2}, {u1, u2}, {u2, u3}, {u3, u4, u5}, {u4, u5, u6}, {u4, u5, u6}},
SIM(Q) = {{u1}, {u2}, {u3}, {u4, u5}, {u4, u5}, {u5, u6}}.

Obviously, P º Q holds. Hence, we can construct a granulation order (a
family of tolerance relations) P = {P, Q}, where P1 = {P}, P2 = {P, Q}.

By computing the positive approximation of X with respect to P, we obtain
easily that

[P1(X)] = {{u1, u2}, {u1, u2}, {u2, u3}}
[P1(X)] = {{u1, u2}, {u1, u2}, {u2, u3}, {u3, u4, u5}, {u4, u5, u6}, {u4, u5, u6}},

[P2(X)] = {{u1, u2}, {u1, u2}, {u2, u3}, {u5, u6}},
[P2(X)] = {{u1}, {u2}, {u3}, {u4, u5}, {u4, u5}, {u5, u6}}.

Where {u1, u2}, {u2, u3} in [P2(X)] are not induced by the tolerance relation
SIM(Q) but SIM(P ), and [P2(X)] is induced by the tolerance relation SIM(Q).
In other words, the target concept X is described by using the granulation order
P = {P, Q}.

In order to reveal the properties of positive approximation based on dynamic
granulation in incomplete information systems, we here introduce the notion of
v.

Assume A,B be two families of tolerance classes sets, where A = {A1, A2, · · ·,
Am}, B = {B1, B2, · · · , Bn}. We say A v B, if and only if, for Ai ∈ A, there
exists Bj ∈ B such that Ai ⊆ Bj (i ≤ m, j ≤ n).

Theorem 3. Let S = (U,A) be an incomplete information system, X ⊆ U and
P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º P2 º · · · º Pn. Let
Pi = {P1, P2, · · · , Pi}, then [SIM(Pi)(X)] v [Pi(X)].

Proof. It follows from Definition 1 and Theorem 1 that SIM(Pi)(X) = Pi(X).
And, from Definition 1, we know that SIM(Pi)(X) can be regarded as the union
of Pi−1(X) and SIM(Pi)(X −Pi−1(X)).

Hence, for arbitrary SPi
(u) ∈ [SIM(Pi)(X)], if SPi

(u) ∈ [SIM(Pi)(X −
Pi−1(X))], then SPi(u) ∈ [Pi(X)] holds; if SPi(u) ∈ [SIM(Pi)(Pi−1(X))], then
there exist k such that SPi(u) ⊆ SPk

(u) (1 ≤ k < i) holds. In other words, for
arbitrary u ∈ SIM(Pi)(X), there exist some k (1 ≤ k ≤ i) such that SPi

(u) ⊆
SPk

(u), where SPk
(u) ∈ [Pi(X)]. Therefore, [SIM(Pi)(X)] v [Pi(X)] holds.

This completes the proof.
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Remark. Theorem 3 states that there is an inclusion relationship between the
structure of the classical lower approximation SIM(Pi)(X) and the structure of
this new lower approximation Pi(X) based on a granulation order. In fact, for
approximating a target concept, this mechanism establishes a family of tolerance
classes with a hierarchy nature from rough to fine on the basis of keeping the
approximation measure. Hence, in a board sense, the positive approximation will
be helpful for extracting decision rules with hierarchy nature according to user
requirements in incomplete information systems.

In the following, we introduce an approach to build a granulation order in
an incomplete information system. As we know, the tolerance classes induced
by an attribute set are finer than those of induced by any attribute subset in
general. This idea can be used to build a granulation order from rough to fine
on attribute power set. It can be understood by the below theorem.

Theorem 4. Let S = (U,A) be an incomplete information system, where A =
{a1, a2, · · · , an}. Denote by Ai = {a1, a2, · · · , ai} (i ≤ n), then P = {A1, A2, · · ·,
An} is a granulation order from rough to fine.

Proof. It is straightforward.

In practical issues, a granulation order on attribute set can be appointed
by user or experts, or be built according to the significance of each attribute.
In particular, in an incomplete decision table (i.e., an incomplete information
system with a decision attribute), some certain/uncertain decision rules can be
extracted through constructing the positive approximation of a target decision.

Let S = (U,C ∪D) be an incomplete decision table, P = {P1, P2, · · · , Pn} a
family of attribute sets with P1 º P2 º · · · º Pn. Γ = U/D = {D1, D2, · · · , Dr}
be a decision (partition) on U , a lower approximation and a upper approximation
of Γ related to P are defined by

[PΓ ] = {[P(D1)], [P(D2)], · · · , [P(Dr)]},
[PΓ ] = {[P(D1)], [P(D2)], · · · , [P(Dr)]}.

In addition, we call [bnPΓ ] = {[P(Di)]−[P(Di)]} : i ≤ r) P-boundary region
of Γ . Note that tolerance classes in [PΓ ] can induce certain decision rules, while
those in [bnPΓ ] can extract uncertain decision rules from an incomplete decision
table.

Similar to the formula (7), in the following, we give the notion of approxi-
mation measure of a target decision under a granulation order in an incomplete
decision table.

Definition 3. Let S = (U,C ∪D) be an incomplete decision table, Γ = U/D =
{D1, D2, · · · , Dr} and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º
P2 º · · · º Pn (Pi ∈ 2C). The approximation measure αP(Γ ) is defined as

αP(Γ ) =
r∑

k=1

|Dr|
|U |

|P(Dk)|
|P(Dk)| . (11)
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Theorem 5. Let S = (U,C ∪D) be an incomplete decision table, Γ = U/D =
{D1, D2, · · · , Dr} and P = {P1, P2, · · · , Pn} a family of attribute sets with P1 º
P2 º · · · º Pn (Pi ∈ 2C). Let Pi = {P1, P2, · · · , Pi}, then

αP1
(Γ ) ≤ αP2

(Γ ) ≤ · · · ≤ αPn
(Γ ). (12)

Proof. Suppose 1 ≤ i ≤ j ≤ r.
From Theorem 2 and Definition 3, we have that

αPi
(Γ ) =

r∑
k=1

|Dr|
|U |

|Pi(Dk)|
|Pi(Dk)|

≤
r∑

k=1

|Dr|
|U |

|Pj(Dk)|
|Pj(Dk)|

= αPj
(Γ ).

Hence, it follows that αP1
(Γ ) ≤ αP2

(Γ ) ≤ · · · ≤ αPn
(Γ ).

This completes the proof.

Theorem 5 states that the approximation measure αP(Γ ) increases as the
granulation order become longer through adding attribute subsets.

3 An application for decision rule extracting

We apply rough set methods for decision rule mining from decision tables. It is
not always possible to extract general laws from experimental data by computing
first all reducts of a decision table and next decision rules on the basis of these
reducts [26, 27].

In this section, we proposed an algorithm for decision rule mining in incom-
plete decision tables by using positive approximation. The application will be
helping for understanding the idea of positive approximation proposed in the
paper.

Let S = (U,C ∪ D) be an incomplete decision table, where C and D are
condition and decision attribute sets respectively, and C ∩D = Ø. The positive
region of D with respect to C is defined as follows

posC(D) =
⋃

X∈U/D

SIM(C)(X). (13)

In a decision table S = (U,C ∪D), the significance of c ∈ C with respect to
D is defined as follows [21]:

sigD
C−{c}(c) = γC(D)− γC−{c}(D), (14)

where γC(D) = |posC(D)|
|U | .

In a decision table S = (U,C ∪D), the significance of c ∈ C − C
′
(C

′ ⊆ C)
with respect to D is defined as follows

sigD
C′ (c) = γC′∪{c}(D)− γC′ (D), (15)

where γC(D) =
|pos

C
′ (D)|

|U | .
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Based on the algorithm MABPA for extracting hierarchy decision rules from
a complete decision table [21], we here extend it to mine certain decision rules
from an incomplete decision table in the context of a granulation order.

Algorithm MABPA II (mining rules in an incomplete decision table)
Input: an incomplete decision table S = (U,C ∪D);
Output: decision rules Rule.

(1) For ∀c ∈ C, compute the significance and relative core

coreD(C) = {c ∈ C|sigD
C−c(c) > 0};

(2) If coreD(C) 6= Ø, let P1 = coreD(C); else, for ∀c ∈ C, compute the depen-
dence γc(D) of D to c; let γc1(D) = max{γc(D)|c ∈ C} and P1 = c1;

(3) Compute U/D = {Y1, Y2, · · · , Yd};
(4) Let P = {P1}, i = 1, U∗ = U , Ω = Ø, Rule = Ø;
(5) Compute U∗/SIM(Pi) = {SPi

(u) : u ∈ U∗};
(6) Let Ω

′
= {SPi

(u) ∈ U∗/SIM(Pi) | SPi
(u) ⊆ Yj(Yj ∈ U/D, j = {1, 2, · · · , d})}.

Let Rule
′
= Ø, for arbitrary SPi

(u) ∈ Ω
′
, put desPi

(SPi
(u)) −→ desD(Yj)(Yj

∈ U/D,SPi
(u) ⊆ Yj into Rule

′
. Let Rule = Rule ∪Rule

′
, Ω = Ω ∪Ω

′
;

(7) If
⋃

Z∈Ω Z = U , go to (8); else, U∗ = U∗−⋃
Z∈Ω Z, for ∀c ∈ C−Pi, compute

sigD
Pi

(c), let sigD
Pi

(c2) = max{sigD
Pi

(c), c ∈ C − Pi}, if sigD
Pi

(c2) = 0 then go
to (8), otherwise Pi+1 = Pi ∪ {c2}, let P = P ∪ {Pi+1}, i = i + 1, go to (5);

(8) Output Rule.

Obviously, generation of decision rules is not based on a reduct of a decision
table, but P (a granulation order) and U∗ in the MABPA II.

By using MABPA II algorithm, the time complexity to extract decision rules
from an incomplete decision table is polynomial.

At the first step, we need to compute coreD(C), i.e., compute sigD
C−c(c) for

all c ∈ C. The time complexity for computing coreD(C) is O(|C||U |2).
At step 3, the time complexity for computing U/D is O(|U |2).
At step 5, the time complexity for computing U∗/SIM(Pi) is O(|U |2).
At step 7, the time complexity for computing all sigD

Pi
(c) is O(|C−Pi||C||U |2);

the time complexity to choose maximum for significance of attribute is |C −Pi|.
From step 5 to step 7, |C| − 1 is the maximum value for the circle times.

Therefore, the time complexity is
∑|C|−1

i=1 (O(|U |2) + O(|C − Pi||C||U |2) + O(|C − Pi|)) = O(|C|3|U |2).

Other steps will not be considered because that their time complexity are all
const.

Thus the time complexity of the algorithm MABPA II is as follows

O(|C||U |2) + O(|U |2) + O(|U |2) + O(|C|3|U |2) = O(|C|3|U |2).

In next part, we show how the algorithm MABPA II works by the following
example.
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A consistent decision table S = (U,C ∪D) is given by Table 2, where U =
{u1, u2, u3, u4, u5, u6}, C = {a1, a2, a3, a4} with a1-Price, a2-Mileage, a3-Size,
a4-Max-Speed, and D = {d}. By the algorithm MABPA II, we can extract
decision rules from Table 2.

Table 2. The incomplete decision table about car [28]

Car Price Mileage Size Max-Speed d ∂d

u1 high low full low good {good}
u2 low * full low good {good}
u3 * * compact low poor {poor}
u4 high * full high good {good, excellent}
u5 * * full high excellent {good, excellent}
u6 low high full * good {good, excellent}

By computing, it follows that U/SIM(C) = {SC(u1), SC(u2), SC(u3), SC(u4),
SC(u5), SC(u6)} and U/D = {{1, 2, 4, 6}, {3}, {5}}, where SC(u1) = {u1}, SC(u2)
= {u2, u6}, SC(u3) = {u3}, SC(u4) = {u4, u5}, SC(u5) = {u4, u5, u6}, SC(u6) =
{u2, u5, u6}.

According to the formula sigD
C−{c}(c) = γC(D) − γC−{c}(D), we have that

sigD
C−{a1}(a1) = 0, sigD

C−{a2}(a2) = 0, sigD
C−{a3}(a3) = 2

3 , sigD
C−{a4}(a4) = 1

6 .
So we get coreD(C) = {a3, a4}.

Hence, P1 = {a3, a4} and P = {P1}.
By computing, we know U/SIM(P1) = {{u1, u2, u6}, {u1, u2, u6}, {u3}, {u4,

u5, u6}, {u4, u5, u6}, {u1, u2, u4, u5, u6}} and Ω = Ω
′
= {{u1, u2, u6}, {u1, u2, u6},

{u3}}. Thus, we get two certain decision rules as follows

Rule = {r1 : des{P1}({u1, u2, u6}) → desD({u1, u2, u4, u6}),
r2 : des{P1}(u3) → desD({u3})}.

For
⋃

Z∈Ω Z = {u1, u2, u3, u6} 6= U , we need to compute significance of
the rest of attributes a1, a2 with respect to D. By the formula sigD

C′ (c) =
γC′∪{c}(D)− γC′ (D), we can obtain

sigD
P1∪{a1}(a1) = γP1∪{a1}(D)− γP1(D) = 0,

sigD
P1∪{a2}(a2) = γP1∪{a2}(D)− γP1(D) = 0.

Since sigD
P1∪{a1}(a1) = sigD

P1∪{a2}(a2) = 0, the algorithm MABPA II is
ended, and Rule is obtained.

For intuition, the two certain decision rules obtained by MABPA II from the
decision table S are listed in Table 3.

This example shows the mechanism of the decision rule mining algorithm
based on positive approximation. In fact, this algorithm can be also used to
extract uncertain decision rules from the boundary of positive approximation of
a target decision in an incomplete decision table.
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Table 3. Rules obtained for the decision table S.

Rule attrubutes
Size Max-Speed d

r1 full low good
r2 compact low poor

4 Conclusions

In this paper, through using a concept of granulation order, we have extended the
rough set approximation under static granulation to the rough set approximation
under dynamic granulation in the context of incomplete information systems
and have presented the concept of positive approximation with granulation from
rough to fine. Some of its important properties have been investigated. Note that
a target concept can be approached by the change of the positive approximation.
An algorithm based on the positive approximation for decision rule mining has
been given and its application has been illustrated by an illustrative example as
well. The results developed in this paper will be helpful for further research on
rough set theory and its practical applications.
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